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“Spatial heterogeneity of environmental
risk in randomized prevention trials:
consequences and modeling”
Abdoulaye Guindo1,2* , Issaka Sagara1,2, Boukary Ouedraogo1,3, Kankoe Sallah1,4, Mahamadoun Hamady Assadou2,
Sara Healy5, Patrick Duffy5, Ogobara K. Doumbo1,2ˆ, Alassane Dicko2, Roch Giorgi6 and Jean Gaudart6

Abstract

Background: In the context of environmentally influenced communicable diseases, proximity to environmental
sources results in spatial heterogeneity of risk, which is sometimes difficult to measure in the field. Most prevention
trials use randomization to achieve comparability between groups, thus failing to account for heterogeneity.
This study aimed to determine under what conditions spatial heterogeneity biases the results of randomized
prevention trials, and to compare different approaches to modeling this heterogeneity.

Methods: Using the example of a malaria prevention trial, simulations were performed to quantify the impact of
spatial heterogeneity and to compare different models.
Simulated scenarios combined variation in baseline risk, a continuous protective factor (age), a non-related factor
(sex), and a binary protective factor (preventive treatment). Simulated spatial heterogeneity scenarios combined
variation in breeding site density and effect, location, and population density.
The performances of the following five statistical models were assessed: a non-spatial Cox Proportional Hazard
(Cox-PH) model and four models accounting for spatial heterogeneity—i.e., a Data-Generating Model, a Generalized
Additive Model (GAM), and two Stochastic Partial Differential Equation (SPDE) models, one modeling survival time
and the other the number of events. Using a Bayesian approach, we estimated the SPDE models with an Integrated
Nested Laplace Approximation algorithm.
For each factor (age, sex, treatment), model performances were assessed by quantifying parameter estimation
biases, mean square errors, confidence interval coverage rates (CRs), and significance rates. The four models were
applied to data from a malaria transmission blocking vaccine candidate.

Results: The level of baseline risk did not affect our estimates. However, with a high breeding site density and a
strong breeding site effect, the Cox-PH and GAM models underestimated the age and treatment effects (but not
the sex effect) with a low CR.
When population density was low, the Cox-SPDE model slightly overestimated the effect of related factors (age,
treatment). The two SPDE models corrected the impact of spatial heterogeneity, thus providing the best estimates.
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Conclusion: Our results show that when spatial heterogeneity is important but not measured, randomization alone
cannot achieve comparability between groups. In such cases, prevention trials should model spatial heterogeneity
with an adapted method.

Trial registration: The dataset used for the application example was extracted from Vaccine Trial #NCT02334462
(ClinicalTrials.gov registry).

Keywords: Randomized prevention trials, Spatial heterogeneity, Stochastic Partial Differential Equation, Integrated
Nested Laplace Approximation, Environmental factors

Background
In the context of communicable diseases such as vector-
borne diseases (e.g., malaria, dengue) or other environ-
mentally influenced diseases (e.g., cholera), the location
of individuals affects environmental risk. In the case of
vector-borne diseases, proximity to an environment fa-
vorable to disease transmission (a vector breeding site or
an area favorable to mosquito survival) leads to spatial
heterogeneity of risk [1]. Most researchers conducting
prevention trials consider that randomization is suffi-
cient to achieve comparability between groups, even
when they fail to measure environmental risk. Such pre-
vention trials are based on analysis plans that generally
fail to account for spatial heterogeneity [2–5]. In some
cases, they account for this heterogeneity by using mixed
models [6–8], which associate a random spatial effect
with a specific spatial scale (country, region, health dis-
trict, village, etc.), on the assumption that environmental
risk is homogeneous on the scale considered and that no
spatial interaction occurs between scales (interscale
spatial independence). However, spatial heterogeneity of
incidence exists on the village scale itself [9], undermin-
ing the conditions for applying such models.
Spatial heterogeneity of risk is often difficult to assess.

In contexts where disease risk is associated with envir-
onmental factors, specific risk factors are not always
measurable or can be measured only through in-depth
fieldwork. For example, mosquito breeding sites can be
small, numerous, and scattered, as is the case for Anoph-
eles sp. and Aedes sp. (vectors for malaria and dengue,
respectively) [10–14]. Similarly, in the context of chol-
era, it is almost impossible to investigate all water
sources (wells or pumps).
While the Cox Proportional Hazard (Cox-PH) model

is the most widely used multivariate approach in clinical
trials, it is not always applied correctly in contexts of
spatial heterogeneity. In view of this, different methods
have been proposed that take into account spatial het-
erogeneity for survival analysis. Generalized Additive
Models (GAMs), which were initially developed to
model non-linear relationships, are used more and more
to model spatial heterogeneity using bivariate spline
functions on geographical coordinates as covariates [15–

17]. Alternatively, Stochastic Partial Differential Equa-
tion (SPDE) models are used to model explicitly out-
come variations following the first law of geography
[18]. Thus, Lindgren et al. have proposed an SPDE
model solved using a Gaussian field with a Matèrn co-
variance function that has good computational proper-
ties [19, 20]. Moreover, the SPDE model implemented
using the INLA (Integreted Nested Laplace Approxima-
tion) algorithm is now used in an ever-wider range of
contexts [21–23].
The aim of this study was first to determine under

what conditions and to what extent spatial heterogeneity
of environmental risk can bias the results of randomized
prevention trials, and then to compare the performance
of different spatial models in estimating treatment effect-
iveness. These methods were applied to a malaria vac-
cine trial conducted in Mali.

Methods
We simulated 432 scenarios (50 datasets for each sce-
nario, 1,000 individuals for each dataset). These scenar-
ios were analyzed first with a non-spatial Cox-PH
model, and then with four models that accounted for
spatial heterogeneity, including a Data-Generating model
(DGM).
For each factor (age, sex, and treatment), model per-

formance was assessed by quantifying parameter estima-
tion bias, mean square error (MSE), confidence interval
coverage rate (CR), and significance rate (SR).
For the main scenarios (32), 500 datasets of 1,000 indi-

viduals each were performed for validation (Additional
file 1: Figure S1).

