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Abstract

Background

Circulating tumor DNA (ctDNA) is an approved noninvasive biomarker to test for the pres-

ence of EGFR mutations at diagnosis or recurrence of lung cancer. However, studies evalu-

ating ctDNA as a noninvasive “real-time” biomarker to provide prognostic and predictive

information in treatment monitoring have given inconsistent results, mainly due to methodo-

logical differences. We have recently validated a next-generation sequencing (NGS)

approach to detect ctDNA. Using this new approach, we evaluated the clinical usefulness of

ctDNA monitoring in a prospective observational series of patients with non-small cell lung

cancer (NSCLC).

Methods and Findings

We recruited 124 patients with newly diagnosed advanced NSCLC for ctDNA monitoring.

The primary objective was to analyze the prognostic value of baseline ctDNA on overall sur-

vival. ctDNA was assessed by ultra-deep targeted NGS using our dedicated variant caller

algorithm. Common mutations were validated by digital PCR. Out of the 109 patients with at

least one follow-up marker mutation, plasma samples were contributive at baseline (n =

105), at first evaluation (n = 85), and at tumor progression (n = 66). We found that the pres-

ence of ctDNA at baseline was an independent marker of poor prognosis, with a median

overall survival of 13.6 versus 21.5 mo (adjusted hazard ratio [HR] 1.82, 95% CI 1.01–3.55,

p = 0.045) and a median progression-free survival of 4.9 versus 10.4 mo (adjusted HR

2.14, 95% CI 1.30–3.67, p = 0.002). It was also related to the presence of bone and liver
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metastasis. At first evaluation (E1) after treatment initiation, residual ctDNA was an early

predictor of treatment benefit as judged by best radiological response and progression-free

survival. Finally, negative ctDNA at E1 was associated with overall survival independently of

Response Evaluation Criteria in Solid Tumors (RECIST) (HR 3.27, 95% CI 1.66–6.40, p <
0.001). Study population heterogeneity, over-representation of EGFR-mutated patients,

and heterogeneous treatment types might limit the conclusions of this study, which require

future validation in independent populations.

Conclusions

In this study of patients with newly diagnosed NSCLC, we found that ctDNA detection using

targeted NGS was associated with poor prognosis. The heterogeneity of lung cancer molec-

ular alterations, particularly at time of progression, impairs the ability of individual gene test-

ing to accurately detect ctDNA in unselected patients. Further investigations are needed to

evaluate the clinical impact of earlier evaluation times at 1 or 2 wk. Supporting clinical deci-

sions, such as early treatment switching based on ctDNA positivity at first evaluation, will

require dedicated interventional studies.

Author Summary

Why Was This Study Done?

• Plasma circulating tumor DNA (ctDNA) allows noninvasive detection of cancer

mutations.

• At relapse, the acquisition of secondary mutations may guide new treatment strategies.

• Next-generation sequencing (NGS) is an emerging tool to detect ctDNA mutations.

What Did the Researchers Do and Find?

• ctDNA was characterized in 109 patients with advanced non-small cell lung cancer

(NSCLC) using a 22 gene-panel NGS at diagnosis, at first evaluation, and at time of

progression.

• ctDNA at diagnosis was positive in 71% of patients and was related to shorter overall

survival.

• Under treatment, ctDNA clearance at first evaluation was associated with objective

response, longer progression-free survival, and overall survival.

What Do These Findings Mean?

• ctDNA is a prognostic marker in advanced NSCLC, and its evolution reflects treatment

efficacy.
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• Analysis of ctDNA allows the characterization of secondary mutations at progression.

• A key limitation of monitoring ctDNA is its lack of detection at diagnosis or at time of

progression in some patients; therefore, it cannot replace tumor biopsy analysis or

radiological evaluation, but it contributes complementary information.

