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Abstract

Background: In medical research, explanatory continuous variables are frequently transformed or converted into
categorical variables. If the coding is unknown, many tests can be used to identify the “optimal” transformation. This
common process, involving the problems of multiple testing, requires a correction of the significance level.
Liquet and Commenges proposed an asymptotic correction of significance level in the context of generalized linear
models (GLM) (Liquet and Commenges, Stat Probab Lett 71:33–38, 2005). This procedure has been developed for
dichotomous and Box-Cox transformations. Furthermore, Liquet and Riou suggested the use of resampling methods
to estimate the significance level for transformations into categorical variables with more than two levels (Liquet and
Riou, BMC Med Res Methodol 13:75, 2013).

Results: CPMCGLM provides to users both methods of p-value adjustment. Futhermore, they are available for a large
set of transformations.
This paper aims to provide insight the user an overview of the methodological context, and explain in detail the use of
the CPMCGLM R package through its application to a real epidemiological dataset.

Conclusion: We present here the CPMCGLM R package providing efficient methods for the correction of type-I error
rate in the context of generalized linear models. This is the first and the only available package in R providing such
methods applied to this context.
This package is designed to help researchers, who work principally in the field of biostatistics and epidemiology, to
analyze their data in the context of optimal cutoff point determination.

Keywords: R package, Generalized linear model, Resampling, p-value adjustment, Multiple testing, Union
intersection test, Optimal cutoff point determination

Background
In applied statistics, statistical models are widely used
to assess the relationship between an explanatory and a
dependent variable. For instance, in epidemiology, it is
common for a study to focus on one particular risk factor.
Scientists may wish to determine whether the potential
risk factor actually affects the risk of a disease, a biological
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trait, or another outcome. In this context, statisticians
use regression models with an outcome Y, a risk factor
X (continuous variable of interest) and q − 1 adjust-
ment variables. In clinical and psychological research, the
usual approach involves dichotomizing the continuous
variable, whereas, in epidemiological studies, it is more
usual to create several categories or to perform continu-
ous transformations [1]. It is important to note that the
categorization of a continuous predictor can only be jus-
tified when threshold effects are suspected. Furthermore,
when the assumption of linearity is found to be untenable,
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a fractional polynomial (FP) transformation should always
be favoured.
For instance, let us consider a categorical transfor-

mation of X. When the optimal set of cutoff points is
unknown, the subjectivity of the choice of this set may
lead to the testing of more than one set of values, to find
the “optimal” set. For each coding, the nullity of the coeffi-
cient associated with the new coded variable is tested. The
coding finally selected is that associated with the small-
est p-value. This practice implies multiple testing, and
an adjustment of the p-value is therefore required. The
CPMCGLM package [2] can be used to adjust the p-value in
the context of generalized linear models (GLM).
We present here the statistical context, and the vari-

ous codings available in this R package. We then briefly
present the available methods for type-I error correc-
tion, before presenting an example based on the PAQUID
cohort dataset.

Implementation
Statistical setting
Generalized linearmodel
Let us consider a generalized linear model with q explana-
tory variables [3], in which Y = (Y1, . . . ,Yn) is observed
and the Yi’s are all identically and independently dis-
tributed with a probability density function in the expo-
nential family, defined as follows:

fYi(Yi, θi,φ) = exp
{
Yiθi − b(θi)

a(φ)
+ c(Yi,φ)

}
;

with E[Yi]= μi = b′(θi),Var[Yi]= b′′(θi)a(φ) and where
a(·), b(·), and c(·) are known and differentiable functions.
b(·) is three times differentiable, and its first derivative
b′(·) can be inverted. Parameters (θi,φ) belong to � ⊂ R

2,
where θi is the canonical parameter and φ is the disper-
sion parameter. The CPMCGLM package allows the use of
linear, Poisson, logit and probit models. The specifications
of the model are defined with formula, family and link
arguments, as a glm() function.
In this context, the main goal is evaluating the associa-

tion between the outcome Yi and an explanatory variable
of interestXi, adjusted on a vector of explanatory variables
Zi. The form of the effect of Xi is unknown, so we may
considerK transformations of this variableXi(k) = gk(Xi)
with k = 1, . . . ,K .
For instance, if we transform a continuous variable into

a categorical variable withmk classes, thenmk −1 dummy
variables are defined from the function gk(·): Xi(k) =
gk(Xi) =