Simulation plan
Event time was simulated using a classic Cox-PH model
that accounted for different risks factors (including en-
vironmental factors) according to a Weibull distribution.
Censoring time was simulated using an exponential
distribution.
More precisely, for a given vector of covariates X, the

instantaneous risk function λi(t, X) for individual i at
time t was defined as follows:
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λi t;Xð Þ ¼ λi t;X ið Þ
� �

þ λi t;X −ið Þ
� �

where λi(t, X
(i)) was the fixed effect dependent on indi-

vidual i and λi(t, X
(−i)) was the spatial effect dependent

on the neighborhood of individual i.
We then simulated a randomized and controlled pre-

vention trial of n = 1,000 individuals in a square area Ω of
400 km2. Before the treatment randomization was simu-
lated, different risk situations (scenarios) were simulated
according to location (spatial distribution of individuals),
baseline risk, and heterogeneity of environmental risk (lo-
cation and density of breeding sites) (see description
below). In addition to the treatment effect, two non-
spatial risk factors were simulated: one had a significant
continuous effect (age factor), and the other had a null ef-
fect (sex factor).
The size of datasets and the number of simulations

were selected with an accuracy of 0.01 and a variance of
0.09, following standard recommendations [24].

Location (spatial distribution of individuals)
To simulate the spatial distribution of individuals in the
study zone Ω, we used an Inhomogeneous Point Process
(IPP) in which population density depended on the loca-
tion of individuals. We considered three clusters, L1, L2,
and L3, where the population was at its densest, and we
introduced a concentration parameter τ to control for
population density in these clusters.
The location of these three clusters was randomized

using a Homogeneous Point Process (HPP) so as to re-
spect a minimum distance between them (see Additional
file 2).
We studied the impact of population density in the

three clusters by simulating three different density
situations:
τ = 0.2 (low population density in the three clusters)
τ = 0.5 (average population density in the three

clusters)
τ = 0.8 (high population density in the three clusters)

Baseline risk
Baseline risk λ0 was assumed to be constant for all indi-
viduals. It was simulated using a Weibull distribution
with a shape parameter set to 1 to obtain a constant
value over time. Three baseline risk levels corresponding
to three observed epidemiological profiles were used for
the scale parameter γ, taking as an example malaria
prevalence in Mali [25]:
Low prevalence: γ = 6% (e.g., situation in Bamako),
Median prevalence: γ = 37% (e.g., situation in Segou),
High prevalence: γ = 60% (e.g., situation in Mopti).

Source of environmental risk (Breeding sites)
Spatial heterogeneity of environmental risk was simu-
lated according to location of breeding site, variation in
breeding site effect (defined as Relative Risk RRb), vari-
ation in breeding site density, and influence radius of
breeding site considered as a constant.
An individual was considered exposed to a breeding

site when the distance between this individual and the
center of the site was less than the site’s influence
radius.
The influence radius of a breeding site was interpreted

as the average distance traveled by a mosquito to take a
blood meal. The influence radius was set at r = 600 m
[26], and was constant for all breeding sites.
Considering that breeding site density did not depend

on location, we simulated the spatial distribution of
breeding sites following a marked HPP where the mark
was the breeding site’s influence radius r. Thus, an indi-
vidual could be exposed to zero, one, or more breeding
sites, with risk increasing accordingly.
Breeding site density was used to quantify the ratio of

the environmental risk area (i.e., the area covered by the
influence radius of at least one breeding site) to the total
area of the study zone (400 km2).
This density was interpreted as the probability of being

exposed to at least one breeding site (see Additional file
2). To simulate different scenarios, breeding site density
was set at 0.25, 0.5, and 0.75.
Given that breeding site productivity and protection

against mosquito bites can be highly variable, the breed-
ing site effect (defined as Relative Risk RRb), was also
simulated in four situations:

Very weak effect (RRb = 1.05),
Weak effect (RRb = 1.20),
Strong effect (RRb = 1.5),
Very strong effect (RRb = 3).

Treatment
Allocation to control and intervention groups was simu-
lated according to a symmetric Bernoulli distribution Bð
n; 0:5Þ using individual randomization and without ac-
counting for location or for other factors.
Subsequently, four levels of treatment effect (defined

as Relative Risk RRt) were simulated:

Very weak effect (RRt = 0.95),
Weak effect (RRt = 0.8),
Strong effect (RRt = 0.6),
Very strong effect (RRt = 0.25).

Indeed, while the effectiveness of prevention trials (in-
cluding malaria-prevention trials) is highly variable, in
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most cases it falls within the relative risk range of 0.25
to 0.95 [27–32].

Other risk factors
Although the aim of our study was to assess the impact
of spatial heterogeneity of environmental risk, we
included two additional factors in our analysis: one was
related to the disease (age), and the other was not (sex).
These two factors were independent of spatial location,
and their effect was constant over time.
Thus, a binary variable identified as the sex factor was

simulated using a symmetrical binomial distribution
with a null effect (defined as Relative Risk RRs = 1).

Sex � B n; p ¼ 0:5ð Þ
A continuous disease-related variable identified as the

age factor was simulated following a piecewise uniform
distribution, based on the population distribution by age
group in Mali [33]. The protective effect of this variable
(defined as Relative Risk RRa), which was taken from the
literature [25], was fixed and constant over time (RRa =
0.84):

Age1 � U 47:3%n; 0:25; 14½ �ð Þ
Age2 � U 19:2%n;ð �14; 24�Þ
Age3 � U 26:8%n; �24; 54�ð Þ
Age4 � U 3:76%n; �54; 64�ð Þ

Age5 � U 2:94%n;ð �64; 75�Þ

Events and Censoring
Event time Tevent was simulated using a classic Cox-PH
model that accounted for the different risk factors de-
tailed above, namely baseline risk, age, sex, treatment,
and environmental risk (breeding sites). The instantan-
eous risk function of individual i was calculated as
follows:
λi(t| X) = λ0 exp (β1Agei + β2Sexi + β3Treatmenti + β4BSi)
[equation 1]
λ0 was the baseline risk considered constant over time,

BSi was the number of breeding sites to which individual
i was exposed, and β1, β2, β3, β4 were the parameters as-
sociated with the covariates age, sex, treatment, and
breeding site, respectively.
Censoring time Tcens was simulated following an expo-

nential distribution. Thus, observation time T was de-
fined as the minimum between censoring time and
event time.

T ¼ min Tevent ;Tcensð Þ
The combination of these different simulation parame-

ters resulted in 432 scenarios, each containing 50 data-
sets (Figure 1). Datasets of 1,000 individuals each yielded
a power greater than 85% when the treatment effect
(RRt) was less than 0.8. For a treatment effect set at
RRt = 0.95, power was around 65%.

