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TECHNICAL ADVANCE Open Access

Deconvolution of transcriptomes and
miRNomes by independent component
analysis provides insights into biological
processes and clinical outcomes of
melanoma patients
Petr V. Nazarov1*† , Anke K. Wienecke-Baldacchino2,3†, Andrei Zinovyev4,5, Urszula Czerwińska4,5,6, Arnaud Muller1,
Dorothée Nashan7, Gunnar Dittmar1, Francisco Azuaje1 and Stephanie Kreis2

Abstract

Background: The amount of publicly available cancer-related “omics” data is constantly growing and can
potentially be used to gain insights into the tumour biology of new cancer patients, their diagnosis and suitable
treatment options. However, the integration of different datasets is not straightforward and requires specialized
approaches to deal with heterogeneity at technical and biological levels.

Methods: Here we present a method that can overcome technical biases, predict clinically relevant outcomes and
identify tumour-related biological processes in patients using previously collected large discovery datasets. The
approach is based on independent component analysis (ICA) – an unsupervised method of signal deconvolution.
We developed parallel consensus ICA that robustly decomposes transcriptomics datasets into expression profiles
with minimal mutual dependency.

Results: By applying the method to a small cohort of primary melanoma and control samples combined with a
large discovery melanoma dataset, we demonstrate that our method distinguishes cell-type specific signals from
technical biases and allows to predict clinically relevant patient characteristics. We showed the potential of the
method to predict cancer subtypes and estimate the activity of key tumour-related processes such as immune
response, angiogenesis and cell proliferation. ICA-based risk score was proposed and its connection to patient
survival was validated with an independent cohort of patients. Additionally, through integration of components
identified for mRNA and miRNA data, the proposed method helped deducing biological functions of miRNAs,
which would otherwise not be possible.

Conclusions: We present a method that can be used to map new transcriptomic data from cancer patient samples
onto large discovery datasets. The method corrects technical biases, helps characterizing activity of biological
processes or cell types in the new samples and provides the prognosis of patient survival.
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Background
Genomic and transcriptomic research has accumulated a
vast collection of publicly available cancer related data.
Data have been continuously collected using massive
financial and scientific efforts. For example, The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/tcga)
holds over 10,000 patient-derived samples including vari-
ous levels of omics data: DNA, RNA, and proteins. Now,
the question arises if these resources can also be used to
support clinicians in making rapid and accurate assess-
ments leading to tailored treatments for individual cancer
patients. Integrating this information still poses a consid-
erable obstacle as genomic and transcriptomic data from
cancer patients are characterised by significant heterogen-
eity at three levels. First, results are generally collected
using different sample preparation protocols and tran-
scriptome analysis platforms and are then interrogated by
constantly changing techniques. Although these tech-
niques have improved on accuracy, sensitivity or genome
coverage, they restrain backward compatibility, e.g., ex-
pression level analysis has evolved from qPCR through
microarrays toward NGS sequencing in the last 15 years.
Second, the data are collected for various layers of
“omics”: genome, transcriptome, miRNome, proteome etc.
Integration of data from these layers is not trivial espe-
cially when genomically unconnected entities should be
integrated, like microRNA and their target mRNAs. Third,
collected patient samples are intrinsically heterogeneous
at tissue and cellular levels. Bulk analysis of transcrip-
tomes can mask different types of heterogeneity in the
sample as tumour biopsies contain many cell types that
are mixed in different proportions [1]. Furthermore, there
are well-documented variations of tumour cells within the
same neoplasia, which can conceal low abundant, but crit-
ical cell subtypes such as drug-resistant tumour cells [2].
These facts limit discoveries and can lead to erroneous
clinical conclusions [3, 4]. The experimental approach to
resolve the complex issue of working with heterogeneous
cancer samples involves physical separation of tissue into
homogeneous cell populations or even single cells (by cell
sorting, single cell technologies or microdissection) before
the actual measurement. Technologically, this is an expen-
sive and laborious task, which is not yet accessible rou-
tinely and which can introduce experimental errors [5, 6].
Alternatively, computational approaches can be ap-

plied to separate or deconvolute multivariate signals
from different cell types, accounting for variable bi-
opsy sample composition and intra-tumour heterogen-
eity [7–10]. One of the most promising methods of
assumption-free transcriptome deconvolution is inde-
pendent component analysis (ICA) [11]. This method
originated from the domain of signal processing aim-
ing at detecting individual components from a com-
plex mix of mutually independent non-Gaussian

signals. It allows to identify sources of transcriptional
signals, cluster genes into functional groups and cell
type-related signatures [10, 12, 13] and deduce inter-
actions between biological processes [14]. The method
can also recognise and remove biologically irrelevant
biases introduced by different measurement platforms
[15]. Therefore, this approach can use pre-existing
data that were collected through different stages of
technological progress.
Here we present an ICA-based method combining

newly measured data with pre-existing large discovery
data. We show its prognostic power and the ability to
characterize biological processes on the example of cuta-
neous melanoma patients.
Melanoma arises through the malignant transform-

ation of melanocytes and presents a very aggressive form
of skin cancer with increasing global case numbers. Mel-
anoma’s extremely high mutation rate (> 10 somatic mu-
tations/Mb) and the concomitant genetic heterogeneity
make it difficult to distinguish true cancer driver genes
from noise in bulk samples using current technologies
[16, 17]. Nevertheless, the analysis of gene expression
data resulted in three patient subtypes or clusters: “im-
mune”, “keratin” and “MITF-low”, which have implica-
tions for patient survival [18]. Interestingly, the majority
of primary melanomas belonged to the “keratin” cluster
having a worse prognosis than the other two subtypes.
In this study, we used the skin cutaneous melanoma