(
X1
i (k), . . . ,X

mk−1
i (k)

)
.mk different levels of the

categorical transformation are possible.
The model for one transformation k can be obtained by

modeling the canonical parameter θi as:

θi(X,Z, k) = γZi + βkXi(k), 1 ≤ i ≤ n;

where Zi =
(
1,Z1

i , . . . ,Z
q−1
i

)
, γ = (γ0, . . . , γq−1)T is a

vector of q regression coefficients, and βk is the vector
of coefficients associated with the transformation k of the
variable Xi.

Multiple testing problem
We consider the problem of testing

H0,k : βk = 0 against H1,k : βk �= 0,

simultenaously for all k ∈ {1, . . . ,K}. For each transforma-
tion k, one test score Tk(Y ) is obtained for the nullity of
the vector βk [4]. We ultimately obtain a vector of statis-
tics T = (T1(Y ), . . . ,TK (Y )). Introduce the associated
p-value as

pk(y) = Pβk=0(|Tk(Y )| ≥ |Tk(y)|), 1 ≤ k ≤ K ,

where y is the realization of Y.

Significance level correction
Tocopewith themultiplicity problem, we aim at testing [5]:

H0 :
K⋂

k=1
H0,k against H1 :

K⋃
k=1

H1,k ,

by which wemean thatX has an effect on Y if and only if at
least one transformation of X has an effect on Y. A natural
approach is then to consider the maximum of the indi-
vidual test statistics Tk(Y ), or, equivalently, the minimum
of the individual p-values pk(Y ), leading to the following
p-values:

pmaxT (y) = PY∼P0

(
TmaxT (Y ) ≥ TmaxT (y)

)
,

where P0 denote the distribution of Y under the null and
TmaxT (·) = max1≤k≤K {|Tk(·)|}, or

pminP(y) = PY∼P0
(
pminP(Y ) ≤ pminP(y)

)
,

where pminP(·) = min1≤k≤K
{
pk(·)

}
.

Moreover, if X has an effect on Y (e.g. H0 is rejected),
the best coding corresponds to the transformation k
which obtains the highest individual test statistic realiza-
tion Tk(y), or, equivalently, the smallest individual p-value
realization pk(y).

Bonferroni method
The first method available in this package is the Bon-
ferroni method. This is the most widely used correc-
tion method in applied statistics. It has been described
by several authors in various applications [6–10]. The
Bonferroni method rejects H0 at level α ∈[ 0, 1] if

pminP(y) ≤ α

K
, (1)
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where K is related to the total number of tests performed
by the user. However, this method is conservative, particu-
larly when the correlation between test results is high and
the number of transformations is high.

Exact method
The second method proposed in this package is the
asymptotic exact correction developed by Liquet and
Commenges for generalized linear models [11, 12]. This
method is valid only for binary transformations, frac-
tional polynomial transformations with one degree (i.e.
FP1) and Box-Cox transformations. It is based on the joint
asymptotic distribution of the test statistics under the null.
Indeed, the p-value pmaxT can be calculated as follows:

pmaxT (y) = 1 − PY∼P0

(
TmaxT (Y ) < TmaxT (y)

)

= 1 − PY∼P0(T1(Y ) < TmaxT (y); . . . ;
TK (Y ) < TmaxT (y)).

We then calculated the probability PY∼P0
(
T1(Y ) <

TmaxT (y); . . . ;TK (Y ) < TmaxT (y)
)
by numerical integra-

tion of the multivariate Gaussian density (e.g., the asymp-
totic joint distribution of (Tk)1≤k≤K ). Several programs
have been written to solve this multiple integral. In this
package, we used the method developed by Genz and
Bretz in 2009 [13], available in themvtnormR package [14].

Minimump-value procedure
The approach based on pminP , called the minimum p-
value procedure, allows to combine statistical tests for
different distributions. It is therefore possible to combine
dichotomous, Box-Cox, fractional polynomial and trans-
formations into categorical variables with more than two
levels. However, the distribution of pminP is unknown and
we use resampling-basedmethods. These procedures take
into account the dependence structure of the tests for
evaluation of the significance level of the minimum p-
value procedure. These procedures can therefore be used
for all kinds of coding.