Introduction

Lung cancer is the leading cause of cancer-related death worldwide, with 1.8 million new cases

in 2012 [1]. More than 50% of lung cancer patients are diagnosed with metastatic disease and

have a 5-y survival rate of<5% [2]. However, the development of novel therapeutic

approaches based on predictive biomarkers and the use of targeted therapies have improved

the clinical outcome of advanced non-small cell lung cancer (NSCLC) patients [3]. The list of

molecular targets is increasing rapidly in adenocarcinomas (EGFR, ALK, HER2, BRAF, MET,

ROS1, and RET) and to a lesser extent also in squamous-cell carcinomas (FGFR1 and PIK3CA)

[4]. Molecular testing is routinely performed on DNA extracted from tumor tissue, i.e., solid

biopsy, and more recently on circulating cell-free DNA, i.e., liquid biopsy [5]. Circulating

DNA may facilitate the study of spatial and temporal tumor heterogeneity [6,7], the characteri-

zation of genetic changes under treatment, and the identification of secondary resistance

mechanisms [8,9]. It is also a good candidate for early evaluation of treatment efficacy because

of its rapid clearance from plasma [10,11].

In lung cancer, circulating tumor DNA (ctDNA) has been validated as a surrogate material

to detect mutations in the gene encoding epidermal growth factor receptor (EGFR) at diagno-

sis [12–16] and to identify secondary EGFR mutations, such as p.T790M or p.C797S, at relapse

in patients treated with EGFR inhibitors [16–20]. The prognostic value of ctDNA has been

investigated in different cancer types and is becoming an important topic in lung cancer. The

technical challenge of this research is to detect low concentrations of ctDNA, as found in lung

cancer, and in clinical situations such as the presence of a low tumor burden. Indeed, by analy-

sis of mutations, ctDNA was identified in only 62% of EGFR-mutated lung cancer patients

[12], as compared to 92% of KRAS-mutated colon-cancer patients [21]. To accurately detect

ctDNA, ultra-sensitive methods such as digital PCR (dPCR) [22,23] or optimized ultra-deep

next-generation sequencing (NGS) are required [24–26]. Two issues have to be considered: (1)

plasma contains low concentrations of cell-free DNA, and (2) ctDNA is often present at a low

allelic ratio. The main interest in NGS is in allowing a broad molecular screen using moderate

amounts of template DNA. Such an approach is well adapted to the heterogeneous molecular

mechanisms driving lung carcinogenesis, tumor progression, and acquired resistance to ther-

apy. NGS will also allow a wide genetic analysis suitable for unselected patient screening.

Moreover, in some specific cases, it can be used to assess the relative disposition of different

genetic alterations, such as the cis or trans positions of EGFR p.C797S and p.T790M [18]. For

this purpose, we previously developed the base-position error rate (BPER) method, a bioinfor-

matics analytical pipeline dedicated to routine ctDNA testing using ultra-deep targeted NGS at

10,000× (Ion Proton, Thermo Fisher Scientific) [27].

In the present prospective observational study, we tested the clinical utility of liquid biopsy

in advanced or metastatic NSCLC patients (n = 256 plasma samples from 124 patients).

Patients’ inclusion was not based on the existence of a defined tumor mutation such as EGFR
or KRAS. Our primary objective was to evaluate the prognostic value of ctDNA positivity
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before treatment initiation with respect to overall survival (OS). Secondary objectives were to

evaluate the prognostic impact of ctDNA concentration at treatment initiation and under

treatment. To this end, we quantified the absolute concentration of ctDNA at baseline, at first

evaluation (E1), and at time of radiological progression. Finally, we investigated the occurrence

of secondary mutations possibly related to treatment resistance.

Materials and Methods

Patients and Tumor Material

We conducted a prospective, single-centre observational study to evaluate the prognostic value

of ctDNA in NSCLC patients. The research was conducted according to the recommendations

outlined in the Declaration of Helsinki. The study and written protocol were approved by the

relevant Ethics Committee (CPP Ile-de-France II n˚2013-06-21 SC). The prospective study

plan was respected with regards to the primary objective and all secondary objectives pre-

sented here. All patients signed a written informed consent form. Patients with newly diag-

nosed advanced or metastatic NSCLC and undergoing first-line treatment (n = 124) were

recruited in the European Georges Pompidou Hospital medical oncology department between

June 2013 and November 2015. In order to avoid potential selection bias, patients could be

included before molecular testing. Exclusion criteria were previous cancer diagnosed within

the last 5 y, inability to undergo medical follow-up, and inability to read or understand the

consent form.