Fig. 1 Simulation scheme for the different scenarios
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An example of the simulated data structure is shown
in Figure 2.

Model Evaluation and Comparison
For each scenario, we analyzed each dataset using five
statistical models (see Additional file 1 for details):
a DGM, according to equation 1;
Model Evaluation and Comparisona classic non-spatial

Cox-PH model, whose parameters were estimated with
the maximum likelihood method, according to an equa-
tion similar to equation 1 but without taking into ac-
count the environmental risk factor [34, 35];
a GAM model, also with proportional hazards, which

modeled the spatial effect with a bivariate spline func-
tion [36] (as detailed below);
two SPDE models (as detailed below), which modeled

spatial heterogeneity using a Gaussian field with a
Matèrn covariance function: one modeled survival time
with a Weibull distribution (Cox-SPDE), and the other
modeled the number of events with a Poisson distribu-
tion (P-SPDE).
Using a Bayesian approach, we estimated the SPDE

models (Cox-SPDE and P-SPDE) with the INLA algo-
rithm to optimize computation times [37, 38].

Generalized Additive Model (GAM)
The GAM model was originally designed to study non-
linear links [39], usually with spline functions. In our

particular case, a bivariate spline function of the geo-
graphic coordinates of individuals (latitude and longi-
tude) was used to account for spatial heterogeneity of
environmental risk [36, 40]:

λ t;Xð Þ ¼ λ0 tð Þ exp β1X1 þ β2X2 þ…þ βnXn þ f long; latð Þ� �

for each point data, f was a bivariate spline function
modeling the spatial effect, long was longitude, and lat
was latitude.

SPDE model
The SPDE model was originally designed to model
spatial structures using a Gaussian field [41]. This Bayes-
ian model is generally written as follows:

Y j β;X;Z∼PðY jμ;ϕÞ
Z∼GFð0;ΣÞ

ℙ is the distribution of Y (dependent variable), X is the
vector of covariates (fixed effects), Z is a Gaussian field
(GF) with a Matèrn covariance function Σ (random
spatial effect), and μ = E(Y) and ϕ are the parameters of
the distribution of Y, μ = E(Y) = h(βX + Z), where h is the
canonical link function.
The Matèrn covariance function is used to control for

spatial dependence and for the regularity of the Gaussian
field (see Additional file 2). Other covariance functions,

Fig. 2 Structure of simulated data (the size of the points is proportional to survival time)
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including exponential ones, are particular cases of the
Matèrn covariance function [42]. In our particular case,
we applied the SPDE model in two different ways to
model outcome distribution: We applied a spatial Cox-
PH model (Cox-SPDE) to model survival time, and a
Poisson model (P-SPDE) to discretize survival time and
to model the number of events within each time interval
(Poisson distribution).

Cox-SPDE model
The Cox-SPDE model is the classic Cox-PH model to
which a Gaussian field is added to model the spatial
structure [38, 41]. In our particular case, the dependent
variable (Y) was survival time:

λ t;Xð Þ ¼ λ0 tð Þ exp β1X1 þ β2X2 þ…þ βnXn þ Z
� �

P-SPDE model
The P-SPDE model is a piecewise exponential model
driven by a counting process [41, 43, 44]. Thus, for a
number of events D (where δik is the indicator of the
event in individual i = 1, 2,… , n in the time interval k =
1, 2,… , D, and where Tik is survival time in individual i
in the kth interval), δ is assumed to follow a Poisson dis-
tribution of parameter π (average number of events per
time interval).
In our particular case, the spatial structure was mod-

eled with a Gaussian field, as earlier described. The
dependent variable was the number of events per time
interval instead of survival time.

δ � Poisson πð Þ
log πð Þ ¼ λ0 þ β1X1 þ β2X2 þ…þ βnXn þ log Tð Þ þ Z

Model performance measures
The parameter β represented the true effect of each co-

variate estimated by β̂, with a standard deviation Sdðβ̂Þ
estimated on K datasets for each scenario and with a

95% Confidence Interval CI(β).
The models were compared using four performance

measures [24, 45]: estimation bias Bðβ̂Þ , mean square
error (MSE), coverage rate (CR), and significance rate
(SR), as defined in Additional file 2.

Application
The four models (Cox-PH, GAM, Cox-SPDE, P-SPDE)
were applied, according to the above specifications, to
data from a vaccine trial aimed at testing a malaria
transmission blocking vaccine candidate: Pfs230 [46].
This randomized controlled trial was conducted in
2015-2016 in the town of Bancoumana, Mali (for more

details, see [47]). In our study, the event of interest was
a clinical malaria episode. The age, sex, and geographical
coordinates (GPS) of participants were also collected.
The preventive fraction of the vaccine was calculated
based on an estimated prevalence of 77%.

Results
Data-Generating Model (DGM)
The DGM was the simulation model, which took into
account environmental risk. As expected, biases and
MSEs were almost null and nearly always had the de-
sired CR, regardless of the scenario (Additional file 3).

Impact of baseline risk on estimates
The baseline risk level had roughly no impact on the per-
formance measures of the different models, independently
of other parameters (Additional file 4: Figure S2). For ex-
ample, with a weak breeding site effect (Relative Risk
RRb = 1.05), a low breeding site density (Db = 0.25), a mod-
erate treatment effect (Relative Risk RRt = 0.6), and a low
population density (τ = 0.2), performance measures were
identical for a baseline risk of 0.06 and a baseline risk of
0.6 for both the Cox-PH model (bias = -9.37 10-3 and
-8.14 10-3, respectively) and the Cox-SPDE model (bias =
-26.57 10-3 and -21.38 10-3, respectively).
Similarly, for the age and sex effects, performance

measures were little impacted by changes in baseline
risk, regardless of the scenario.
The following results were obtained with a baseline

risk of 0.37.

