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genes and decreases the killing activity 
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Abstract 
Background: Plasmacytoid dendritic cell (pDC) is described as the Swiss knife of immune system. Thus, the under-
standing of aberrant epigenetic reprogramming of genes governing the pDC functionality by pollutants appears such 
as an attractive research point.

Results: Our study has investigated the effect of Diuron (an herbicide) on the pDC-killing activity towards cancer 
cells. Thus, we observed that the Diuron exposure of pDC promotes a context of global DNA hypomethylation, which 
is associated with a phenotype of decrease of the killing activity of pDC towards cancer cells. At molecular level, our 
data associated the Diuron-induced global DNA hypomethylation with the elevated expression of TET2, an epigenetic 
player involved in DNA demethylation processes, and the decrease of the pDC-killing activity with the decrease of 
TRAIL expression and the increase of ILT7 expression.

Conclusions: Thus, our article reports that a pollutant (Diuron) induces an epigenetic reprogramming of a subtype of 
immune cell (pDC), which decreases its killing activity towards tumors cells. In some context, this mechanism might 
be conducive to the initiation of pathologies.
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Background
Originally described in human lymph nodes in the 1950s 
plasmacytoid dendritic cells (pDCs) are a rare type of 
immune cells since these cells constitute < 0.4% of periph-
eral blood mononuclear cells (PBMC) [1, 2]. Despite 
this relative rarity, pDC plays a crucial role in immune 
response since they link the innate and adaptive immune 
systems [3–5]. Thus, pDC has potential multifaceted 
roles in the pathogenesis of autoimmune diseases, allergy, 
cancer and human immunodeficiency virus (HIV) infec-
tion [6]. Consequently, the understanding of aberrant 

epigenetic reprogramming of certain genes governing 
functionality of pDC by pesticides appears such as an 
attractive research point. Besides literature reports that 
certain genes involved in pDC functionality can be epi-
genetically regulated by DNA methylation process. As 
example, pDCs can act as tolerogenic cells when express-
ing the programmed death 1 ligand (PD-L1) [7], and the 
PD-L1 expression can be regulated by the DNA methyla-
tion status of its promoter [8]. pDC-killing activity can be 
mediated by TRAIL [9] and Granzyme-B, which expres-
sion can be epigenetically regulated [10–12]. The ILT7 
expression, in which the interaction with BST2 assures 
an appropriate TLR response by pDCs during viral infec-
tion and participates in pDC-tumor crosstalk, can be also 
epigenetically regulated by DNA methylation [13, 14].
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Diuron is a substituted urea compound used as herbi-
cide and antifouling. Consequently, the Diuron toxicity 
can affect all the aquatic ecosystem (fish, algae, oyster, 
etc.) but also human health. Thus, literature reports that 
Diuron modulates the methylome of oysters [15–17], 
and affects the multixenobiotic resistance activity in 
Zebrafish [18]. Reports also mention a health risk for 
population exposed to Diuron [19–23].

The current study analyzed the putative effect of a Diu-
ron exposure on the pDC-killing activity via the investi-
gation of the DNA methylation status of genes regulating 
this activity.

Methods
Cell culture and exposure
The plasmacytoid dendritic cell line CAL-1 (Dr. T 
Maeda, Nagasaki University, Japan) has been derived 
from a blastic plasmacytoid dendritic cell neoplasm 
(BPDCN) patient [24]. These cells were cultured with 
RPMI 1640 supplemented with 10% FBS, 1% glutamine 
and 1% penicillin/streptomycin, and maintained at 37 °C 
in a humidified atmosphere containing 5%  CO2-air. Cells 
were exposed to Diuron (Santa Cruz, France) dissolved in 
dimethyl sulfoxide, (DMSO, Sigma). Control cells were 
exposed to 0.1% DMSO.

DNA extraction, 5mC ELISA and qMSRE
DNA extract is performed using QIAamp DNA Mini 
QIAcube Kit and QIAcube (Qiagen, France).