Blood samples were collected at baseline (T0) before initiation of therapy (chemotherapy or

tyrosine-kinase inhibitor), at first evaluation (6 ± 2 wk; E1), and at time of tumor progression

(ToP). Among 109 patients eligible for ctDNA follow-up, 85 underwent their first evaluation

at 6 ± 2 wk, 13 received no follow-up evaluation, 7 had their first evaluation either before 1 mo

or after 2 mo, and 4 died within the first month. Blood samples were processed within 2 h, and

plasma was immediately stored frozen. Clinical data collected prospectively included sex, age,

performance status (WHO), smoking history, tumor histological type, TNM tumor stage

according to the 7th edition of the Union for International Cancer Control (UICC) classifica-

tion, description and number of metastatic sites, treatment drugs, dates of initiation and end

of treatment, radiological evaluation performed every 2 mo by CT-scan according to the

Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, date of progression, and date of

death or last follow-up. Tumor burden was estimated using the RECIST baseline sum of lon-

gest diameters and categorized as low (�7.5 cm) or high (>7.5 cm) as previously described

[28].

DNA Extraction from Tumor and Plasma Samples

The QIAmp Circulating Nucleic Acid Kit, QIAamp DNA Mini Kit for FFPE, and QIAamp

DNA Blood Mini Kit were used for DNA extraction from 2 mL of plasma, formalin-fixed, par-

affin-embedded (FFPE) tumor samples, and cell lines, respectively, according to the manufac-

turer’s instructions (QIAGEN, Les Ulis, France). DNA was quantified using a Qubit 2.0

Fluorometer with a Qubit dsDNA BR Assay Kit for DNA from cell lines and HS Assay Kit for

circulating cell-free DNA (Life Technologies–Thermo Fisher Scientific, Saint Aubin, France).

All DNA samples used in the study were stored at −20˚C before use.

dPCR: Emulsion Generation, Thermal Cycling, and Droplet Analyses

The RainDrop Digital PCR System (RainDance Technologies) was used for the dPCR. Wild-

type genomic DNA and cell-line DNA were used as internal controls (S1 Table). The PCR mix

Monitoring Circulating Tumor DNA in NSCLC by BPER-NGS
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was prepared as shown in S2 Table. Fragmented 20-ng DNA from negative and positive con-

trols (Covaris S220 sonicator) and 3–6 μL of plasma DNA were added to the mix prior to

compartmentalization into droplets using the RainDrop Source instrument. The samples were

thermal cycled (S3 Table) using a BioRad thermal cycler (MJ-Mini, S1000 or C1000 touch).

Droplets were loaded into the RainDrop Sense instrument and analyzed using RainDrop Ana-

lyst software. To calculate the percentage of mutations, a limit of blank was determined for

each assay [29] and applied to all samples as previously described [27].

NGS Analyses and Protocol

Sequencing libraries were prepared from tumor FFPE DNA and from circulating free DNA

using Ion AmpliSeq Colon and Lung Cancer Research Panel v2 (Life Technologies–Thermo

Fisher Scientific), following the manufacturer’s recommendations. The multiplex barcoded

libraries were generated with the Ion AmpliSeq Library Kit v2 using 6 μL of plasma cell-free

DNA as the input, corresponding to a median of 7.8 ng (range: 1.38–300 ng). Libraries were

normalized using the Ion Library Equalizer Kit. The pooled barcoded libraries (maximum: 96)

were processed on an Ion Chef System using an Ion PI Hi-Q Chef Kit and then sequenced on

an Ion Proton System using an Ion PI Chip Kit v3. The FASTQ sequencing data were pro-

cessed and aligned to the human genome (hg19) using the Ion-Torrent Suite v4.2.1. The

BAM files generated by the Ion Torrent Suite were recalibrated using GATK v3.4–46 for local

realignment around indels and base quality recalibration [30]. We then applied the BPER

method to the recalibrated BAM files as previously described. This method detects high sensi-

tivity mutations in circulating DNA at allele frequencies of as low as 0.001 for insertions or

deletions >2 bp, and at 0.003 for single nucleotide variations. The BPER method is highly con-

sistent with dPCR for EGFR and KRAS mutations, kappa 0.90 (0.73–1.06) [27]. It has been

implemented within an R package entitled “PlasmaMutationDetector,” which is publicly avail-

able at https://cran.r-project.org/package=PlasmaMutationDetector. We recommend recali-

brating the BAM files with GATK [30] before applying “PlasmaMutationDetector.”