Estimates of the treatment effect
When the breeding site effect was weak (Relative Risk
RRb ≤ 1.2), breeding site density had little impact on the
bias and MSE of the treatment effect, which were low
for all models, regardless of the scenario.
Thus, with a weak breeding site effect (RRb ≤ 1.2), the

bias of the treatment effect ranged from -0.034 to 0.045
for all models except the Cox-SPDE model, regardless of
the scenario (G1 and G2 in Figures 3 and Additional file
5: Figure S3).
Under these conditions of weak breeding site effect, the

Cox-SPDE model tended to slightly overestimate the treat-
ment effect when population density was low (τ = 0.2), all
the more so when the treatment effect was strong (Table 1)
. For example, with RRt = 0.25, RRb = 1.05, Db = 0.25, and
τ = 0.2, the Cox-SPDE model overestimated the treatment
effect with a maximum bias of -0.071.By contrast, with a
high population density (τ = 0.8, other parameters
remaining unchanged), the bias of the treatment effect was
-0.033. Yet even under conditions of low population dens-
ity, this overestimation was corrected when the treatment
effect was weak (RRt ≥ 0.80). For example, for the Cox-
SPDE model, with RRb = 1.05, Db = 0.25, and τ = 0.2, the
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bias of the treatment effect varied between -0.011 and
0.012 for RRt = 0.95.
The SR (resp. CR) of the treatment effect was similar

between all models regardless of the weak breeding site
effect scenario. It ranged from 2% to 24% (resp. from
86% to 100%) for RRt = 0.95, and reached 100% (resp.
from 82% to 100%) for RRt = 0.25. As expected, there
was a lack of power when the treatment effect was weak
(RRt = 0.95) (G1 and G2 in Figures 4 and 5).
By contrast, when the breeding site effect was strong

(RRb ≥ 1.51), the increase in breeding site density caused
an important increase in the bias of the treatment effect
for the Cox-PH and GAM models. The bias of the treat-
ment effect was even higher when this effect was strong
(G3 and G4 in Figure 3).
For example, for the Cox-PH model, with RRb = 3,

Db = 0.25, and τ = 0.2, the bias of the treatment effect
could reach a maximum of 0.139 for the highest level of
treatment effect (RRt = 0.25).
With these same parameters, the bias of the treat-

ment effect reached a maximum of 0.131 for the
GAM model. As for the two SPDE models, the bias
of the treatment effect reached a maximum of 0.054
for the Cox-SPDE model and a maximum of 0.010
for the P-SPDE model.
With a higher breeding site density (Db = 0.75, other

parameters remaining unchanged), the bias of the

treatment effect reached a maximum of 0.342 for the
Cox-PH model for the highest level of treatment effect.
The bias of the treatment effect reached a maximum of
0.33 for the GAM model. As for the two SPDE models,
the bias of the treatment effect reached a maximum of
0.09 for the Cox-SPDE model and a maximum of 0.014
for the P-SPDE model.
When the breeding site effect was strong (RRb ≥ 1.51),

the CR of the treatment effect was negatively impacted
by an increase in breeding site density for the Cox-PH
and GAM models (G3 and G4 in Figures 4 and 5). This
impact was even greater when the treatment effect was
strong.
For example, with a strong breeding site effect RRb = 3

and a high breeding site density (Db = 0.75), the max-
imum CR of the treatment effect varied between 94% to
8% for the Cox-PH model, between 92% to 14% for the
GAM model, between 98% to 96% for the Cox-SPDE
model, and between 100% to 96% for the P-SPDE model.
The SR of the treatment effect was not impacted by

strong breeding site effects. It remained similar between
all models, but varied from one scenario to the next de-
pending on the level of treatment effect (with an ex-
pected lack of power for the weak treatment effect
RRt = 0.95). Indeed, for the highest level of treatment
effect (RRt = 0.25), the SR of the treatment effect var-
ied between 98% and 100% for all models.

Fig. 3 Bias of the treatment effect with a baseline risk of 0.37 DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized
Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site
Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk
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Application
In the context of the Pfs230 vaccine trial, none of the
models yielded a significant vaccine effect on clinical ep-
isodes. The Cox-SPDE model estimated a slightly higher
preventive fraction (29.26% [-10.93%; 51.21%]), followed
closely by the P-SPDE model (26.95% [-15.25%; 49.90%])
. By contrast, the non-spatial Cox-PH model estimated a

slightly lower preventive fraction (24.64% [-16.56%;
47.66%]), as did the GAM model (22.33% [-22.25%;
46.82%]).

Estimates of the age effect
When the breeding site effect was weak (RRb = 1.05 or
1.2), breeding site density had little impact on the bias

Table 1: Model performance measures for estimation of the treatment effect (baseline risk 0.37)

RRb RRt Model Breeding site density

0.25 0.75

Population density Population density

0.2 0.8 0.2 0.8

Bias CR SR Bias CR SR Bias CR SR Bias CR SR

1.05 0.95 Cox-PH 0.014 0.96 0.06 0.015 0.88 0.08 0.016 0.92 0.06 |< 0.001| 0.96 0.04