(SKCM) TCGA cohort with over 470 patients diagnosed
with cutaneous melanoma as the discovery dataset. Two
layers of “omics” data were considered and integrated:
mRNA and microRNA (miRNA). The investigation data-
set included a small cohort of three primary melanoma
tumours and two controls: matched cancer patient-
derived normal skin and normal melanocytes. First, for
the discovery cohort, we demonstrated that ICA decon-
volution can be successfully applied to classify patients
based on their tumour subtypes and to build the risk
score that predicts patient survival. The risk score was
then tested using an independent validation cohort of 44
patients, obtained by microarray gene expression tech-
nology. The strong technical differences between discov-
ery RNA-seq data and microarray-derived validation
datasets were resolved by our method. Next, the investi-
gation dataset was studied in depth and key processes
involved in cancer aetiology were detected and quanti-
fied: immune response and inflammation, angiogenesis,
self-sufficient cell proliferation among others.
We show here that consensus ICA can integrate data

from different sources and platforms and predict clinic-
ally important characteristics of cancer in a bias-free,
unsupervised and potentially automatable fashion, sug-
gesting consensus ICA as a useful module of future clin-
ical support systems.
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Methods
Discovery, validation and investigation datasets
Discovery and validation datasets
As a discovery dataset, we used two SKCM TCGA data-
sets: RNA-seq (472 samples) and miRNA-seq (452 sam-
ples) data from the Genomic Data Commons (GDC)
data portal of the National Cancer Institute of the Na-
tional Institutes of Health (NIH, https://portal.gdc.can-
cer.gov/). Soft filtering as in [19] was used to reduce
number of RNA features from 60,446 to 16,579 (see
Additional file 3: Fig. S1): only genes with more than
1000 counts in at least one sample among 472 were con-
sidered. For miRNA we used less strict filtering and
required at least one read to be presented. Four metrics
of gene expression were considered for mRNA: raw
counts, DESeq2-normalized counts [20], FPKM and
TPM. All expression values were log2 transformed.
From TCGA clinical data we extracted survival time, gen-

der and sample type (primary tumour or metastatic). We
also added data of tumour subtype based on RNA-cluster
(immune, keratin, MITF-low) as it is relevant for prognosis
[18]. The extracted survival and clinical datasets are pro-
vided in Additional file 4: Tables S1 and S2, respectively.
A validation gene expression dataset was taken from

[21], available from ArrayExpress under E-GEOD-19234.
This microarray dataset consists of 44 metastatic sam-
ples from melanoma patients accompanied by survival
information. The samples were collected from different
metastatic sites, mainly from lymph nodes, from patients
with grade III (39 samples) and IV (5 samples). As
microarray expression data have very different dynamic
range compared to RNA-seq [22], array expression were
linearly transformed to fit RNA-seq distribution as de-
scribed in Additional file 1: Supplementary Methods.

Investigation dataset
The investigation dataset, represented by RNA-seq and
miRNA qPCR array data, originated from three primary
tumour samples of melanoma patients (entitled P2PM,
P4PM, P6PM) and two control samples: one matched
normal skin P4NS and a healthy melanocyte cell line
NHEM (see Additional file 4: Table S3).
Melanoma biopsies of three Caucasian patients were

collected after surgical resection at the Dermatology De-
partment of the University Clinic Freiburg, Germany. All
patients signed an informed written consent. Ethical ap-
proval of this study was obtained from the Comité Na-
tional d’Ethique de Recherche Luxembourg (CNER-No.
201201/05) and from the German Ethik-Kommission
der Albert-Ludwigs-Universität Freiburg (EK-Freiburg
196/09). Histological examination and estimation of the
percentage of tumour cells within the lesion was per-
formed by two independent pathologists (normal skin
and NHEM cell line were free of tumour cells). Tissues

from snap frozen biopsies were lysed in RLT buffer with
a Qiagen TissueLyser (50 Hz, 5 min). DNA and total
RNA were extracted using the Qiagen’s AllPrep Mini Kit
according to supplied protocols. Quality and quantity of
samples were measured with Nanodrop, gel electrophor-
esis and Qubit High Sensitivity Kit. RNA integrity was
determined using the Agilent Bioanalyzer Nano chip.
RNA-seq data for these samples are available by GEO

accession number GSE116111 and Ct-values for all
quantified miRNAs are available in Additional file 4:
Table S4. MiRNA names were harmonised using miR-
Base v.21 and Ct-values were inverted and expression
was calculated as 36-Ct.

Data analysis
Consensus ICA
ICA was applied to the combined discovery and investi-
gation datasets for unsupervised separation of signals
and feature extraction (Additional file 3: Fig. S2 and S3).
By combining the datasets, we expect that technical
biases between the discovery and investigation data are
estimated by the method and isolated within some of
the components. Each layer of omics data: mRNA and
miRNA was analysed separately at this stage. ICA imple-
mentation from the `fastICA` package of R was used
[23]. Let us denote Enm the expression matrix of n genes
or miRNAs measured in m bulk samples. ICA decom-
posed such a matrix into a product of k statistically in-
dependent transcriptional signals Snk (addressed as
matrix of metagenes) and a weight or mixing matrix
Mkm (matrix of metasamples) [11].

Enm ¼ Snk �Mkm ð1Þ

The values represented in the columns of S (meta-
genes) can be interpreted as the level of influence of the
corresponding genes/miRNAs on the components and
considered as “markers” of the component. Weights in
rows of M show how the metagenes are mixed in the
samples. In order to distinguish independent compo-
nents obtained after ICA of mRNA and miRNA data, we
introduce the terms RICs (mRNA) and MICs (miRNAs).
Thus, each RIC and MIC is associated with two vectors:
one showing the contribution of the genes into this
component (a column of S); the second representing the
weights of the component in the samples (a row of M).
Unlike non-negative matrix factorization, both meta-
genes and weights can be positive or negative and ab
initio the selection of the direction is random, depending
on the initial estimation. ICA may also suffer from re-
duced reproducibility for at least some components. To
mitigate these drawbacks, we ran the analysis multiple
times (100 runs during the exploratory steps and 1000
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for the final analysis) following [13]. In brief, the algo-
rithm used for consensus ICA is described below.

� For the defined number of tries (nt), a random
sample was excluded from the expression matrix
and ICA was performed on this reduced dataset. As
a result, we obtained nt matrices M(1) and S(1).

� Next, one of the decompositions was selected as
“standard” and all the others were compared to it by
correlation of metagenes. The sign and order of
components was adjusted to fit the “standard”
decomposition.

� Consensus S and M matrices were calculated by
averaging all reordered S(1) and M(1). The squared
correlation between corresponding metagenes was
used as a measure of stability (R2).

Multithreading was implemented in R code to speed-
up calculations using the `foreach` package and either
`doMC` (Linux) or `doSNOW` (MS Windows) packages
available in R/Bioconductor. The script of the imple-
mented consensus ICA and following analysis (Add-
itional file 2: Supplementary Results) is available online:
https://gitlab.com/biomodlih/consica.