The quantification of 5-methylcytosine is performed 
using 5mC DNA ELISA kit (Zymo, Ozyme, France) 
according to the manufacturer’s instruction.

qMSRE combines the use of methylation-sensitive 
restriction enzyme and real-time PCR. Briefly, 20  ng of 
DNA was digested or not by Hpy188III and HpyCH4IV. 
Then, 5 μL of digested or not mix solutions were used to 
perform qPCR using the Rotor-Gene SYBR Green PCR 
Kit and Rotor-Gene Q as real-time thermocycler (Qia-
gen, France). Primers are: ILT7-S: TGT GAG GAC CCT 
GGA CTT CCT TTT , ILT7-AS: CAG CCT GGG CAA CAA 
GAA CAAA, TRAIL-S: ATG CCT GTA ATC CCA GCA 
CGTT and TRAIL-AS: GGT TTT ACC ATG TAG GCC 
AGGCT. The methylation level for any amplified region 
can be determined using the following equation: Percent 
Methylation = 100 × 2−ΔCt where ΔCt = the average Ct 
value from the digested reaction minus the average Ct 
values from the reference/undigested reaction. If DNA 
is methylated, Hpy188III and HpyCH4IV will not be able 
to digest DNA, and the DNA region will be amplified by 
PCR.

RNA extraction and RT-qPCR
RNA extract is performed using RNeasy Mini QIAcube 
Kit and QIAcube (Qiagen, France). RT-qPCRs are per-
formed using QuantiTect Reverse Transcription Kit, 
Rotor-Gene SYBR Green PCR Kit, QuantiTect Primer 
Assays and Rotor-Gene Q as real-time thermocycler 
(Qiagen, France). Normalization of gene expression was 
performed using RPLP0. The −2ΔΔCt method was used to 
calculate the fold change of mRNA expression between 
two conditions.

Protein extraction and TET2 ELISA
Protein extracts were obtained using RIPA Lysis and 
Extraction Buffer (Thermo Scientific, France) in accord-
ance with the manufacturer’s instructions. TET2 ELISAs 
were performed according to the manufacturer’s instruc-
tions (MyBiosource, MBS9317739, USA).

siRNA transfection
In a six-well culture plate, 2 × 105 cells were incubated for 
24 h at 37 °C in a  CO2 incubator. Then, 60 pmol of siRNA 
was added with 100  μL of siRNA transfection medium 
and the cells incubated for 7 h at 37 °C in a  CO2 incuba-
tor (Santa Cruz, France). Without removing the siRNA, 
1 mL of normal growth medium containing 2 times the 
normal serum and antibiotics concentration was added 
and cells incubated for 24  h. Then, cells were cultured 
for 48 h in normal culture medium. Thus, analyses were 
realized ~ 72 h after the siRNA transfection. The follow-
ing siRNA were used: siRNA-A (control) (sc-37007, Santa 
Cruz) and TET2 (sc-88934, Santa Cruz, France).

Cytotoxicity assays
CAL-1 cells (7 × 105) were seeded overnight in a 24-well 
plate in 2  mL medium devoid of Diuron. A total of 
1.1 mL medium was replaced with 100 μL FBS-free RPMI 
medium containing 12.5  μg/mL CpG B or Ctrl CpG B 
(Invivogen, France). The ability of pDCs to kill tumor 
cells was assessed in a classic Europium-TDA release 
assay (DELFIA; PerkinElmer), according to manufac-
turer’s instructions. Briefly, tumors cells were labeled 
with the fluorescence-enhancing ligand BATDA, which 
was released into the supernatant after cytolysis. Tumor 
cells or PBMC and pDC were then co-cultured for 4  h 
at indicated E/T ratios. Supernatants were collected and 
the released Europium-TDA release was counted using 
a fluorometer. Target cells were treated with 1% NP40 
and sonicated as a measure of maximal release. Tar-
get cells incubated without effector cells were used to 
measure spontaneous release. Percent of specific lysis 
was calculated using the following equation: % specific 
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lysis  =  [experimental release − spontaneous release]/
[maximum release − spontaneous release] × 100.

Chromatin immunoprecipitation (ChIP) experiments
Briefly, cross-linking step was performed by adding 37% 
formaldehyde to a final concentration of 1% [12]. Cells 
were incubated on a rotator for 10  min at room tem-
perature (RT), and formaldehyde was quenched by add-
ing 1.25  M glycine to a final concentration of 125  mM. 
Cells were rocked for 5  min at RT, washed with cold 
PBS, and flash-frozen in liquid nitrogen. Cells were lysed 
in buffer containing 1% SDS, 5 mM EDTA, and 50 mM 
Tris–HCl (pH 8.0) with freshly added protease inhibi-
tor. The chromatin was fragmented to 200–500 bp with 
a Bioruptor plus sonicator (Diagenode, France) at 4  °C. 