GAM 0.014 0.98 0.06 0.015 0.86 0.08 0.015 0.92 0.06 |< 0.001| 0.94 0.04

Cox-SPDE 0.012 0.98 0.08 0.016 0.86 0.08 0.014 0.94 0.06 -0.002 0.96 0.04

P-SPDE 0.013 0.98 0.08 0.016 0.86 0.1 0.014 0.94 0.06 -0.002 0.96 0.04

0.80 Cox-PH -0.011 0.98 0.74 -0.005 0.98 0.92 -0.018 0.96 0.92 0.013 0.96 0.76

GAM -0.012 0.98 0.74 -0.006 0.98 0.9 -0.018 0.96 0.92 0.014 0.96 0.74

Cox-SPDE -0.017 0.94 0.74 -0.007 0.98 0.9 -0.026 0.94 0.92 0.011 0.96 0.76

P-SPDE -0.012 0.96 0.76 -0.004 0.98 0.9 -0.018 0.96 0.9 0.016 0.96 0.76

0.60 Cox-PH -0.003 0.84 1.00 -0.005 0.94 1.00 -0.015 0.94 1.00 -0.008 0.94 1.00

GAM -0.004 0.88 1.00 -0.008 0.94 1.00 -0.015 0.96 1.00 -0.01 0.94 1.00

Cox-SPDE -0.017 0.8 1.00 -0.011 0.94 1.00 -0.027 0.96 1.00 -0.015 0.94 1.00

P-SPDE -0.007 0.88 1.00 -0.002 0.94 1.00 -0.011 0.98 1.00 -0.011 0.96 1.00

0.25 Cox-PH 0.009 0.98 1.00 -0.011 0.98 1.00 -0.018 0.96 1.00 0.012 0.9 1.00

GAM 0.005 0.96 1.00 -0.016 0.96 1.00 -0.02 0.96 1.00 0.007 0.92 1.00

Cox-SPDE -0.039 0.9 1.00 -0.033 0.92 1.00 -0.055 0.9 1.00 -0.008 0.9 1.00

P-SPDE 0.008 0.94 1.00 -0.008 0.96 1.00 -0.01 0.96 1.00 0.016 0.96 1.00

3 0.95 Cox-PH 0.005 1.00 0.02 0.009 0.94 0.06 0.027 0.96 0.04 0.009 0.94 0.06

GAM 0.005 1.00 0.02 0.007 0.94 0.08 0.027 0.96 0.04 0.01 0.98 0.08

Cox-SPDE |< 0.001| 1.00 0.02 -0.002 0.94 0.08 0.024 0.92 0.04 0.007 1.00 0.04

P-SPDE -0.002 1.00 0.02 -0.002 0.94 0.08 0.023 0.9 0.04 0.006 1.00 0.04

0.80 Cox-PH 0.01 0.96 0.78 0.016 0.92 0.8 0.045 0.92 0.6 0.069 0.84 0.5

GAM 0.008 0.98 0.78 0.013 0.92 0.8 0.044 0.94 0.58 0.068 0.86 0.5

Cox-SPDE -0.002 0.98 0.78 -0.003 0.96 0.82 0.004 1.00 0.64 0.025 0.98 0.48

P-SPDE -0.011 0.98 0.8 -0.008 0.96 0.82 -0.008 1.00 0.64 0.023 1.00 0.5

0.60 Cox-PH 0.036 0.9 1.00 0.072 0.86 1.00 0.139 0.62 1.00 0.121 0.64 1.00

GAM 0.035 0.92 1.00 0.067 0.86 1.00 0.135 0.6 1.00 0.104 0.78 1.00

Cox-SPDE 0.006 0.96 1.00 0.032 0.94 1.00 0.053 0.92 1.00 |< 0.001| 0.96 1.00

P-SPDE -0.012 0.96 1.00 0.027 0.92 1.00 0.025 0.92 1.00 -0.003 0.96 1.00

0.25 Cox-PH 0.125 0.78 1.00 0.136 0.58 1.00 0.32 0.02 1.00 0.33 0.06 1.00

GAM 0.121 0.78 1.00 0.123 0.68 1.00 0.309 0.02 1.00 0.293 0.1 1.00

Cox-SPDE 0.045 0.94 1.00 0.004 0.98 1.00 0.067 0.94 1.00 0.011 0.94 1.00

P-SPDE -0.006 1.00 1.00 0.002 1.00 1.00 -0.021 0.98 1.00 -0.004 0.92 1.00

CR Coverage Rate, SR Significance Rate, Cox-PH Cox Proportional Hazard model, GAM Generalized Additive Model, Cox-SPDE Cox-Stochastic Partial Differential
Equation Model, P-SPDE Poisson-Stochastic Partial Differential Equation Model, RRt Treatment Relative Risk, RRb Breeding site Relative Risk. See Additional file 6 for
MSE Mean Square Error
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Fig. 4 CR of the treatment effect with a baseline risk of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized
Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site
Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk.

Fig. 5 SR of the treatment effect with a baseline risk of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized
Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site
Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk.
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and MSE of the age effect, regardless of the model. For
example, regardless of the weak breeding site effect sce-
nario, the bias of the age effect was around -0.0035 for
all models except the Cox-SPDE model (G1 and G2 in
Additional file 7: Figure S4 and Additional file 8: Figure
S5). As was observed for the treatment effect, the latter

model tended to slightly overestimate the age effect, all
the more so when population density in the clusters was
low. Thus, for a population density τ = 0.2, the bias was
around -0.007 (Table 2).
The SR of the age effect was identical for all

models regardless of the scenario. However, the CR of

Table 2: Model performance measures for estimation of the age effect (baseline risk 0.37)

RRb RRt Model Breeding site density

0.25 0.75

Population density Population density

0.2 0.8 0.2 0.8

Bias CR SR Bias CR SR Bias CR SR Bias CR SR

1.05 0.95 Cox-PH 0.002 0.96 1.00 |< 0.001| 0.9 1.00 -0.002 0.98 1.00 -0.001 0.98 1.00