Gene signatures and functional annotation
The top-contributing genes and miRNAs per component
were detected using the following significance analysis
approach. A p-value was individually assigned to each
gene/miRNA within each component, based on the
probability that it came from a normal distribution with
estimated parameters. As the ICA algorithm extracted
non-Gaussian signals from the mixed data, the contrib-
uting genes that did not deviate from the normal distri-
bution were considered as non-important. In most
components, there was a small subset of genes that had
extremely high absolute values in S, while the majority
was normally distributed. To avoid overestimation of the
variances, we used non-parametric measures of the
centre and scale: median and median absolute deviation.
Then these p-values were adjusted for multiple testing
(Benjamini & Hochberg), and genes with an adjusted p-
value (adj.p-value) < 0.01 were reported as top-
contributing (see Additional file 2: Supplementary Re-
sults). Two lists of top-contributing genes resulted from
the analysis – positively and negatively involved. The
lists of top-contributing genes of each RIC were after-
wards used for over-representation (enrichment) ana-
lysis. The 16,579 genes, with expression above the
selected threshold in at least one sample, were used as a
background gene list and significantly enriched (adj.p-
value< 0.01) GO terms were investigated. In order to
simplify the interpretation and to increase the robust-
ness for runs on different datasets, we reoriented the

components in order to have the most significantly
enriched categories associated with positive top-
contributing genes (see Additional file 1: Supplementary
Methods). For MICs, the direction could not be identi-
fied by enrichment analysis, therefore we reoriented only
those MICs that showed strong negative correlation with
RICs.

Prediction of sample classes
Random forest classifier, implemented in the `random-
Forest` R-package [24], was used with the default set-
tings to predict classes of patients. Columns of the
weight matrix M were used as inputs and clinical vari-
ables (e.g. gender, sample type) as outputs. Each variable
was analysed independently. First, leave-one-out cross-
validation (LOOCV) was performed on the discovery set
in order to address the ability of predicting sample clas-
ses and estimate the accuracy of prediction. Then the
random forest, trained on all discovery data, was used to
predict classes for the new clinical samples of the inves-
tigation dataset. To ensure accuracy and robustness of
our approach to select the number of components, we
performed a nested cross-validation, excluding 20% of
the data and using the remaining 80% to estimate the
optimal number of components and then train the clas-
sifier (Additional file 1: Supplementary Methods).

Other dimensionality reduction methods
In order to compare the performance of consensus ICA
to other available tools, we run benchmarking of 7 ap-
proaches, applying them to mRNA expression data. First,
we considered standard PCA of the joint dataset and
PCA after correction for batch effects between discovery
and investigation data sets using ComBat (package `sva`)
[25] and XPN [26]. Next, we applied the non-negative
matrix factorization (NMF) implemented in the `NMF`
package [7] and low-rank approximation based multi-
omics data clustering (LRAcluster) [27]. Finally, we in-
vestigated several non-linear dimensionality reduction
methods, such as locally-linear embedding (LLE) imple-
mented in the `lle` package [28], Isomap (package
`RDRToolbox`) [29], as well as t-SNE (package `tsne`)
[30]. To compare these methods to ICA, we performed
20 runs of 5-fold cross validation and estimated the ac-
curacy of patient classification by random forest. For fair
comparison, we used 80 features (dimensions), the same
as number of components for ICA. For PCA, we pre-
selected 80 principal components with the highest pre-
dictive power.

Integration of components for survival prediction
Weights of the components (rows of matrix M) were
statistically linked to patient survival using Cox partial
hazard regression implemented in the `survival` package
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of R [31]. Adjusted p-values of the log rank test were
used to select significant components. However, the
prognostic power of each individual component might
not have been high enough to be applied to the patients
from the new cohort. Therefore, we integrated weights
of several components, calculating the risk score (RS)
with an improved prognostic power. For each patient, its
RS is the sum of the products of significant log-hazard
ratios (LHR) of the univariable Cox regression, the com-
ponent stability R2 and the standardised row of weight
matrix M:

RSi ¼
Xk

i¼1

HiR
2
i M

�
i; j ð2Þ

where Hi is LHR for the components significantly
(adj.p-value< 0.05) linked to survival and 0 for other.
The applicability of the proposed score was checked
using the independent validation dataset. This dataset
was extracted from another study and was based on an
independent cohort of the patients [21]. In addition,
gene expression for the validation cohort was measured
using Affymetrix U133 Plus 2.0 microarrays, while the
discovery dataset was based on RNA-seq.

Biological relevance of the components
Our strategy to investigate the biological relevance of the
components is presented in Additional file 3: Fig. S1
(green box). First, we attempted to connect the metagenes
of all the components from the mRNA data to biological
functions and cell types. We analysed separately the posi-
tively and negatively contributing genes using several
tools. Automatic analysis was done by `topGO` R-package
[32] followed by a manual analysis with Enrichr [33] that
checked for enrichment in multiple categories originated
from various databases (we used Reactome 2016, GO Bio-
logical Processes 2017, Human Gene Atlas, ARCHS4 Tis-
sues and Chromosome Location). In addition, we
compared the metagenes to the ones previously published
by Biton et al. [10] and assigned the component number
to the reciprocally corresponding metagene as explained
in [34] using the `DeconICA` R-package (https://zenodo.
org/record/1250070). As enrichment of immune-related
processes and functions was observed, we also correlated
our metagenes to the immune cell type signature matrix
named LM22 [35] in order to identify components origi-
nated from different types of leukocytes; cell-types were
associated with components through highest absolute
Pearson correlation. Finally, for some components we
confirmed their biological origin by correlating the meta-
genes with averaged gene expression profiles of cell types
measured at a single-cell level and reported by Tirosh
et al. [36]. For miRNA data we considered enrichment

(hypergeometric test) of genomic locations of contributing
miRNAs annotated by the cyto_convert tool of NCBI.

Integration of components for data at miRNA and mRNA
levels
Pearson correlation between weights of the components
was used to link the components found within mRNA
and miRNA data. Here we hypothesized that if two com-
ponents show significant correlation of the weights in all
the samples, they should be functionally linked. Of note,
these MICs have been linked to their respective RIC,
purely based on the high absolute correlation of compo-
nent weights, without considering any biological know-
ledge. Due to the lack of tools providing data with
regard to biological functions or cell types for miRNAs,
we performed literature mining, searching for all publi-
cations related to miRNAs-clusters and additional bio-
logically relevant keywords. More detailed description of
literature mining is given in Additional file 1: Supple-
mentary Methods.