ChIP experiments were performed using ChIP-IT kit 
(Active Motif, France). The ChIP-grade Anti-CTCF 
(Abcam#Ab70303, France) and IgG (Abcam#AB2410, 
France) were used. DNAs eluted from ChIP were applied 
to real-time qPCR analysis using a QuantiFast SYBR 
green qPCR (Qiagen, France) on the Rotor-Gene Q (Qia-
gen, France). ChIP-quantitative PCR enrichment of tar-
get loci was normalized to input DNA.

Statistical analysis
All experiments were done at least in triplicates. Signifi-
cance of the differences in means was calculated using 
Student t test. The probability level for statistical signifi-
cance was p < 0.05 throughout the study.

Fig. 1 Schematic representation of the pDC exposure to Diuron and experimental schedule. a Molecular analyses (RT-qPCR, qMSRE, ELISA, ChIP) 
were performed 72 h after the Diuron exposure (25 mg/L). Lysis assay was performed 96 h after the Diuron exposure (25 mg/L). b The impact of 
Diuron on the viability of pDC was investigated using the XTT Cell Viability Kit (Cell Signaling, France). ABT737, a BH3 mimetic drug, was used as 
positive control for apoptosis induction. c Caspase-3 activity (Caspase-3 assay kit, Abcam, France) was measured to determine whether the pDC 
exposure to Diuron or ABT737 promoted apoptosis. Ctrl represents control exposure performed with DMSO
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Results
Diuron exposure promotes the TET2-mediated DNA 
hypomethylation of pDC
Literature reports that Diuron affects the global DNA 
methylation level [15–17]; we first investigated whether 
Diuron exposure could affect the global DNA methyla-
tion level of the pDC-like cell line CAL-1. For this pur-
pose, CAL-1 cells were expose to 25 mg/L of Diuron for 
72 h since this herbicide and four of its metabolites had 
a total concentration as high as 100 mg/L in plasma and 
urine [25] (Fig. 1a). The dose of 25 mg/L of Diuron was 
also chosen since it had no effect on the cell viability, 
on contrary to ABT737, a BH3 mimetic drug-inducing 
apoptosis [26, 27] (Fig.  1b). We also observed that the 
dose of 25 mg/L of Diuron was unable to promote Cas-
pase-3 activation, on contrary to ABT737 (Fig.  1c). The 
dose of 25  mg/L of Diuron being devoid of toxicity/
apoptogenicity and “compatible” with a dose observed in 
human blood, we decided to continue our study with this 
dose.

The global DNA methylation level was here estimated 
by ELISA quantifying the presence of 5-methylcytosine 
(5mC). Thus, we noted that Diuron exposure decreased 
the percentage of 5mC (Fig. 2a). In other terms, Diuron 
promotes the global DNA hypomethylation of pDC.

RT-qPCR performed to quantify the mRNA encoding 
for the major DNA methylation players shown that the 
Diuron exposure promoted the  TET2mRNA overexpres-
sion (Fig.  2b). Our study also indicated that the Diuron 

exposure promoted the TET2 protein overexpression 
(Fig. 2c).

Diuron exposure of pDC decreases the killing activity 
of these cells
To analyze the impact of the Diuron-induced DNA 
hypomethylation on the pDC-killing activity, we have 
compared the cell lysis activity of CpG-stimulated pDC 
previously exposed or not to Diuron (Fig. 1). The calcu-
lation of the cell lysis percentage indicated that the Diu-
ron exposure decreased the killing activity of these cells 
toward several tumor cells such as glioblastoma cells 
(Fig. 3a), breast cancer cells (Fig. 3b), and ovarian cancer 
cells (Fig. 3c), but not toward PBMC (Fig. 3d).

The Diuron-mediated decreased killing activity of pDC 
is associated with the modulation of the methylation 
status of ILT7 and TRAIL
Several molecular actors play a crucial role in the kill-
ing activity of pDC. In our study, we have focused our 
analysis on PD-L1, ILT7, TRAIL and Granzyme-B, 
i.e., on genes whose expression can be epigenetically 
regulated. The RT-qPCR analyses comparing the CpG-
stimulated pDC pre-exposed or not to Diuron indi-
cated that Diuron exposure increased the ILT7 mRNA 
expression and decreased the  TRAILmRNA expression. 
No expression changes were observed for PD-L1mRNA 
and Granzyme-BmRNA (Fig.  4a). ELISA experiments 