GAM 0.001 0.94 1.00 -0.001 0.9 1.00 -0.002 0.96 1.00 -0.002 0.96 1.00

Cox-SPDE -0.004 0.76 1.00 -0.003 0.86 1.00 -0.006 0.72 1.00 -0.003 0.88 1.00

P-SPDE |< 0.001| 0.94 1.00 -0.001 0.96 1.00 -0.001 0.96 1.00 -0.001 0.92 1.00

0.80 Cox-PH |< 0.001| 0.96 1.00 -0.001 0.96 1.00 |< 0.001| 0.96 1.00 -0.002 0.84 1.00

GAM |< 0.001| 0.96 1.00 -0.002 0.96 1.00 -0.001 0.98 1.00 -0.003 0.88 1.00

Cox-SPDE -0.004 0.76 1.00 -0.003 0.86 1.00 -0.006 0.68 1.00 -0.005 0.72 1.00

P-SPDE -0.001 0.96 1.00 -0.001 0.92 1.00 |< 0.001| 0.94 1.00 -0.002 0.92 1.00

0.60 Cox-PH 0.001 0.9 1.00 -0.001 0.96 1.00 -0.002 0.96 1.00 0.001 0.96 1.00

GAM |< 0.001| 0.92 1.00 -0.002 0.96 1.00 -0.002 0.94 1.00 |< 0.001| 0.96 1.00

Cox-SPDE -0.003 0.84 1.00 -0.003 0.86 1.00 -0.007 0.66 1.00 -0.002 0.88 1.00

P-SPDE |< 0.001| 0.94 1.00 -0.001 0.94 1.00 -0.002 0.98 1.00 |< 0.001| 0.94 1.00

0.25 Cox-PH |< 0.001| 0.98 1.00 -0.001 0.98 1.00 -0.001 0.94 1.00 |< 0.001| 0.96 1.00

GAM |< 0.001| 0.98 1.00 -0.003 0.9 1.00 -0.002 0.92 1.00 |< 0.001| 0.94 1.00

Cox-SPDE -0.006 0.66 1.00 -0.004 0.8 1.00 -0.006 0.76 1.00 -0.003 0.8 1.00

P-SPDE |< 0.001| 0.96 1.00 -0.001 0.96 1.00 |< 0.001| 0.94 1.00 |< 0.001| 1.00 1.00

3 0.95 Cox-PH 0.018 0.16 1.00 0.016 0.32 1.00 0.041 0.00 1.00 0.042 0.00 1.00

GAM 0.017 0.2 1.00 0.014 0.5 1.00 0.04 0.00 1.00 0.037 0.00 1.00

Cox-SPDE 0.007 0.74 1.00 |< 0.001| 0.98 1.00 0.01 0.84 1.00 0.003 0.86 1.00

P-SPDE -0.001 0.92 1.00 -0.001 0.96 1.00 |< 0.001| 0.94 1.00 |< 0.001| 0.96 1.00

0.80 Cox-PH 0.018 0.18 1.00 0.019 0.18 1.00 0.042 0.00 1.00 0.041 0.00 1.00

GAM 0.017 0.26 1.00 0.018 0.32 1.00 0.04 0.00 1.00 0.036 0.00 1.00

Cox-SPDE 0.007 0.86 1.00 0.005 0.9 1.00 0.011 0.8 1.00 0.002 0.98 1.00

P-SPDE 0.001 0.92 1.00 0.001 0.96 1.00 0.002 0.9 1.00 |< 0.001| 0.96 1.00

0.60 Cox-PH 0.017 0.26 1.00 0.016 0.3 1.00 0.042 0.00 1.00 0.04 0.00 1.00

GAM 0.016 0.28 1.00 0.015 0.52 1.00 0.041 0.00 1.00 0.037 0.00 1.00

Cox-SPDE 0.007 0.8 1.00 0.001 0.94 1.00 0.012 0.76 1.00 0.001 0.96 1.00

P-SPDE 0.001 0.98 1.00 -0.001 0.98 1.00 0.002 0.94 1.00 -0.001 0.96 1.00

0.25 Cox-PH 0.018 0.2 1.00 0.016 0.28 1.00 0.042 0.00 1.00 0.043 0.00 1.00

GAM 0.017 0.2 1.00 0.014 0.44 1.00 0.041 0.00 1.00 0.038 0.00 1.00

Cox-SPDE 0.007 0.8 1.00 -0.001 0.94 1.00 0.011 0.78 1.00 0.003 0.92 1.00

P-SPDE 0.001 0.96 1.00 -0.001 0.92 1.00 |< 0.001| 0.98 1.00 0.001 0.94 1.00

CR Coverage Rate, SR Significance Rate, Cox-PH Cox Proportional Hazard model, GAM Generalized Additive Model, Cox-SPDE Cox-Stochastic Partial Differential
Equation Model, P-SPDE Poisson-Stochastic Partial Differential Equation Model, RRt Treatment Relative Risk, RRb Breeding site Relative Risk. See Additional file 6 for
MSE Mean Square Error
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the age effect was slightly lower for the Cox-SPDE
model when population density was low. Indeed, with
a weak breeding site effect (RRb = 1.05), a low breed-
ing site density (Db = 0.25), and a population density
τ = 0.2, the CR of the age effect ranged from 86% to
100% for the non-spatial Cox-PH model and from
62% to 92% for the Cox-SPDE model.
Conversely, when the breeding site effect was strong

(RRb = 1.51 and 3), the bias of the age effect increased
markedly with breeding site density Db for the Cox-PH
and GAM models (G3 and G4 in Additional file 7:
Figure S4 and Additional file 8: Figure S5). For example,
for the Cox-PH model, with a strong breeding site effect
(RRb = 3) and a low population density (τ = 0.2), the bias
of the age effect was around 0.017 for a low breeding site
density (Db = 0.25) and around 0.041 for a high breeding
site density (Db = 0.75).
The bias of the age effect was very similar between the

GAM model and the Cox-PH model, regardless of the
scenario. For the Cox-SPDE model, the bias of the age
effect was slightly impacted by population density: it was
lower when this density was high. With a strong breed-
ing site effect (RRb = 3) and a high breeding site density
(Db = 0.75), the bias of the age effect was around 0.01 for
a low population density (τ = 0.2) and around 0.001 for a
high population density (τ = 0.8). For the P-SPDE model,
the bias of the age effect was low regardless of the sce-
nario (~0). It should be noted that the bias of the age ef-
fect was similar between the P-SPDE model and the
Cox-SPDE model, all the more so when population
density was high.
The CR of the age effect was low for the Cox-PH and

GAM models (G3 and G4 in Additional file 9: Figure
S6). For example, for the Cox-PH model (resp. GAM
model), with a strong breeding site effect (RRb = 3), the
CR of the age effect was 0% (resp. < 2%) when breeding
site density was high (Db = 0.75). Under these same con-
ditions, for the Cox-SPDE and P-SPDE models, the CR
of the age effect remained high at 82% to 100%, respect-
ively. However, the SR of the age effect was 100% for all
models, regardless of the scenario (Additional file 10:
Figure S7).
It is important to note that for these simulated data-

sets, the level of treatment effect had no impact on the
estimates of the age effect, regardless of the scenario.

Estimates of the sex effect
Regardless of the scenario, the bias, MSE, CR, and
SR of the sex effect were roughly identical for all
models (Table 3), with very little variation from one
scenario to the next (Additional file 11: Figure S8,
Additional file 12: Figure S9, Additional file 13: Fig-
ure S10, Additional file 14: Figure S11).

Discussion
The aim of this study was to highlight the impact of the
spatial heterogeneity of non-measured environmental
risk on the results of prevention trials by using simulated
data in different scenarios. We have shown that despite
randomization, spatial heterogeneity leads to underesti-
mating the treatment effect, with a CR that is almost
null in some situations. In our study, the conditions
leading to the most biased results were strong environ-
mental effect (breeding site effect in our application con-
text) in conjunction with high environmental density
(breeding site density in our application context).
This is unsurprising, as environmental risk is known

to vary according to the location of individuals and to
environmental factors [48]. Bias correction was achieved
with models that accounted for the location of individ-
uals as a proxy for variation in environmental risk, in
particular with the P-SPDE model.
The limits of the breeding site effect RRbwere set be-

tween 1.05 and 3 and those of breeding site density Db

(which expressed the probability of being exposed to at
least one breeding site) were set between 0.25 and 0.75.
Bias increased linearly, and was important starting from
RRb = 1.5, even when breeding site density was low (Db =
0.25). However, scenarios with a high breeding site
density (Db = 0.75) and a weak breeding site effect (RRb