Involvement of components in the new samples
The involvement or the weight of each component in
the samples is not centred and scaled due to the nature
of ICA. Therefore, to visualize the involvement of the
components in the new samples, we replaced the
weights of the components by a ranking score that chan-
ged from 0 to 1 (only discovery data were considered to
define the ranking). If the weight of the considered com-
ponent in a new sample was below (or above) the
weights in the discovery set, such component automatic-
ally was assigned to a limiting value of 0 (or 1). Values
of ranking score around 0.5 in the new sample suggest
that the weight of the considered component was close
to the median in the discovery set.

Results
ICA of combined data sets can remedy technical biases
In this study, graphically outlined in Fig. 1 (see detailed
schemes in Additional file 3: Figs. S1 and S2), we used
public TCGA data as the discovery dataset, published
microarray data [21] as a validation set. An investigation
data set was based on newly obtained clinical samples
described in Methods and Additional file 4: Table S3.
ICA was applied to two types of transcriptomic data:
mRNA and miRNA expression. The number of compo-
nents was chosen based on ability of ICA features to
classify patients in the discovery set (see Additional file
1): 80 independent components were used for the de-
convolution of mRNA data (named RIC1–80) and 40 for
miRNA data (denoted as MIC1–40). ICA was run 1000
times in order to achieve robust results. 49 of RICs and
36 MICS showed high reproducibility (with stability of
metagenes or mean R2 > 0.5). The values of R2 are
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provided in the Additional file 4: Tables S5 and S6. The
improvements linked to the use of consensus ICA over
single-run ICA were recently discussed in [34]. Here we
independently investigated the effect of consensus on clas-
sification and reproducibility of the results. First, we com-
pared accuracies obtained with several single ICA runs
and the accuracy obtained using a consensus approach.
We saw a slight, but statistically significant improvement
for sample type (from 0.868 to 0.871, p-value = 6e-3) but
not for tumour subtype (from 0.9 to 0.902, p-value = 0.39).
At the same time, a much stronger effect was observed on
the reproducibility of metagenes and gene signatures, as-
sociated with the components (see Additional file 3: Fig.
S4 A,B). Therefore, the use of consensus ICA may be con-
sidered as optional for patient classification, but it is ne-
cessary for obtaining reproducible and biologically
interpretable components and gene signatures.
The combined discovery/investigation dataset profiled by

RNA-seq is presented in the space of two first principal
components (Fig. 2a) and weights of two selected inde-
pendent components (Fig. 2b). The two principal compo-
nents included 33% of total variability and mainly reflected
technical effects: PC1 was linked to the RNA-seq library
size (data not shown) and PC2 segregates discovery and in-
vestigation data. Among all RICs, the components that
reflected data clustering according to gender (RIC3) and
sample type (primary or metastatic, RIC5) were chosen as

an example. The investigation data were clearly integrated
within the discovery data and showed reasonable clustering
in Fig. 2b while preserving important clinical information
(P6PM was the only male patient). Functional analysis
showed that genes contributing to RIC5 participate in
keratinocyte-specific functions and thus weights of RIC5
could be used as a marker of keratinocyte presence. Indeed,
the vast majority of metastatic samples had low values of
RIC5 weights, while primary tumours showed high values.
NHEM (pure melanocytes) are devoid of keratinocytes and
therefore clustered with metastatic tissues. We investigated
whether other principal components can compete with in-
dependent components discriminating patient gender, sam-
ple type and tumour subtype. Results of ICA showed
higher statistical significance than PCA in all comparisons
(Additional file 3: Fig. S3A, C, E). In addition, AUC of ICA
was higher for gender and sample type (Additional file 3:
Fig. S3B, D) and only slightly lower for tumour subtypes
(Additional file 3: Fig. S3F), where averaged AUC was re-
ported. The observations were confirmed by Wilcoxon test
(p-values are reported in Additional file 3: Fig. S3) and by
2-factor ANOVA on log-transformed p-values. Post-hoc
analysis confirmed that ICA, on average, gives features that
are linked stronger to clinical groups, than PCA (Tukey’s
HSD p-value = 0.0175).
An even stronger correction effect of ICA was observed

for miRNA data, for which discovery data were obtained

Fig. 1 Visualization of the approach taken to data analysis. A large discovery dataset and a small investigation dataset from patients (both mRNA)
were concatenated and analysed together by ICA. As a result, two matrices were obtained: S (metagenes), containing contribution of the genes
to each component, and M (metasamples), presenting the weights of the components in the samples. S provides gene signatures for each of the
components, which could be linked to cellular processes by standard functional annotation or enrichment analysis. M can be linked to clinical
data and used to predict classes of new patients and their survival
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by miRNA-seq and investigation – by whole miRNome
qPCR arrays. PCA showed strong differences between
log2 transformed counts and inverted Ct values (Fig. 2c).
However, in the space of independent components, the in-
vestigation samples were properly located again (Fig. 2d).
Here, two miRNA components MIC1 and MIC9 were
depicted. MIC1 showed a strong relation to survival (Cox-
based log rank p-value = 9.4e-4) while MIC9 was corre-
lated with the skin-related signal of RIC5.

ICA yields clinically relevant information
ICA as a feature-selection method for sample classification
As observed for patient gender and sample type in Fig. 2b,
the weights of the components can be used as features

with predictive potential. We investigated whether clinical
factors could be predicted by weights originated from ICA
deconvolution (only RICs considered). Three factors were
selected: gender, sample type and RNA cluster, that could
be considered as cancer subtype and was previously intro-
duced in [18]. We validated the random forest classifica-
tion directly on the discovery set using LOOCV, as
described in the Methods section. In addition, nested
cross-validation was performed excluding 20% of the data
and estimating the optimal number of components. We
obtained very similar accuracies (see Additional file 1) and
estimated optimal numbers of components between 37
(lowest limit for tumour subtype) to 76 (upper limit for
gender and sample type).