Absolute Quantification of ctDNA

ctDNA was quantified using the number of wild-type droplets, the mutation allele frequency

(measured by dPCR or NGS), and the DNA extract volume (50 μL), and was normalized to 1

mL plasma. ctDNA concentration was categorized into tertiles defining low (<0.027 ng/mL),

intermediate (0.027–0.50 ng/mL), and high (>0.50 ng/mL) concentrations.

Proliferative Index

Paraffin-embedded tissues were cut into 4-μm sections and placed on Superfrost Plus slides.

Samples were incubated for 40 min with the Ki67 antibody (mouse monoclonal antibody,

MIB-1 clone from Dako) after an 8-min antigen retrieval step at 95˚C in a BenchMark

ULTRA IHC Staining Module, which was revealed with DAB peroxidase. The percentage of

stained nuclei was assessed on ten adjacent high-power field sections, or on the whole sample

for small biopsies. If the staining was heterogeneous, the most proliferative area was taken into

account.

Statistical Analysis

The sample size (n = 102) was calculated to allow detection of an OS difference with a hazard

ratio (HR) of 2 between patients with and without ctDNA at baseline, considering a propor-

tion of positive ctDNA patients of 0.6, an overall 2-y survival rate of 0.20, a power of 0.80, and
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type I error rate of 0.05. Baseline ctDNA was considered positive if detected by NGS or by

dPCR. Statistical analyses were performed on the per-protocol population composed of all

patients with at least one molecular alteration identified by NGS in the tumor or in the initial

plasma sample (n = 109).

The cut-off date for analysis was May 2016. Patients were censored at last follow-up. Fol-

low-up time was calculated using the reverse Kaplan-Meyer method. The OS was calculated

from the date of treatment initiation until death from any cause. Progression-free survival was

calculated from the date of treatment initiation until RECIST radiological progression or

death. The Cox proportional-hazards regression model was used to perform univariate and

multivariate analyses with a 95% confidence interval (CI). Multivariate analysis was performed

using variables associated with the outcome in univariate analysis at a p-value of< 0.05.

All statistical analyses were performed using JMP software version 10.0 (SPSS, Chicago, Illi-

nois). A p-value< 0.05 was considered significant.

Results

The flowchart (Fig 1A) describes selection of the 109 patients analyzed in this study starting

from the total population (n = 124). These 109 patients met all the criteria for analysis and fol-

low-up with an identified marker mutation at baseline either in tumor tissue (n = 104) or in

plasma at T0 (n = 5). It is noteworthy that ALK or ROS1 rearrangements cannot be assessed by

this NGS panel. As no other marker alteration was identified in patients with ALK and ROS1
tumors, they were excluded. The ctDNA was evaluated at three time points: baseline (T0), first

Fig 1. Study design. (A) Flowchart of the study population. (B) Time point of ctDNA follow-up. *Includes ALK

fusion (n = 3) and ROS1 fusion (n = 1). **PIK3CA p.H1047L. †TP53 p.Gly244Cys. $KRAS p.G12V, TP53 p.

C135Y, and TP53 p.R248W. No mutations were found for AKT1, ERBB2, FBXW7, FGFR2, MET, or

NOTCH1.

doi:10.1371/journal.pmed.1002199.g001
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evaluation (i.e., 6 ± 2 wk, E1), and time of progression (ToP) (Fig 1B). Patients’ characteristics

are described in Table 1.