Permutation test procedure The first resampling-based
method is a permutation test procedure. This procedure is
used to build the reference distribution of statistical tests
based on permutations. From a theoretical point of view,
the statistical test procedures are developed by consider-
ing the null hypothesis to be true, i.e. in our context, under
the null hypothesis, Xi has no impact on Y. Under the null
hypothesis, if the exchangeability assumption is satisfied
[15–20], then resampling can be performed based on the
permutation of Xi the variable of interest in our dataset.
The procedure proposed by Liquet and Riou could be
summarized by the following algorithm [6]:

1 Apply the minimum p-value procedure to the
original data for the K transformations considered.
We note pmin the realization of the minimum of the
p-value;

2 Under H0,k , Xi has no effect on the response variable
Y, and a new dataset is generated by permuting the
Xi variable in the initial dataset. This procedure is
illustrated in the following Fig. 1;

3 Generate B new datasets s∗b, b = {1, ...,B} by
repeating step 2 B times;

4 For each new dataset, apply the minimum p-value
procedure for the transformation considered. We
note p∗b

min the smallest p-value for each new dataset.
5 The p-value is then approximated by:

p̂minP = 1
B

B∑
b=1

I{p∗b
min<pmin

},

where I{·} is an indicator function.

This procedure can be used to control for the type-I error.

Parametricbootstrapprocedure The second resampling-
based method is the parametric bootstrap procedure,
which yields an asymptotic reference distribution. This
procedure makes it possible to control for type-I error
with fewer assumptions [21]. This procedure is summa-
rized in the following algorithm [6]:

1 Apply the minimum p-value procedure to the
original data for the K transformations considered.
We note pmin the realization of the minimum of the
p-value;

2 Fit the model under the null hypothesis, using the
observed data, and obtain γ̂ , the maximum
likelihood estimate (MLE) of γ ;

3 Generate a new outcome Y ∗
i for each subject from

the probability measure defined under H0,k .
4 Repeat this for all the subjects to obtain a sample

denoted s∗ = {Y ∗
i ,Zi,Xi}

5 Generate B new datasets s∗b, b = 1, . . . ,B by
repeating step 3 B times ;

6 For each new dataset, apply the minimum p-value
procedure for the transformation considered. We
note p∗b

min the smallest p-value for each new dataset.
7 The p-value is then approximated by:

p̂minP = 1
B

B∑
b=1

I{p∗b
min<pmin

}.

Codings
We now provide some examples of available transforma-
tions in the CPMCGLM package.
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Fig. 1 Permutation Principle under the null hypothesis
(
H0,k

)

Dichotomous coding
Dichotomous coding is often used in clinical and psy-
chological research, either to facilitate interpretation, or
because a threshold effect is suspected. In regression
models with multiple explanatory variables, it may be
seen as easier to interpret the regression coefficient for
a binary variable than to understand a one-unit change
in the continuous variable. In this context, dichoto-
mous transformations of the variable of interest X are
defined as:

X(k) =
{
1 if X ≥ ck ;
0 if X < ck ,

where ck denotes the cutoff value for the transformation k
(1 ≤ k ≤ K).
In this R package, the dicho argument of the

CPMCGLM() function allows the definition of desired
cutoff points based on quantiles in a vector. An example
of the dicho argument is provided below:

Code 1 : Definition of 3 dichotomous transformations

dicho <- c( 0.2, 0.5, 0.7)

In this example, the user wants to try three dichoto-
mous transformations of the variable of interest. For the
first transformation, the cutoff point is the second decile;
for the second, it is the median, and for the third, the
seventh decile. The user can also opt to use our quantile-
based method. The choice of this method leads to use of

the nb.dicho argument. This argument makes it pos-
sible to use a quantile-based method, by entering the
desired number of transformations. If the user asks for
three transformations, the program uses the quartiles as
cutoff points. If two transformations are requested, the
program uses the terciles, and so on. This argument is also
defined as follows.