= 1.05, 1.20) did not yield a clear bias.
Despite randomization, the treatment effect also im-

pacted the estimates. Indeed, bias increased linearly with
the treatment effect, except when the breeding site effect
was weak (RRb ≤ 1.2). With a strong treatment effect
(Relative Risk RRt ≤ 0.6), a strong breeding site effect
(RRb ≥ 1.5), and a high breeding site density (Db = 0.75),
underestimation was maximal and CR was almost null.
Neither baseline risk nor population density had a

strong impact on the quality of the estimates. The
range of values selected for the baseline risk was
within the limits observed in our application context
(malaria). However, the absence of an effect of base-
line risk was expected because baseline risk applied
uniformly to the entire study zone, without influen-
cing the estimates.
In our application context, environmental risk

depended little on population density; it depended
mainly on breeding site density, as breeding sites are
the source of malaria vectors. Our results would likely
have been different if the studied pathology had been
highly dependent on population density (e.g., cholera).
As expected, no significant effect was observed in the

context of the vaccine trial. The absence of a significant
vaccine effect on malaria episodes may explain why the
difference in estimates between the different models was
small. However, these estimates were consistent with our
simulations results, as the effects estimated with the Cox-
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PH and GAM models were weaker than those estimated
with the Cox-SPDE and P-SPDE models.
In the literature, spatial heterogeneity is usually accounted

for with classic mixed models. While these models were not
explicitly developed to account for spatial heterogeneity,
they can partly capture spatial heterogeneity by aggregating
individuals with the same risk profile. One such model is

the Structured Additive Regression (STAR) model [49–52],
which takes into account both the contiguity structure and
the spatial correlation between areas. In this model, the
study zone is split into several predefined subdivisions to
represent spatial heterogeneity of environmental risk, and
environmental risk is then assumed to be homogeneous
within each subdivision [7, 53]. However, as our study

Table 3: Model performance measures for estimation of the sex effect (baseline risk 0.37)

RRb RRt Model Breeding site density

0.25 0.75

Population density Population density

0.2 0.8 0.2 0.8

Bias CR SR Bias CR SR Bias CR SR Bias CR SR

1.05 0.95 Cox-PH -0.009 1.00 0.00 -0.022 0.88 0.12 -0.013 0.96 0.04 0.004 0.92 0.08