NGS Method for ctDNA Detection

A previous assessment of NGS performance in clinical samples showed a high level of agree-

ment with dPCR for EGFR and KRAS mutations [27]. In the present study, double testing of

59 patients with EGFR-, KRAS-, or BRAF-mutated tumors confirmed these results (Fig 2). The

number of patients eligible for NGS ctDNA screening was 105, as compared to 59 when con-

sidering only the three recurrent driver alterations (Fig 2). The high frequency of TP53 muta-

tions accounted for most of the gain in eligible patients (S1 Fig).

Table 1. Summary of baseline patient and tumor characteristics.

Characteristics

n / 109 %

Sex

Male 49 45

Female 60 55

Age

<70 y 67 61

�70 y 42 39

Smoking History

Present or former 73 67

Never 36 33

Performance Status (WHO)

0–1 71 65

2–3 38 35

Histological Types

Nonsquamous NSCLC 98 90

Squamous NSCLC 11 10

Tumor Stage (UICC 7th ed.)

IIIB 12 11

IV 97 89

Tumor Burden (BSLD)

�7.5 cm 66 63

>7.5 cm 39 37

Metastatic Sites

Bone 52 48

Liver 9 8

Brain 22 20

Mutations

TP53 65 60

EGFR 47 43

KRAS 29 27

Treatment Type

Chemotherapy 73 67

EGFR TKI 36 33

BSLD, baseline sum of longest diameters; TKI, tyrosine kinase inhibitor.

doi:10.1371/journal.pmed.1002199.t001
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Baseline ctDNA and Prognosis

Of 109 patients, 4 did not have ctDNA evaluated at baseline. The plasma ctDNA detection rate

was 75 (74 by NGS and 1 rescued by dPCR) out of 105 patients (71.4%, 95% CI 60%–82%,

Table 2) at baseline, including 42.9%, 27.6%, and 0.9% with one, two, and three mutations,

respectively. Negative baseline ctDNA was associated with a lower incidence of bone metasta-

sis (odds ratio [OR] 0.34 [95% CI 0.14–0.83]) and lower tumor burden (OR 0.24 [95% CI

0.08–0.70]). Nine mutations (8 patients) that were not present in the tumor were detected in

ctDNA at T0: one EGFR exon 19 deletion, one EGFR p.T790M mutation, two TP53 mutations,

two PTEN mutations, one ERBB4 mutation, and two PIK3CA mutations (Fig 3). Technical

issues and low-quality FFPE DNA likely represent the main explanations for these discrepan-

cies, although tumor heterogeneity cannot be ruled out.

After a median follow-up of 18.8 mo, 94 and 63 events occurred for progression-free sur-

vival (PFS) and OS, respectively. Baseline ctDNA positivity was associated with reduced OS

(median 13.6 versus 21.5 mo, p = 0.03, Fig 4) and poor PFS (median 4.9 versus 10.4 mo,

p< 0.001). ctDNA remained associated with a poor outcome in multivariate analyses. HRs

were 1.82 (95% CI 1.01–3.55, p = 0.045; Table 3) and 2.14 (95% CI, 1.30–3.67 p = 0.002; S4

Table) for OS and PFS, respectively. For OS, ctDNA was independent of performance status,

Fig 2. Baseline ctDNA detection using NGS. On the left, the figure shows EGFR, KRAS, and BRAF

mutation testing with dPCR and NGS. On the right, the figure shows the 105 patients eligible for baseline

ctDNA NGS testing, among whom 74 were positive.

doi:10.1371/journal.pmed.1002199.g002

Table 2. Plasma characteristics.

Treatment Time Baseline (T0) First Evaluation (E1) Time of Progression (ToP)

Characteristics n plasma /

109

Median (IQR] or %

(95% CI)

n plasma /

109

Median (IQR) or%

(95% CI)

n plasma /

109

Median (IQR) or %

(95% CI)

ctDNA positivity rate (%) 105 71.4% (60–82) (n = 75) 85 32% (19–45) (n = 27) 66 71.2% (57–83) (n = 47)

ctDNA concentration (ng/mL

plasma)

105 0.12 (0–0.79) 85 0 (0–0.06) 46 0.09 (0.009–1.23)

IQR, interquartile range.

doi:10.1371/journal.pmed.1002199.t002
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while for PFS, ctDNA was the only prognostic factor that remained independent after adjust-

ment on univariate significant parameters.