Code 2 : Three dichotomous transformations

nb.dicho <- 3

It is important to note that only one of these argu-
ments (dicho and nb.dicho ) can be used in a given
CPMCGLM()function.

Codingwithmore than two classes
In epidemiology, it is usual to create several categories,
often four or five. These transformations into categorical
variables are defined as follows:

X(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m − 1 if X ≥ ckm−2 ;
...

...
j if ckj > X ≥ ckj−1 ;
...

...
0 if X < ck0 ,

where ckj denotes the jth cutoff point (0 ≤ j ≤ m − 2), for
the transformation k (1 ≤ k ≤ K).
The categ argument of the CPMCGLM() function

allows the user to define the desired set of cutoff points
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using quantiles. This argument must take the form of a
matrix, with a number of columns matching the maxi-
mum number of cutoff points used in almost all trans-
formations, and a number of rows corresponding to the
number of transformations tried. An example of this argu-
ment definition is presented below:

Code 3 : Four categorical transformations

categ <- matrix(NA, nrow=4, ncol=3)
categ[1,1:2] <- c(0.3, 0.7)
categ[2,1:2] <- c(0.4, 0.6)
categ[3,1:3] <- c(0.25, 0.5, 0.75)
categ[4,1:3] <- c(0.4, 0.6, 0.8)

In this example, the user will realize four transforma-
tions. Two involve transformation into three classes, and
two into four classes. It is important to note that binary
transformations could not be defined here. The maximum
number of cutoff points used in almost all transformations
is three. The matrix therefore has the following dimen-
sions: (4×3). For the first transformation, we will define a
transformation into a three-class categorical variable with
the third and seventh deciles as cut-points, and so on for
the other transformations.
The user could also use a quantile-based method to

define the transformations. In this case, the user would
need to define the number of categorical transformations
in the nb.categ argument. If two transformations are
requested, then this method will create a two-class cat-
egorical variable using the terciles as cutoff points, and
a three-class categorical variable using the quartiles as
cutoff points. If the user asks for three transformations,
the first and second transformations remain the same,
and the program creates another categorical variable with
four classes based on the quintiles, and so on. For four
transformations, the argument is defined in R as follows:

Code 4 : Four categorical transformations

nb.categ <- 4

However, users may also wish to define their own set of
thresholds. For this reason, the function also includes the
argument cutpoint, which can be defined on the basis
of true values for the transformations desired. This argu-
ment is a matrix, defined as the argument categ. The dif-
ference between this argument and that described above is
that it is possible to define dichotomous transformations
for this argument and quantiles are not used.

Code 5 : Three categorical transformations

cutpoint <- matrix(NA, nrow=3, ncol=3)
cutpoint[1,1] <- c(20)
cutpoint[2,1:2] <- c(15, 25)
cutpoint[3,1:3] <- c(10, 20, 30)

Box-Cox transformation
Other transformations are also used, including Box-Cox
transformations in particular, defined as follows [22]:

X(k) =
{

λ−1
k (Xλk − 1) if λk > 0

logX if λk = 0,
This family of transformations incorporates many tradi-
tional transformations:

• λk = 1.00: no transformation needed; produces
results identical to original data

• λk = 0.50: square root transformation
• λk = 0.33: cube root transformation
• λk = 0.25: fourth root transformation
• λk = 0.00: natural log transformation
• λk = -0.50: reciprocal square root transformation
• λk = -1.00: reciprocal (inverse) transformation

The boxcox argument is used to define Box-Cox trans-
formations. This argument is a vector, and the values of
its elements denote the desired λk . An example of the
boxcox argument for a reciprocal transformation, a nat-
ural log transformation, and a square root transformation
is provided below:

Code 6 : Three Box-Cox transformations

boxcox <- c( -1, 0, 0.5 )

Fractional polynomial transformation
Royston et al. showed that traditional methods for ana-
lyzing continuous or ordinal risk factors based on cate-
gorization or linear models could be improved [23, 24].
They proposed an approach based on fractional polyno-
mial transformation. Let us consider generalized linear
models with canonical parameters defined as follows:

θi(X,Z) = γZi + βXi, 1 ≤ i ≤ n;

where Zi =
(
1,Z1

i , . . . ,Z
q−1
i

)
, γ = (γ0, . . . , γq−1)T is a

vector of q regression coefficients, and β is the coefficient
associated with the Xi variable.
Consider the arbitrary powers a1 ≤ . . . ≤ aj ≤ . . . ≤

am, with 1 ≤ j ≤ m, and a0 = 0.
If the random variable X is positive, i.e. ∀i ∈

{1, . . . , n},Xi > 0, then the fractional polynomial transfor-
mation is defined as:

θmi (X,Z, ξ , a) = γZi +
m∑
j=0

ξjHj(Xi),

where for 0 ≤ j ≤ m ξj is the coefficient associated with
the fractional polynomial transformation:

Hj(Xi) =
{
X(aj)
i if aj �= aj−1

Hj−1(Xi)ln(Xi) if aj = aj−1

where H0(Xi) = 1.
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However, if non-positive values ofX can occur, a prelim-
inary transformation of X to ensure positivity is required.
The solution proposed by Royston and Altman is to
choose a non-zero origin ζ < Xi and to rewrite the canon-
ical parameter of the model for fractional polynomial
transformation as follows:

θmi (X,Z, ξ , a) = γZi +
m∑
j=0

ξjHj(Xi − ζ ),

ζ is set to the lower limit of the rounding interval of
samples values for the variable of interest.
Royston and Altman suggested using m powers from a

predefined set P [25]:

P = {−max(3,m); . . . ;−2;−1;−0.5; 0; 0.5; 1; 2; . . . ; max(3,m)}.
The FP argument is used to define these transformations.
This argument is a matrix. The number of rows corre-
spond to the number of transformations tested, and the
number of columns is the maximum number of degrees
tested for a single transformation. An example of the FP
argument:

Code 7 : fractional polynomial transformations

# Three transformations of degrees 1, 4 and
2.

FP <- matrix(NA,ncol=4,nrow=3)
FP[1,1] <- -2
FP[2,] <- c(0.5,1,-0.5,2)
FP[3,1:2] <- c(-0.5,1)

In this example, the user performs three transforma-
tions of the variable of interest. The first is a fractional
polynomial transformation with one degree and a power
of − 2. The second transformation is a fractional poly-
nomial transformation with four degrees and powers of
0.5, 1,−0.5, and 2. The third transformation is a fractional
polynomial transformation with two degrees and powers
of − 0.5, and 1.

Motivating example
We revisited the example presented in the article of Liquet
and Commenges in 2001 based on the PAQUID database
[11], to illustrate the use of the CPMCGLM package, in the
context of logistic regression.

PAQUID database
PAQUID is a longitudinal, prospective study of individ-
uals aged at least 65 years on December 31, 1987 liv-
ing in the community in France. These residents live in
two administrative areas in southwestern France. This
elderly population-based cohort of 3111 community res-
idents aimed to identify the risk factors for cognitive
decline, dementia, and Alzheimer’s disease. The data were
obtained inanestedcase-control study of 311 subjects from
this cohort (33 subject with dementia and 278 controls).

Scientific aims
The analysis focused on the influence of HDL(high-
density lipoprotein)-cholesterol on the risk of dementia.
We considered the variables age, sex, education level,
and wine consumption as adjustment variables. Bonarek
et al initially considered HDL-cholesterol as a contin-
uous variable [26]. Subsequently, to facilitate clinical
interpretation, they decided to transform this variable
into a categorical variable with different thresholds, and
different numbers of classes. This strategy implied the
use of multiple models, and multiple testing. A correction
of type-I error taking into account the various transfor-
mations performed was therefore required to identify the
best association between dementia and HDL-cholesterol.