Fig. 2 Data overview in the space defined by principal and independent components. Data variability captured by the first components of PCA
(a) and two selected components of ICA (b) in gene expression data. Independent components were selected based on the predictive power of
their weights for patient gender (RIC3) and sample type (RIC5). MiRNA data showed even higher discrepancy comparing miRNA-seq and qPCR
results by PCA (c). However, in the space of independent components (MIC1 and MIC9), the samples studied by miRNA-seq and qPCR overlap (d)
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Next to cross-validation tests that were run directly on
the discovery data, we applied ICA and random forest clas-
sification on two independent datasets joint with the dis-
covery data: public validation (E-GEOD-19234, 44 samples)
and in-house clinical investigation data (5 samples). Ana-
lysis was run independently for both cases, and the identi-
fied components were re-ordered and renamed to obtain
comparable results. Notably, the metagenes of the new de-
compositions were reproducible and strongly correlated
with the metagenes from ICA of single discovery set.
Predicting patient gender showed a high accuracy of

0.977 in the validation data, with only one samples misclas-
sified. Testing sample type (primary/metastatic) for this
validation cohort resulted in 34 samples classified as meta-
static and 10 – as primary (accuracy of 0.773, as all valid-
ation samples were coming from metastatic tissue).
However, as the precise excision location of the tumours is
unknown, we cannot exclude that some metastatic tissues
were collected from skin. Indeed, 7 of 10 misclassified sam-
ples showed high expression of keratinocyte marker genes
KRT5 and KRT14.
The investigation samples were classified as well and

the results are presented in Table 1. Gender and sample
types were accurately predicted for all the investigation
samples but NHEM cells were considered “metastatic”,
although with a border probability of 0.51: the best loca-
tion predictors were weights linked to the transcriptional
signal of keratinocytes, which was low in metastatic tu-
mours and also in this primary cell line. Similarly, nor-
mal skin P4NS was classified as “primary” because
classifier was not trained to distinguish melanoma from
normal skin (absent in the training set).
We also compared the ability of ICA-based features to

predict patient classes in comparison with other dimension-
ality reduction method (Fig. 3). The results indicate that
ICA and NMF performed similarly well on classifying gen-
der and sample type but ICA out-performed all other tools
in terms of tumour subtype classification. Noteworthy, the
reproducibility of NMF is very limited [34]. Overall, t-SNE
showed the lowest accuracy of the 8 tested methods.

ICA provides prognostic features linked to patient survival
Next, prognostic abilities of the ICA weights were exam-
ined by a Cox regression model. All components, their
significance and log-hazard ratios (LHRs) are summarised
in Additional file 4: Tables S5 and S6. Eleven RICs and 3
MICs were found significantly linked to patient survival
after multiple testing adjustment (adj.p-value by log rank
test for Cox regression < 0.05). Among them, 6 RICs and
2 MICs showed very high stability of R2 > 0.8 and 8 out or
11 RICs were linked to biological processes. The
remaining 3 RICs did not have enough contributing genes
to run successful enrichment analyses. However, their be-
haviour over the samples allowed us to link two of them
(RIC74 and RIC79) to the immune cluster, as is described
in the next section. Although these 11 RICs and 3 MICs
were statistically linked to survival in our discovery set,
the predictive power of any of them was not sufficient to
predict survival of new patients. Therefore, we combined
the weights of these components into a risk score (RS) as
described in Methods. Combined RS showed high signifi-
cance (p-value = 2.2e-13) for the TCGA dataset.
In order to validate the proposed risk scoring ap-

proach on an independent cohort of patients, we applied
it on the validation dataset. The components that
showed a significant link to survival (adj.p-value< 0.05)
on the discovery set were then used to compose RS for
the validation data and also showed significant prognos-
tic properties (LHR = 0.87, p-value = 0.0013); Kaplan-
Meier plots are shown in Fig. 4. The developed RS
separated patients with low hazard (only one death
among 7 patients, blue line in the validation cohort, Fig.
4b) from the group of patients with a high risk score.
For the three primary melanoma samples from the in-

vestigation set, the calculated RS was the highest for
P6PM (RS = 1.92). This was in agreement with clinical ob-
servations, as patient P6 suffered from a very aggressive
form of melanoma and deceased shortly after sample col-
lection. From the quantitative results obtained from the
validation dataset and qualitative differences observed for
the investigation dataset, we concluded that weights of

Table 1 Performances of ICA-based feature extraction. Mean values of sensitivity and specificity are reported as well as class
probability originated from random forest voting

Predicted variables Groups Accuracy
(st.dev.)

Sensitivity
specificity

P2PM
(prob.)

P4PM
(prob.)

P6PM
(prob.)

P4NS
(prob.)

NHEM
(prob.)

Gender female: 179 0.996 (< 0.001) 0.994
0.994

female (0.73) female (0.66) male (0.79) female (0.68) female (0.67)

male: 293

Sample type primary: 105 0.871 (0.003) 0.733
0.733

primary (0.68) primary (0.55) primary (0.65) primary (0.59) meta-static (0.51)

metastatic: 367

Subtype (RNA cluster) immune: 170 0.902 (0.006) 0.877
0.945

keratin (0.64) keratin (0.48) keratin (0.61) keratin (0.64) keratin (0.55)

keratin: 102

MITF-low: 59
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independent components can be combined into a risk
score, suitable to predict patient survival.

Independent components provide information about
biological processes in tumours
General strategy
The most challenging part of ICA is assigning compo-
nents to specific biological processes, cell types and tech-
nical factors. The approach we have taken is outlined in

Additional file 3: Fig. S1 (green panel) and the Methods
section. The automatically generated reports describing
the components can be found in the Additional file 2:
Supplementary Results. We also linked RICs and MICs
based on squared Pearson correlation (or coefficient of de-
termination, r2) between weights of corresponding com-
ponents. Correlation maps are presented in Fig. 5a-c and
two clusters of the components in Fig. 5d-e. Finally, we
compared our findings to previously published immune

a b c

Fig. 3 Benchmarking of ICA and other dimensionality reduction methods. Accuracies for classifying patients by gender (a), sample type (b) and
tumour subtypes (c) were compared using 8 distinct methods. PCA was applied on the original data (PCA), as well as on the data corrected data
using ComBat (PCA_ComBat) and XPN (PCA_XPN). The presented tools are described in the Methods section

a b

Figure 4 ICA-based risk score (RS) can predict patient survival. Performance of the risk score on the TCGA discovery patient cohort (a). Validation
of the risk score on the independent cohort composed of 44 metastatic melanoma patients (b). Cox regression log hazard ratio (LHR) together
with its 95% C.I. and log rank p-value are reported. In order to visualize the results as Kaplan-Meier curves, patients were divided into two groups
by their RS (low risk – blue and high risk – red)
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and stromal scores calculated by the well-accepted ESTI-
MATE algorithm [9] (Fig. 5f-g).