To study the impact of ctDNA concentration, patients were categorized into tertiles (n = 35

patients in each tertile) defining low (<0.027 ng/mL), intermediate (0.027–0.50 ng/mL),

and high (>0.50 ng/mL) concentration groups. High ctDNA concentration was associated

with higher tumor burden as evaluated by RECIST criteria (Fig 5A) and with the presence of

liver metastases (Fig 5B). A multivariate analysis using an ordinal logistic model showed that

tumor burden and liver metastasis were independently associated with ctDNA concentration

(p< 0.001 and p< 0.008, respectively). Moreover, ctDNA positivity was associated with a

higher proliferative index (Fig 5C). Concerning prognosis, the median OS was 13.0, 13.4, and

21.5 mo (p = 0.03), and the median PFS was 4.1, 5.7 and 10.4 mo (p< 0.001) for the high,

intermediate, and low groups, respectively (S2 Fig).

Monitoring Early Tumor Response Using ctDNA

The number of patients with positive ctDNA at first evaluation (E1) was 27/85 (31%), which is

lower than at T0 (Table 2). Among the positive samples, ctDNA concentration had increased

in 13 patients (Fig 6A) and decreased in 14 (Fig 6B). Among the negative samples (n = 58), the

ctDNA concentration had normalized in 32 patients (Fig 6C) and remained negative in 23

patients (Fig 6D). Fig 6E shows that the negativity of ctDNA at E1 and not its decrease was the

best prognostic marker for PFS. As expected, E1 ctDNA positivity was associated with RECIST

tumor progression (Fig 6F) and a shorter PFS (median 2.8 versus 9.6 mo, p< 0.001, Fig 6G)

that translated into shorter OS (median 8.0 versus 23.2 mo, p< 0.001; Fig 6H). The survival

impact of E1 positivity remained significant both in the subgroup of patients with KRAS,

Fig 3. Mutations identified in tumor and in baseline plasma samples. Comparison of molecular alterations found in tumor tissue and/or in

baseline (T0) plasma (n = 109 participants).

doi:10.1371/journal.pmed.1002199.g003
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EGFR, or TP53 mutations and in the group of patients with more than one alteration (S3 Fig).

In an exploratory multivariate analysis on OS, E1 ctDNA positivity (HR 3.27, 95% CI 1.66–

6.40, p< 0.001) was independent of the result of the first RECIST evaluation (progressive

Fig 4. Prognostic impact of positive baseline ctDNA. (A) PFS and (B) OS in patients with positive and

negative ctDNA (n = 105).

doi:10.1371/journal.pmed.1002199.g004
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disease versus stable disease: HR 2.37, 95% CI 1.05–5.28, p = 0.03; progressive disease versus

complete or partial response: HR 2.69, 95% CI 1.18–6.14, p = 0.02).

Tumor Heterogeneity at Time of Tumor Progression (ToP)

At the ToP, ctDNA was detected in 47/66 patients (71.2%) (Table 2). The ctDNA evolution at

T0, E1, and ToP is shown in S4 Fig. The mean time between biological and radiological pro-

gression was 11 ± 9.4 d (P .26) in a pairwise analysis of ctDNA and RECIST time to progres-

sion. The Kaplan-Meier estimation of median time to ctDNA progression was 139 d (95% CI

92–181) and the median time to RECIST progression was 156 d (95% CI 118–208) (Fig 7A).

The mutations found at progression are shown in Fig 7B, most of which were present in

tumor DNA at the time of diagnosis. However, for acquired mutations, we noticed a recurrent

Table 3. Effect of patient and tumor baseline characteristics on OS (n = 109).

Characteristics Univariate Cox Model Multivariate Cox Model*

n % HR 95% CI p HR 95% CI p

Sex

Male 49 45 1 1

Female 60 55 0.58 0.35–0.98 0.04 0.65 0.38–1.09 0.10

Age

<70 y 67 61 1

�70 y 42 39 1.11 0.66–1.85 0.68

Smoking History

Present or former 73 67 1

Never 36 33 0.64 0.36–1.09 0.10

Performance Status (WHO)

0–1 71 65 1 1

2–3 38 35 2.76 1.66–4.56 0.0001 2.41 1.42–4.04 0.001

Histological Types

Nonsquamous NSCLC 98 90 1

Squamous NSCLC 11 10 1.47 0.56–3.17 0.39

Tumor Stage (UICC 7th ed.)