Fig. 2 Diuron promotes the decrease of 5mC in pDC via the TET2 overexpression. a Graph illustrates the Diuron-induced decease of 
5-methylcytosine (5mC) in pDC exposed to Diuron. Ctrl represents control exposure performed with DMSO. ND: not detected. b Graph illustrates 
the fold change expression of mRNA encoding for the major DNA methylation players that are DNMT1, DNMT3A, DNMT3B, TET1, TET2 and TET3 
compared to control. Ctrl represents control exposure performed with DMSO. c Graph from ELISA analysis illustrates the Diuron-induced increase of 
TET2 in pDC exposed to Diuron. Ctrl represents control exposure performed with DMSO



Page 5 of 9Briand et al. Environ Sci Eur           (2019) 31:35 

indicated that Diuron exposure increased the ILT7 
expression and decreased the TRAIL expression 
(Fig. 4b). qMSRE investigating the methylation level of 
the TRAIL and ILT7 promoters shows an hypometh-
ylation in pDC pre-exposed to Diuron (Fig. 4c). Thus, 
our data associated with the DNA hypomethylation of 
the ILT7 promoter with a gain of mRNA expression in 

pDC pre-exposed to Diuron, which agrees closely with 
the dogma: “DNA demethylation promotes a gain of 
transcription”. Paradoxically, our data indicated that 
the DNA hypomethylation of the TRAIL promoter 
is associated with a loss of mRNA expression in pDC 
pre-exposed to Diuron. By analyzing the hypometh-
ylated region of TRAIL promoter with the CTCFBS 

Fig. 3 Diuron exposure of pDC decreases the killing activity of these cells. After a pre-exposure to Diuron or DMSO (Ctrl), CAL-1 cells were 
stimulated by CpG for 36 h, and were co-cultured with U251 (a), MCF (b) OV90 (c) cells and PBMC (d) for another 4 h. The percentage of specific 
lysis was determined by cytotoxicity assay. Specific lysis (%) = (experimental release − spontaneous release)/(maximum release − spontaneous 
release) × 100
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prediction tool, we noted that this region included 
putative binding sites for the transcriptional repres-
sor CTCF. ChIP experiments confirmed that CTCF 
was recruited on the Diuron-induced hypomethylated 
region of TRAIL promoter (Fig.  4d). Taken together, 
these data support the idea that the Diuron-mediated 
decreased killing activity of pDC is associated with 
the modulation of the methylation status of ILT7 and 
TRAIL.

siRNA TET2 abrogates the cascade of events promoting 
decreased killing activity of pDC
Our data suggest that TET2 plays a crucial role in the 
Diuron-mediated decreased killing activity of pDC via 
the modulation of the methylation-mediated expres-
sion of ILT7 and TRAIL. Based on this finding, we next 
analyzed the impact of the siRNA-induced TET2 down-
regulation on the TET2 expression (ELISA), the global 
level of 5-methylcytosine (5mC, ELISA), the methyla-
tion level of ILT7 and TRAIL promoters (qMSRE), the 

Fig. 4 The Diuron-mediated decreased killing activity of pDC is associated with the modulation of the methylation status of ILT7 and TRAIL. a Graph 
illustrates the Diuron-induced fold change of mRNA expression encoding for molecular actors of killing pDC activity and shows an increase of ILT7 
and a decrease of TRAIL expression. b Graph illustrates the Diuron-induced fold change of ILT7 (In-cell ELISA, Abcam, France) and TRAIL (ELISA, 
Abcam, France) expression at protein level. The ILT7 signal was normalized by total cell numbers using Janus Green, a whole cell stain. c Graph 
illustrates the percentage of DNA methylation of the ILT7 and TRAIL promoters. Diuron exposure induced a decrease of both. d Graph illustrates the 
Diuron-induced increasing of CTCF enrichment on the TRAIL promoter
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expression of TRAIL and ILT7 at mRNA (RT-qPCR) and 
protein (ELISA) levels and on the lysis toward U251 cells. 
As expected, we noted that the siRNA-induced TET2 
down-regulation abrogated the decreased killing activ-
ity of pDC by abolishing the ILT7 overexpression and the 
TRAIL down-regulation occurring in a context of local 
and global DNA hypomethylation (Fig. 5).