Immune components
The biggest cluster of RICs was linked to immune cells and
immune response. Based on functional annotation it in-
cluded seven components: RIC2, RIC25, RIC27, RIC28,
RIC37, RIC57 and MIC20. RIC2, RIC25 and RIC27 showed
correlated weight profiles between themselves and with
RIC74, RIC79 and MIC20 (Fig. 5d and Additional file 2:
Supplementary Results). Immune component RIC2 was
strongly linked to survival (LHR= -0.89, p-value = 1.8e-4)
and most probably originated from B cells (Enrichr “B cells”
category enriched, adj.p-value = 3.9e-6). The metagenes of

RIC2 were also correlated with the LM22 signatures for B
cells (Additional file 3: Fig. S5B, and showed the highest
correlation with B cell profiles measured in single cells,
Additional file 3: Fig. S6). Interestingly, RIC25 almost per-
fectly reconstructed the ESTIMATE immune score (Fig. 5
f-g). RIC27 showed a very similar collection of enriched
gene sets, but was much less correlated to this particular
score, suggesting that ICA shows better sensitivity and cap-
tures more cell subtypes than ESTIMATE.
Functionally, RIC28 was linked to inflammatory re-

sponses to wounding (adj.p-value = 6.3e-22), neutrophil
degranulation (adj.p-value = 1.3e-7), TNF- (adj.p-value =
4.7e-8) and IL1-mediated signalling pathways (adj.p-
value = 2.2e-9); RIC37 was connected to interferon

a b c

d

f

e

g

Fig. 5 Correlated component clusters. Heatmaps showing coefficient of determination (r2) between weights of RIC-RIC (a), MIC-MIC (b) and RIC-
MIC(c). The cluster of components (d) is based on gene components (RICs) linked to immune response via enrichment analysis of top-
contributing genes; cluster (e) is based on RICs linked to angiogenesis and stroma transcriptional signal. The size of the circles illustrates the
number of top-contributing genes and miRNAs in the components. RIC and MIC components have been linked to each other on basis of
correlation (edges between components show r2 > 0.25). As an additional validation, the weights of the described components were compared
with ESTIMATE [9] scores and corresponding r 2 are shown in (f). The weights of the RIC25 and RIC13 components correlated best to immune
and stromal scores, shown in (g)
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signalling (adj.p-value = 5.1e-22) whose metagenes were
also reciprocally correlated with M5_INTERFERON of
the Biton dataset [10] (Additional file 3: Fig. S5A). Nei-
ther RIC28 nor RIC37 were detected by ESTIMATE
scoring.
Components RIC74 and RIC79 contained a very lim-

ited number of top-contributing genes, but both were
significantly linked to survival (p-values of 1.3e-3 and
3.2e-3). No specific cell type was associated with these
components. RIC74 was, however, associated with posi-
tive and negative regulation of immune response and
receptor-mediated endocytosis (all adj.p-values = 2.6e-4).
The weights of miRNA component MIC20 were posi-

tively correlated with the weights of RIC2, RIC25 and
RIC27 (correlation of 0.69, 0.86 and 0.64 accordingly) and
were positively linked with survival (LHR = − 1.32, p-value =
1.2e-4). Among the top miRNAs in MIC20 were miR-155,
miR-150, miR-342, miR-146b, and miR-142. MiR-155 is
known to be a regulator of immune response in cancer cells
[37, 38] while miR-150, miR-155 and miR-342 have been
proposed as markers for melanoma patient survival [39].
Interestingly, four of those positively contributing miRNAs
formed a cluster on chr1q32.2 (adj.p-value = 7.3e-3).
The samples from the investigation cohort were charac-

terised by the involvement of the above immune response-
related components (Fig. 5d). The results are presented in
Fig. 6. All components linked to subpopulations of immune
cells (RIC2, RIC25, RIC57, MIC20) showed little involve-
ment in the patients of investigation cohort suggesting low
overall immune reactions to the tumour except specific
interferon responses, which had high weights in the investi-
gation samples (RIC28, RIC37). Similarly, we checked be-
haviour of these components for the validation dataset
(Additional file 3: Fig. S7). RIC2 and RIC25 showed ten-
dency to predict better survival (LHR < 0) and their weights
are higher for censored patients than for dead. However the
p-values from Cox regression on 44 validation samples
were not conclusive (RIC2: 0.154, RIC25: 0.06).

Stromal and angiogenic components
The second cluster of RICs was linked to the signals of
stromal cells and showed enrichment in genes related to
angiogenesis. It included four correlated components:
RIC13, RIC49, MIC22 and MIC25 (Fig. 5e, Additional file
2: Supplementary Results). Genes of component RIC13
were enriched in extracellular matrix organisation (adj.p-
value 2e-26) and vasculature development (adj.p-value = 5e-
23). The component’s metagenes were strongly correlated
with metagene M3_SMOOTH_MUSCLE of Biton et al.
[10]. In the single cell study, the highest correlation of
RIC13 metagenes was observed with cancer-associated
fibroblasts. Most probably, this component is linked to cells
of tumour stroma, which again is supported by high correl-
ation with the ESTIMATE stromal score (Fig. 5f-g).

Another component from this cluster, RIC49, showed en-
richment in GO-terms linked to blood-vessel development
and angiogenesis (both with adj.p-value = 6e-24). Its most
correlated single cell type was endothelial cells, which also
form part of the tumour microenvironment. Thirteen of
the positively contributing miRNAs from MIC22 were
strongly concentrated in a narrow genomic region in
chr14q32.2 (adj.p-value 5.8e-11). MiRNAs of MIC25 were
significantly enriched in four cytogenetic locations:
chr1q24.3, chr5q32, chr17p13.1 and chr21q21.1 (adj.p-
values of 5.0e-6, 2.6e-3, 4.1e-02 and 9.7e-5, respectively).
In the clinical samples of investigation cohort, the

highest amount of stromal and endothelial cells was ob-
served in P2PM and P4NS samples (Fig. 6). The primary
cell line NHEM showed almost no signal of stromal
cells. Interestingly, MIC25 was heavily weighted in all
new patient samples, excluding this cell line.