IIIB 12 11 1

IV 97 89 1.19 0.52–3.43 0.70

Tumor Burden (BSLD)

�7.5 cm 66 63 1

>7.5 cm 39 37 1.38 0.82–2.29 0.22

Metastatic Sites

Bone 52 48 1.07* 0.65–1.76 0.79

Liver 9 8 2.35* 1.02–4.69 0.04 2.07* 0.90–4.21 0.08

Brain 22 20 1.62* 0.86–2.88 0.13

Mutations

TP53 65 60 1.49* 0.89–2.57 0.13

EGFR 47 43 0.64* 0.37–1.07 0.09

KRAS 29 27 1.37* 0.75–2.37 0.29

Baseline ctDNA

Negative 30 29 1 1

Positive 75 71 1.97 1.09–3.81 0.02 1.82 1.01–3.55 .045

*Relative to patients without the specific characteristic. BSLD, baseline sum of longest diameters.

doi:10.1371/journal.pmed.1002199.t003
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appearance of the p.T790M mutation in the EGFR-mutated group but much more diverse

types of mutations in the EGFR wild-type tumors.

Discussion

Our study suggests that ctDNA detection using high-throughput sequencing technologies is a

valuable tool to determine patient prognosis in advanced NSCLC. We have confirmed and

extended the prognostic value of ctDNA previously reported by Karachaliou and colleagues in

the EGFR-mutated subgroup population [14]. Our study shows an additive value of ctDNA in

evaluating treatment efficacy when used in parallel with radiological evaluation. Moreover, we

found a strong association between ctDNA at first evaluation and treatment benefit in terms of

radiological response, PFS, and OS.

Our study has several limitations. Firstly, while the patients were not selected on the basis

of tumor mutation, the study population is biased towards an excess of EGFR mutations for a

white population [31]. However, one-half of the patients had non-EGFR mutations, and we

found no difference in ctDNA detection rates between EGFR and non-EGFR mutations. The

heterogeneity of our study population in regard to treatment and clinical features does limit

the statistical power of our results. From a technical point of view, the NGS panel used was

restricted to 22 genes. The use of a comprehensive cancer panel including genes with recurrent

mutations in lung cancer, such as KEAP1 and NF1, would certainly be more efficient to iden-

tify patients for whom ctDNA follow-up would be possible. Moreover, both these genes have

been implicated in secondary resistance to chemotherapy and targeted therapy [32,33].

Increasing the number of markers per individual is expected to increase clinical sensitivity and

specificity, as shown by Newman et al. [34]. Our bioinformatics analytical pipeline is applica-

ble to any panel and any sequencing technology following its simple validation using a set of

controls to calculate the panel’s background noise. However, gene fusions, copy number

changes, and<3 base-pair indels will remain undetected.

One of the main findings of our study is that measurement of ctDNA in plasma under treat-

ment should be interpreted per se and not relative to its baseline concentration. The absence

of ctDNA normalization at the first evaluation has a major prognostic impact on both PFS and

OS. The ctDNA concentration reported in our study was an absolute measurement as opposed

Fig 5. Clinical characteristics associated with ctDNA concentration. Correlation between T0 ctDNA concentration tertiles and (A) tumor

burden defined by the sum of the RECIST target lesions (Mann-Whitney test) and (B) presence of liver metastasis (Fisher’s exact test). (C)

Correlation between positive ctDNA at baseline and Ki67 proliferative index expressed as a % of positive cells in a subset of tumors with available

tissue (n = 19, Mann-Whitney test). *p < 0.05, **p < 0.005, ***p < 0.001.

doi:10.1371/journal.pmed.1002199.g005
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to being a relative percentage measure as with mutant allele fraction (MAF). In some clinical

conditions such as infection [35], the MAF might be biased by the presence of large quantities