Discussion
Due to its role of Swiss knife of immune system (such 
as described by Karrich et  al. [28]), the understanding 
of aberrant epigenetic reprogramming of genes govern-
ing functionality of pDC by pesticides appears such as 
an attractive research point. Our data indicated that the 
Diuron exposure decreased the killing activity of pDC 
towards three different cancer cell types (glioblastoma, 
breast cancer, and ovarian cancer) but not toward PBMC. 
Thus, it appears, in some way, that the Diuron exposure 
impoverishes the immunosurveillance concept by acting 
on one effective unit killing pre-cancerous and/or cancer-
ous cells: the pDC. To date, few other publications report 
that Diuron affects the immune system via a process of 
immunotoxicity [29]. Domingues et  al. report that rat 
exposure to Diuron presented a decrease in macrophages 
spreading, but no change was observed regarding the 
phagocytosis index [30].

Our data also identified a molecular pathway asso-
ciated with the decrease of pDC-killing activity since 
the Diuron exposure promotes the TET2 overexpres-
sion, which promotes the TRAIL down-expression and 
the ILT7 overexpression in a context of local and global 
DNA hypomethylation. Besides, the dual observation of 
the loss of TRAIL expression (a cytokine-promoting cell 
death [31]) and the overexpression of ILT7 (whose inter-
action with BST2 at the surface of tumor cells promotes 
the immune tolerance [13]) is consistent with the idea 
that the Diuron exposure decreased the killing activity of 
pDC.

By incriminating a TET2-mediated mechanism in the 
Diuron-mediated reduction of the pDC-killing activity, 
our data are one of the first to show that an environmen-
tal pollutant can affect the immunity via an epigenetic 
mechanism. Indeed, literature reports that environmen-
tal pollutants can affect the immunity, but no reports (at 
our knowledge) clearly incriminate an epigenetic player 
in this process. Taylor et al. report that Ziram (a broad-
spectrum fungicide) activates mitogen-activated protein 
kinases and decreases cytolytic protein levels in human 
natural killer cells [32]. Lepeule et  al. reports that the 
subchronic exposure to traffic-related pollutants was 
associated with significantly reduced lung function in the 
elderly and that epigenetic mechanisms related to inflam-
mation and immunity may influence these associations 

Fig. 5 Impact of the siRNA-mediated TET2 down-regulation on the 
cascade of events promoting decreased killing activity of pDC. Each 
parameter was calculated relatively to the siRNA-A/Ctrl condition
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[33]. However, the authors of this article did not clearly 
identify the involved molecular epigenetic mechanism in 
their observation.

Classically, the promoter DNA hypomethylation is 
associated with an increase of gene expression [34, 35]. 
Of course, certain individual cases refute this dogma. 
Our study illustrates one of these individual cases since 
the TRAIL DNA hypomethylation is associated with its 
down-regulation. Our experiments support paradoxically 
situation by showing that the hypomethylated area of 
TRAIL recruits CTCF, a transcriptional repressor. More 
general, it is easy and intuitive to think that the DNA 
methylation status of the different gene areas (promoter, 
regulator, enhancer, super-enhancer, insulator, and oth-
ers) could have distinct effects on genes expression.

The health outcomes resulting from environmental 
exposure(s) are highly varied and remarkably complex. In 
this article, we report that Diuron, an herbicide, induces 
an epigenetic reprogramming of a subtype of immune 
cells, pDC, which decreases its killing activity towards 
tumors cells. In some context, this mechanism might be 
conducive to the initiation of pathologies (such as cancer) 
via a process of “pollutants-induced alteration of immune 
surveillance”. Besides, Nadeau et al. report that increased 
exposure to AAP (Ambient Air Pollution) is associated 
with hypermethylation of the Foxp3 locus, impairing 
Treg-cell function and increasing asthma morbidity [36].

Conclusion
Our study tends to reinforce the converging evidences 
supporting the fact that Diuron may be a potential tumo-
rigenic substance. This effect was direct such as already 
reported to the bladder [14, 15], urothelial [16], skin [17, 
18] and mammary [15–19] carcinogenesis or indirect via 
the decrease of immunosurveillance phenomenon. How-
ever, in the absence of study in human, our study should 
not be considered as an absolute proof of the guilt of Diu-
ron in the occurrence of cancer but as a scientific ration-
ale incriminating a potential cellular mechanism that 
may be at the origin of the initiation of cancer.
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pDC: plasmacytoid dendritic cell; PD-L1: programmed death 1 ligand; TRAIL: 
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peripheral blood mononuclear cells.
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