Skin-related components
RIC5, RIC7, RIC19, RIC31 all showed an enrichment in
GO terms related to processes of the skin including epi-
dermis development (adj.p-value<2e-15 for all men-
tioned components) and keratinisation (adj.p-value<
1.4e-10). Enrichr suggested that the signals of these
components are specific to skin (adj.p-value<1e-50). The
dataset contained 48 keratins and many of them were
observed among the top-contributing genes: 20 for
RIC5, 28 (RIC7), 30 (RIC19) and 13 (RIC31). RIC5 and
RIC7 were negatively correlated with survival, which is
in concordance with previous observations [18]. MIC9
with the skin-specific miR-203 [40], was linked to RIC5,
RIC7 and RIC31. Furthermore, several components
(RIC4, RIC16, MIC11 and MIC14) were connected to
the activity of melanocytes. Top-contributing genes of
RIC4 were enriched in the melanin biosynthesis process
(adj.p-value = 1.2e-5) and Enrichr linked these genes to
melanocytes (adj.p-value = 2.8e-25). RIC16 showed an
inverse correlation of the weights with RIC4. Both com-
ponents were linked to survival, but with an opposite ef-
fect: while RIC4 increased the risk (LHR = 0.18, p-
value = 5.4e-3), RIC16 increased the survival (LHR = -
0.23, p-value = 5.1e-4) (Additional file 2: Supplementary
Results). Many positively contributing miRNAs of the
MIC11 component (16 of 33) – a miRNA cluster associ-
ated with early relapse in ovarian cancer patients [41] –
were located on chrXq27.3 (adj.p-value<1e-7).
In the validation cohort we identified several patients

with a strong skin signature (Additional file 3: Fig. S7,
skin-related cluster). These samples also showed a high
expression of keratinocyte markers, such as KRT5 and
KRT14 and most probably originated from skin metasta-
sis. Interestingly, component RIC16 was not strongly pre-
sented in the validation dataset, which could suggest
absence of healthy melanocytes in the metastatic samples.
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Contrary, RIC4 was strongly presented and linked to in-
creased risk in the validation cohort (p-value = 5.3e-3).

Other tumour-related components
Some components could be linked to transcriptional sig-
nals and regulation of cancer cells. For example, RIC55
captured the cell cycle process (adj.p-value = 6.6e-29)
and the majority of the 383 genes positively associated
to this component are known to be involved in cell cycle
control with tumour cells contributing the most to cell

division activities. Increased cell proliferation was linked
to survival (p-value = 3.0e-2). In the investigated samples,
the highest weight was observed for the most aggressive
tumour P6PM and the lowest value for normal skin
P4NS. In the validation samples this component was also
linked to survival (p-value = 3.5e-3).
Several RICs showed linkage to neural tissue. As an

example, both positive and negative top-contributing
genes of RIC6 were linked to brain in the ARCHS4 tis-
sue sets of Enrichr (both adj.p-values <1e-33). This

Fig. 6 Biologically relevant components and their ranked weights in the investigation dataset. Rank for samples is calculated in comparison to
the TCGA discovery set (red – weight above median in TCGA samples, blue – below)
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component was as well associated with patient survival
(p-value = 5.5e-3). The component indicates the ability
of melanoma cells to show expression patterns specific
for cells of the neural crest of human embryos and can
be linked to motility of malignant melanocytes.
MiRNA component MIC1 showed an interesting bi-

modal distribution in the discovery dataset (see two clus-
ters in Fig. 2d) and was strongly linked to patient survival
(Cox p-value = 9.4e-4), suggesting two subgroups of mel-
anoma patients with different prognosis. This component
most probably was linked to regulation of epithelial-
mesenchymal transition (EMT), as many miRNA posi-
tively or negatively influencing the component are known
to be EMT regulators or linked to metastasis formation:
miR-551, miR-206, miR-34a, miR-1269, miR-205, miR-
876, miR-301b, and miR-365a. Based on our analysis of
the discovery TCGA dataset, these miRNA listed in Add-
itional file 2 can be further investigated as potential sur-
vival markers for melanoma patients.

ICA-derived biological networks
Given the promising results with regard to immune- and
angiogenesis-related components, we performed text
mining (described in Additional file 1: Supplementary
Methods) on the terms “B-cell, miRNA and/or cluster”,
“T-cell, miRNA and/or cluster” and “angiogenesis,
miRNA and/or cluster”, and compiled a list of published
miRNAs involved in immune responses and angiogen-
esis. For the shared top-contributing miRNAs from
MIC20, 22, and 25 (Fig. 5 and Additional file 2: Supple-
mentary Results), experimentally confirmed target genes
were extracted (from miRTarBase [42]). In order to in-
vestigate possible miRNA-target gene interactions as an
underlying biological reasoning for clustering, we next
overlaid the extracted target genes with gene lists of
connected RICs. Enrichment analysis was performed and
final gene lists were analysed by STRING [43] to visual-
ise potential protein-protein interactions for target genes
of immune component cluster (Additional file 3: Fig. S8)
and angiogenic component cluster (Additional file 3: Fig.
S9). Overall, the networks showed a significant enrich-
ment of interactions suggesting a non-random relation
between top-contributing miRNAs and genes. STRING
network analysis captured key biological interactions
reflecting the ICA-based RICs and MICs, from which
they were initially derived.

Discussion
Here we investigated the applicability of ICA-based de-
convolution of transcriptomes, originated from a large
set of bulk melanoma samples, for acquiring clinically
and biologically relevant information about new patients.
ICA decomposes transcriptomic data into components
that are characterised by two matrices: a matrix of

metagenes, which shows how each gene contributes to
each component, and the matrix of weights that repre-
sents the involvement of the components in each sam-
ple. Importantly, this analysis does not require any
preliminary knowledge about biology or sample compos-
ition. Unlike other deconvolution methods that use sig-
natures [9] or pure transcriptomic profiles [8], ICA is an
assumption-free, unsupervised approach. The method
directly works with the data from bulk samples without
any preliminary assumption about the transcriptomes of
the purified cell types. Among the components, one can
expect to see not only those defined by “pure” tumours
or stromal cells, but also those originating from tumour/
stroma interactions including tumour-induced stromal
cell reprogramming. One example of such interactions is
angiogenesis, further discussed below.
We implemented a robust consensus ICA method and