Fig 6. Measurement of ctDNA at first evaluation. Evolution of ctDNA concentration (ng/mL) between baseline (T0) and first evaluation (E1) showing a

(A) decrease, (B) increase, (C) normalization, or (D) negativity at both time points. (E) PFS according to ctDNA evolution between T0 and E1. (F)

Waterfall plot for the best changes in RECIST scores (%) according to the E1 ctDNA status. *Indicates a progressive disease as best response. (G) PFS

for E1 ctDNA groups. (H) OS for E1 ctDNA groups.

doi:10.1371/journal.pmed.1002199.g006
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Fig 7. ctDNA at tumor progression. (A) Time to RECIST progression and time to ctDNA progression in 47 patients with

positive ctDNA at time of progression (ToP). (B) Mutations detected in plasma at baseline (T0) and at time of progression

(ToP) (n = 66 patients). Acquired mutations detected neither in the tumor tissue nor in the T0 plasma are represented as a

green square surrounded by blue. Mutations lost at ToP are represented as a grey square.

doi:10.1371/journal.pmed.1002199.g007
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of nontumor circulating DNA. The present study was designed to detect small changes in

ctDNA concentration in order to evaluate treatment response. We chose to report the DNA

concentrations to avoid biases due to the presence of non-tumor DNA. Because ctDNA clear-

ance appears important for clinical evaluation, MAF is also appropriate to analyze ctDNA

dynamics under treatment. Our results are consistent with previous findings showing that

ctDNA normalization before the third cycle of treatment in EGFR-mutated patients is associ-

ated with improved OS [36,37].

Further clinical studies are required to define the best time for ctDNA evaluation and to

determine whether patients with positive ctDNA under one treatment might benefit from a

treatment change. Previous series have demonstrated a detectable decrease in ctDNA at 15 d

after treatment initiation.

It is worth noting that patients with undetectable ctDNA at baseline and those with unde-

tectable ctDNA at first evaluation had a similar prognosis. Those showing ctDNA positivity at

diagnosis could have tumors with higher proliferation capacities, as suggested by the higher

Ki67 index, higher tumor burden, and increased incidence of metastasis. Concerning liver

metastasis, the absence of capillary basal membrane in the liver may also facilitate the release

of tumor DNA in the circulation.

In this study, the use of optimized NGS doubled the number of eligible patients for ctDNA

follow-up when compared to the use of methods targeting hotspot mutations. The sensitivity

of the method we developed was similar to that of dPCR in the range of DNA inputs used in

the study. Our evaluations of ctDNA in a clinical setting imposed much lower DNA inputs for

dPCR and NGS than is usually used in a research context. The median of 7.8 ng corresponding

to 2,363 genomes that we obtained as input was insufficient to achieve a limit of detection

<0.001 in all cases, yet corresponds to inputs from clinical specimens [29]. The development

of automated DNA extraction methods from larger plasma volumes followed by a DNA con-

centration step would likely enhance ctDNA detection. The detection of ctDNA in 71% of

patients was nevertheless consistent with previous studies [12]. Patients with negative or posi-

tive ctDNA at baseline had similar concentrations of total circulating DNA, thus rendering

unlikely the possibility of a technical issue.

At the ToP, ctDNA was detected within the same proportion of patients as compared to

baseline. The tumor heterogeneity captured by ctDNA NGS analysis was stronger for EGFR
wild-type tumors and may reflect tobacco or chemotherapy-induced molecular heterogeneity.

The sole use of dPCR limits the study to a few alterations and might not identify molecular het-

erogeneity at progression.

Conclusion

This prospective study showed that ctDNA is a marker of prognosis at baseline and its normal-

ization at first evaluation is associated with treatment benefit in metastatic NSCLC patients.

Our BPER-method targeted NGS has thus been validated in a clinical setting to detect ctDNA

and has allowed us to analyze ctDNA beyond EGFR. We believe that the added value of NGS

as compared to other methods is its possible use when no tumor tissue is available. Prospective

interventional studies testing the clinical impact of an early therapeutic switch based on

ctDNA quantification at first evaluation are needed to fully validate our findings.
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