Methods
Weapplied thevarious typesof correctionmethod described
in this article to correct the type-I error rate in the model
defined above. These corrections are easy to apply with
the CPMCGLM package. The following syntax provided the
desired results for one categorical coding, three binary
codings, one Box-Cox transformation with λ = 0, and one
fractional polynomial transformation with two degrees
and powers of -0.5, and 1:
Code 8 : PAQUID Example

# Load Package
require(CPMCGLM)
# fractional polynomial definition
FP1 <- matrix(NA,ncol=2,nrow=1)
FP1[1,] <- c(-0.5,1)
# Call of CPMCGLM function
fit <- CPMCGLM( formula=
DEM1_8~ HDL_8+ as.factor(SEXE) + AGE8+ as.

factor(certif) + as.factor(VIN0),family
="binomial", link="logit",data=PAQUID,
varcod="HDL_8", N=10000,boxcox=c(0),nb.
dicho=3,nb.categ=1,FP=FP1)

# print fit
fit
# summary fit
summary(fit)

Byusing the "dicho", and "categ" arguments, the function
could also be used as follows, for exactly the same analysis:
Code 9 : PAQUID Example

# Load Package
require(CPMCGLM)
# Definition of categorical transformations

in a matrix
categ.mat <- matrix(NA, nrow=1, ncol=3)
categ.mat[1,] <- c(0.25,0.5,0.75)
# Call of CPMCGLM function
fit1 <- CPMCGLM(formula=
DEM1_8 ~ HDL_8+as.factor(SEXE)+ AGE8 +as.

factor(certif)+as.factor(VIN0), family=
"binomial", link="logit",data=PAQUID,
varcod="HDL_8",N=10000,boxcox=c(0),
dicho=c(0.25,0.5,0.75), categ=categ.mat
,FP=FP1)

# print fit
fit1
# summary fit
summary(fit1)
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Results
In R software, the results obtained with the CPMCGLM
package described above are summarized as follows:
Code 10 : Output of the CPMCGLM() function - PAQUID Example

> fit

Call: CPMCGLM(formula = DEM1_8 ~ HDL_8 + as
.factor(SEXE) + AGE8 + as.factor(certif
) + as.factor(VIN0), family = "binomial
", link = "logit", data = PAQUID,
varcod = "HDL_8", nb.dicho = 3, nb.
categ = 1, boxcox = c(0), N = 10000,FP=
FP1)

Generalize Linear Model Summary
Family: binomial
Link: logit
Number of subject: 311
Number of adjustment variable: 6

Resampling
N: 1000

Best coding Method: Dichotomous
transformation Value of the order
quantile cutoff points: 0.75 Value of
the quantile cutoff points: 1.615

Corresponding adjusted p value:

Adjusted pvalue naive 0.0010 Bonferroni
0.0051 bootstrap 0.0030 permutation
0.0030 exact: Correction not available
for these codings

We can also use the summary function for the main
results, which are described as follows for this specific
result:
Code 11 : Summary for output of the CPMCGLM() function -
PAQUID Example

> summary(fit)

Summary of CPMCGLM Package

Best coding Method: Quantile Value of the
quantile cutoff points: 0.75

Corresponding adjusted pvalue:

Adjusted pvalue naive 0.0010 Bonferroni
0.0051 bootstrap 0.0030 permutation
0.0030 exact: Correction not available
for these codings

As we can see, for this example, the best coding was
obtained for the logistic regression with dichotomous
coding of the HDL-cholesterol variable. The cutoff point
retained for this variable was the third quartile. Exact
correction was not available for this application, due to
the use of transformation into categorical variables with
more than two classes. Resampling methods gave simi-
lar results, and both the resampling methods tested were
more powerful than Bonferroni correction. In conclusion,
the correction of type-I error is required. Naive correction

is not satisfactory, and resampling methods seem to give
the best results for p-value correction in this example.

Conclusion
We present here CPMCGLM, an R package providing effi-
cient methods for the correction of type-I error rate in the
context of generalized linearmodels. This is the only avail-
able package in R providing such methods applied to this
context.We are currently working on the generalization of
these methods to proportional hazard models, which we
will make available as soon as possible in the CPMCGLM
package.
In practice, it is important to correct the multiplicity

on all the codings that have been tested. Indeed, if this is
not done, the type-I error is not controlled, and then it is
possible to obtain some false positive results.
To conclude, this package is designed to help

researchers who work principally in epidemiology to
analyze with riguor their data in the context of optimal
cutoff point determination.

Availability and requirements
Project name: CPMCGLM
Project home page: https://cran.r-project.org/web/
packages/CPMCGLM/index.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R 2.10.0 or above
License: GPL-2
Any restrictions to use by non-academics: none
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