GAM -0.009 1.00 0.00 -0.021 0.88 0.12 -0.013 0.96 0.04 0.005 0.92 0.08

Cox-SPDE -0.009 1.00 0.00 -0.024 0.88 0.12 -0.015 0.96 0.04 0.006 0.96 0.04

P-SPDE -0.008 1.00 0.00 -0.024 0.88 0.12 -0.014 0.96 0.04 0.005 0.96 0.04

0.80 Cox-PH -0.01 0.96 0.04 |< 0.001| 0.96 0.04 0.012 0.96 0.04 0.011 0.92 0.08

GAM -0.01 0.98 0.02 |< 0.001| 0.98 0.02 0.013 0.96 0.04 0.012 0.92 0.08

Cox-SPDE -0.01 0.96 0.04 0.001 0.98 0.02 0.014 0.96 0.04 0.013 0.94 0.06

P-SPDE -0.011 0.96 0.04 |< 0.001| 0.98 0.02 0.013 0.96 0.04 0.012 0.94 0.06

0.60 Cox-PH -0.024 0.98 0.02 0.004 0.98 0.02 0.002 0.92 0.08 |< 0.001| 0.94 0.06

GAM -0.024 0.98 0.02 0.003 0.98 0.02 0.003 0.92 0.08 0.002 0.94 0.06

Cox-SPDE -0.023 0.96 0.04 0.004 0.98 0.02 0.001 0.96 0.04 0.003 0.94 0.06

P-SPDE -0.023 0.96 0.04 0.005 0.98 0.02 0.001 0.98 0.02 0.003 0.94 0.06

0.25 Cox-PH -0.004 0.96 0.04 0.007 0.98 0.02 -0.006 0.94 0.06 -0.001 0.96 0.04

GAM -0.003 0.96 0.04 0.006 0.98 0.02 -0.007 0.94 0.06 -0.001 0.96 0.04

Cox-SPDE -0.005 0.96 0.04 0.008 0.98 0.02 -0.008 0.94 0.06 |< 0.001| 0.94 0.06

P-SPDE -0.005 0.96 0.04 0.008 0.98 0.02 -0.007 0.94 0.06 |< 0.001| 0.96 0.04

3 0.95 Cox-PH 0.002 0.98 0.02 -0.019 0.92 0.08 -0.026 0.92 0.08 0.003 0.96 0.04

GAM 0.002 0.98 0.02 -0.019 0.9 0.1 -0.028 0.92 0.08 0.004 0.96 0.04

Cox-SPDE 0.002 0.96 0.04 -0.022 0.9 0.1 -0.039 0.96 0.04 0.013 0.94 0.06

P-SPDE 0.003 0.96 0.04 -0.022 0.9 0.1 -0.042 0.94 0.06 0.014 0.94 0.06

0.80 Cox-PH 0.004 0.94 0.06 -0.008 0.94 0.06 -0.006 0.96 0.04 -0.004 0.96 0.04

GAM 0.005 0.94 0.06 -0.008 0.94 0.06 -0.009 0.94 0.06 -0.001 0.94 0.06

Cox-SPDE 0.005 0.92 0.08 -0.009 0.98 0.02 -0.01 0.96 0.04 0.002 0.96 0.04

P-SPDE 0.006 0.92 0.08 -0.009 0.96 0.04 -0.01 0.96 0.04 0.003 0.96 0.04

0.60 Cox-PH -0.016 0.98 0.02 0.002 0.98 0.02 -0.01 0.96 0.04 -0.007 0.9 0.1

GAM -0.018 0.98 0.02 0.003 0.96 0.04 -0.01 0.98 0.02 -0.004 0.92 0.08

Cox-SPDE -0.018 0.98 0.02 0.001 0.94 0.06 -0.014 0.96 0.04 -0.001 0.96 0.04

P-SPDE -0.018 0.98 0.02 0.001 0.92 0.08 -0.013 0.92 0.08 -0.001 0.96 0.04

0.25 Cox-PH -0.02 0.9 0.1 -0.003 0.98 0.02 -0.001 0.92 0.08 -0.006 0.92 0.08

GAM -0.018 0.92 0.08 -0.001 0.98 0.02 |< 0.001| 0.9 0.1 0.002 0.92 0.08

Cox-SPDE -0.015 0.9 0.1 -0.003 0.96 0.04 0.007 0.96 0.04 -0.002 0.92 0.08

P-SPDE -0.015 0.9 0.1 -0.004 0.98 0.02 0.009 0.96 0.04 -0.002 0.9 0.1

CR Coverage Rate, SR Significance Rate, Cox-PH Cox Proportional Hazard model, GAM Generalized Additive Model, Cox-SPDE Cox-Stochastic Partial Differential
Equation Model, P-SPDE Poisson-Stochastic Partial Differential Equation Model, RRt Treatment Relative Risk, RRb Breeding site Relative Risk. See Additional file 6 for
MSE Mean Square Error
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indicates, two close individuals can have different risks de-
pending on the proximity of the risk source, which means
that the assumption of homogeneity is not always tenable.
This is especially the case when administrative subdivisions
are used, or when the studied disease is strongly associated
with the environment—for instance malaria, for which fine-
scale heterogeneity of environmental risk has been described
[9]. When the study zone is split even more finely, the ex-
cessive number of subdivisions to be included in the mixed
model leads to an inflation in the number of parameters to
be estimated, and the estimate of variation within each
overly small subdivision becomes unstable. In other words,
this approach involves a choice between the homogeneity
hypothesis and the number of parameters, and the yielded
results depend on the choice of shape and size of the subdi-
visions. In the context of vector-borne diseases, the con-
struction of homogeneous risk areas would require
observing every single breeding site, which is unrealistic
[10]. The aim of our study, then, was not to account for a
particular measured spatial structure (to which a STAR
model could be applied), but to highlight the impact of
spatial structure on study results and to propose different
approaches for modeling spatial heterogeneity when spatial
risk factors are not precisely measured. Although few studies
have accounted for spatial heterogeneity of environmental
risk, many have examined temporal variation in risk.
One method used to study this variation is the Cox-PH

model, in which the duration of the study is stratified into
time intervals so as to obtain periods of homogeneous risk
[54, 55]. However, more continuous approaches (espe-
cially ones using spline functions) have also been used
[56]. An increasing number of studies have used GAM
models to account for spatial heterogeneity of risk [39,
57]. In this approach, spatial heterogeneity is modeled with
a bivariate spline function of the geographic coordinates of
individuals [36]. However, in our study, little difference in
performance was found between the GAM model and the
Cox-PH model. This may be explained by the fact that the
GAM model estimates local risk by aggregating individual
data [40, 56], when in fact survival approaches (such as the
one we used) require that these data be kept separate. More-
over, even when the true spatial sources of environmental
risk (breeding sites) are not measured, we know that their
location differs from that of individuals. This inaccuracy,
along with the mode of estimation of bivariate spline func-
tions, may explain the poor results yielded in our study by
the GAM model [38, 41]. Our best results were obtained
with the Cox-SPDE and P-SPDE models, which modeled
the spatial effect using a Gaussian field (random spatial ef-
fect) with a Matèrn covariance function. In our simulation
study, the P-SPDE model remained stable and followed
closely the DGM model, regardless of the scenario. How-
ever, the Cox-SPDE model was a little sensitive to popula-
tion density, slightly overestimating parameters when

population density was low. Lastly, as the Matèrn function
decreased with distance, the spatial effect on survival time
became very small. The difference in results between the
two SPDE models for low population densities may there-
fore be explained by the fact that the P-SPDE model was
used to model the number of events as opposed to survival
time. It should be noted, however, that both models showed
better results than the classic Cox-PH model.

Conclusion
Our study shows that bias due to spatial heterogeneity of en-
vironmental risk is not adequately eliminated with
randomization. The underestimation of the treatment effect
(with almost null CRs in some situations) highlighted in our
study may explain why certain treatments or strategies
against malaria end up being rejected. Spatial location mod-
eling can reduce bias due to spatial heterogeneity of envir-
onmental risk, the latter being sometimes difficult to
measure. For this purpose, SPDE models that model spatial
heterogeneity with a Gaussian field seem to be the most
appropriate.

Additional files
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tional Hazard model, GAM: Generalized Additive Model, Cox-SPDE: Cox-
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of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
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tial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial Differ-
ential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density,
RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline
Risk. (TIF 794 kb)

Additional file 8: Figure S5. MSE of the age effect with a baseline risk
of 0.37.DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic
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Partial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial Dif-
ferential Equation, RRb: Breeding site Relative Risk, Db: Breeding site
Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0:
Baseline Risk. (TIF 753 kb)

Additional file 9: Figure S6. CR of the age effect with a baseline risk of
0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic Par-
tial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial Differ-
ential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density,
RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline
Risk. (TIF 1247 kb)

Additional file 10: Figure S7. SR of the age effect with a baseline risk
of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic
Partial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial
Differential Equation, RRb: Breeding site Relative Risk, Db: Breeding site
Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0:
Baseline Risk. (TIF 1407 kb)

Additional file 11: Figure S8. Bias of the sex effect with a baseline risk
of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic
Partial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial
Differential Equation, RRb: Breeding site Relative Risk, Db: Breeding site
Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0:
Baseline Risk. (TIF 820 kb)

Additional file 12: Figure S9. MSE of the sex effect with a baseline risk
of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic Par-
tial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial Differ-
ential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density,
RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline
Risk. (TIF 1147 kb)

Additional file 13: Figure S10. CR of the sex effect with a baseline risk
of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard
model, GAM: Generalized Additive Model, Cox-SPDE: Cox-Stochastic Par-
tial Differential Equation Model, P-SPDE: Poisson-Stochastic Partial Differ-
ential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density,
RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline
Risk. (TIF 1380 kb)

Additional file 14: Figure S11. MSE of the treatment effect with the
classic and bootstrap methods. DGM: Data-Generating Model, Cox-PH:
Cox Proportional Hazard model, GAM: Generalized Additive Model, Cox-
SPDE: Cox-Stochastic Partial Differential Equation Model, P-SPDE: Poisson-
Stochastic Partial Differential Equation, RRb: Breeding site Relative Risk,
Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Popula-
tion Density, Risk0: Baseline Risk. (TIF 650 kb)
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