applied it to several datasets from patients with SKCM.
These included (a) a large cohort of SKCM patients
from TCGA used as discovery set; (b) an independent
cohort of 44 patients with publicly available microarray
mRNA data and (c) 5 in-house clinical investigation
samples: 3 primary melanomas, a normal skin sample
and a normal melanocyte cell line (NHEM). Both mRNA
and miRNA datasets were obtained for the discovery
and investigation samples. Despite the fact that different
techniques were used for data acquisition, ICA was able
to identify common signals in the datasets and properly
allocate the new samples within the discovery set (Fig.
1). This was particularly evident for miRNA data where
the discovery set was obtained by small RNA-seq and
the new samples by qPCR arrays with PCA showing a
strong difference between these two datasets. With ICA,
technical biases in the data were isolated within several
components and thus separated from biologically rele-
vant signals leading to a better and more correct charac-
terisation of the samples. Such batch correction, of
course, could also be performed by other methods. We
tested several correction methods together with standard
dimensionality reduction methods and showed that
overall, ICA performed best across them. We recently
applied ICA-based batch correction on single-cell RNA-
seq data and confirmed its usefulness [44].
The fact that ICA should be re-run for every series of

new samples could be considered as a drawback of our
approach. However, similarly to PCA, recalculation of
the components does not require supervision and could
be done automatically. In the case when investigation
and discovery datasets come from the same distribution,
one can use the matrix S obtained from the discovery
dataset in order to define the weights (M) for the sam-
ples forming the investigation dataset (1). However, in
reality, the variability in the data requires recalculation
of the components for the new investigated samples.
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We demonstrate here that the weights of independent
components can be used as predictive features of patient
subgroups and can be linked to patient survival. We also
propose a method to select the number of components,
based on the required classification task (Additional file
2 and Additional file 3: Fig. S10). While the ICA-based
feature extraction method has been previously discussed
(e.g. [12, 45]), no studies have been devoted, to our
knowledge, to estimating patient prognosis using ICA-
based data deconvolution. We combined weights of several
significant components into a risk score, for which a high
predictive power was shown both in the discovery cohort
(460 patients with known survival status) and in the inde-
pendent validation cohort (44 patients). Thus, the devel-
oped approach could help clinicians in estimating the risks
and potentially optimising the selection of adequate treat-
ment strategies. Three of the survival-associated compo-
nents were connected to immune response. As expected,
higher immune signal indicated lower risk for the patients
[21]. Interestingly, all 4 skin-related mRNA components
were also linked to survival but inversely, which is in agree-
ment with previous observations of poor survival for
patients of keratin subtype [18].
Next, the biological relevance of the components was

examined in depth. We showed that only one subset of
genes, either positively or negatively contributing, is
strongly associated to biological functions (Additional
file 3: Fig. S11). Components that represented signals
from various cell subpopulations (e.g. different immune
cells, stromal cells, melanocytes) and cellular processes
(e.g. cell cycle) were identified. These signals were also
detected in the new samples, providing hints of active
processes and tissue composition of these samples. We
associated mRNA and miRNA components that showed
similar weight profiles in all the patients and hypothe-
sised that such components were probably derived from
the same cell types or process. This hypothesis was sup-
ported by our observations. Indeed, MIC20 was corre-
lated with RIC2 and RIC25 – the components associated
with leukocyte activity. Indeed, miR-155, one of the
markers of immune cells [46], was found among the
most contributing miRNAs of MIC20. Therefore, we
could link all other top-contributing miRNAs within
MIC20 to leukocytes and immune response and thus as-
sign functions to these miRNAs.
Another group of components were linked to

tumour-stromal interactions and angiogenesis. One of
them, MIC22, contained an almost complete miRNA
mega cluster, miR-379/miR-410, with 11 of 13 miRNAs
significantly contributing. The cluster is located on
chromosome 14 (14q32) in the so-called imprinted
DLK1-DIO3 region. Lower levels of this miRNA cluster
have been described to favour neo-vascularisation [47]
and shown to play a role in development, neonatal

metabolic adaption but also in tumorigenesis. Deregula-
tion of miRNAs in this locus has recently been shown
to predict lung cancer patient outcome [48, 49]. Most
miRNAs in this cluster (68%) were significantly down-
regulated in glioblastoma multiform, 61% downregu-
lated in kidney renal clear cell carcinoma and 46% in
breast invasive carcinoma indicating a tumour suppres-
sive role of this miRNA cluster, especially in glioblast-
omas [50]. Moreover, it was shown that the miR-379/
miR-410 cluster was silenced in melanoma, which
favoured tumorigenesis and metastasis [51].
Overall, we observed that ICA on miRNA expression

data grouped together many miRNAs that belong to
genetic clusters and by connecting MICs with genes
(RICs), biological functions of miRNAs could be in-
ferred. As an example, MIC11 represents a cluster on
chrX q27.3 associated with early relapse in advanced
stage ovarian cancer patients [41]. In our analysis, the
miRNAs from this cluster were linked to activity of ma-
lignant melanocytes. All this is suggestive of a concerted
role for miRNAs of a given cluster in regulating func-
tionally related genes [52, 53].
The results for the ICA-derived biological networks im-

plied that the combination of ICA with text mining (bio-
logical expressions enriched in statistically correlated RICs
and MICs) potentially uncovers two hidden connections:
biological reasons for statistical correlations and detection
of those genes actually responsible for the biological link
between MICs and RICs. This in turn might give new in-
sights into the significance of biological processes active in
cancer in general or in certain cancer subtypes.
Similarly to PCA or NMF, ICA could be integrated

into standard analysis pipelines in the future. Unlike
PCA, ICA could extract biologically-based signals. These
signals are more stable than those obtained by NMF and
can be further used to acquire clinically relevant infor-
mation about new samples, thus helping patient diagnos-
tics and prognostics.

Conclusions
In conclusion, we used the consensus ICA method to
combine transcriptomics data of melanoma patients with
large public datasets. Here we showed successfully that
the ICA-based decomposition separates true biologically
relevant transcriptional signals from technical biases.
The obtained ICA-based features were used to predict
cancer subtypes and patient survival. We also showed
how cellular composition and biological signals can be
uncovered within new clinical samples. Transcriptional
signals from immune cells, melanocytes, keratinocytes
and stromal cells were identified and confirmed by com-
parison to published signatures. We demonstrated that
some of the identified signals, including immune activity
and cell proliferation, are linked to the aggressiveness of
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tumours and could influence patient survival. Finally, we
were able to integrate miRNA and mRNA data, which
allowed us to deduce biological functions of miRNAs.
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