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Abstract

Despite tremendous efforts in preclinical research over the last decades, the clinical 
translation of therapeutic angiogenesis to grow stable and functional blood vessels 
in patients with ischemic diseases continues to prove challenging. In this mini review, 
we briefly present the current main approaches applied to improve pro-angiogenic 
therapies. Specific examples from research on therapeutic cardiac angiogenesis and 
arteriogenesis will be discussed, and finally some suggestions for future therapeutic 
developments will be presented.

Introduction

Over the last 15 years, the use of anti-angiogenic agents 
to inhibit blood vessel growth has clearly established 
its ‘raison d’être’ in the treatment of human diseases, 
including multiple types of cancer, but also vascular 
retinopathies (1). In sharp contrast, pro-angiogenic 
agents, developed to stimulate blood vessel growth, show 
a persistent lack of clinical translation. Indeed, despite 
high hopes and numerous trials, no effective treatment 
has yet reached the market consisting of millions of 
patients suffering from acute or chronic ischemic disease. 
This may validate the old proverb that destroying things 
is considerably easier than building them. Beyond 
opposing entropy, what lies at the heart of the matter is 
the same challenge that faces regenerative medicine in 
general that is that the creation of complex biological 
structures requires multi-dimensional cueing of many cell  
types (2). Nature grows vessels so well during development 
and postnatal physiological growth and repair. Yet, here we  

are, after 50  years of active research to decipher 
the cellular and molecular mechanisms regulating 
vasculogenesis, angiogenesis and arteriogenesis, still 
lacking a firm solution of how to build stable and 
functional blood vessels in human patients. Although 
bioengineered vascular grafts are making considerable 
headway toward surgical macrovascular replacement or 
angioplasty (3), the finer vascular structures, including 
resistance arteries and arterioles, venules and capillaries 
require in situ instructed growth to functionally integrate 
tissues. This is the playfield of therapeutic angiogenesis 
and arteriogenesis. While success stories abound in 
experimental ischemic models, including in rabbits and 
pigs, the same treatments have not yielded the expected 
functional benefits in patients, provoking reevaluation 
of therapeutic approaches. Notably, we scientists share 
the blame for this translational failure in that we largely 
continue to model ischemic diseases experimentally in 
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young animals lacking comorbidities, while our target 
patients more often than not are old, insulin-resistant or 
diabetic, hyperlipidemic, overweight and perpetuating 
poor lifestyle choices (physical inactivity, smoking, high-
cholesterol diet…). These factors combine in patients to 
cause vascular endothelial dysfunction, a well-known 
marker for elevated cardiovascular disease risk (4).

The impact of vascular endothelial 
dysfunction on angiogenic responses

Severely dysfunctional endothelial cells, suffering from 
altered metabolism (5), high oxidative stress levels (6, 7) 
and activation of pro-inflammatory pathways (8, 9, 10), 
are poor responders to angiogenic stimuli. This endothelial 
resistance has been linked to specific alterations in 
molecular pathways regulating angiogenesis, such as 
reduced vascular endothelial growth factor receptor 
(VEGFR)-2/Flk-1 expression in diabetic patients (11, 12), 
reduced angiogenic growth factor co-receptor (Nrp1, 
Syndecans) levels in severely obese, hyperlipidemic mice 
(13), reduced HIF-1α signaling in endothelium of diabetic 
mice (14) or altered VEGF downstream signaling linked to 
activation of protein phosphatases in hyperlipidemic mice 
(15, 16), but also potentially upregulation of endogenous 
angiogenesis inhibitors, as reported in diabetic pigs (17). 
Metabolic alterations of endothelial cells in response 
to diabetes or aging may also per se contribute to 
poor angiogenic responses as metabolic dysregulation 
increases Notch signaling (18). With the development of 
personalized medicine, the screening of patients for tumor 
mutations is being established in several cancer types 
as a promising approach to better tailor antitumor and 
antiangiogenic therapies for each patient (19). Similarly, it 
may be envisaged that ex vivo screening of patient-specific 
angiogenic resistance mechanisms, for instance, in patient-
derived tissue-on-a-chip solutions, could be exploited to 
guide the selection of specific growth factor cocktails to 
improve neovascularization responses in ischemic diseases.

Promisingly, some experimental studies attempting 
angiogenic therapy in old and/or diabetic and/or 
hyperlipidemic animals with ischemic injury have 
demonstrated that it is possible to therapeutically induce 
blood vessel growth and remodeling also under these 
challenges (20, 21, 22, 23, 24). However, the functional 
gain to the ischemic territory may remain unsatisfactory 
despite increased vascularity, notably in human patients 
suffering from persistent vascular endothelial dysfunction, 
as demonstrated by impaired flow-mediated vasodilation 
(FMD). Thus, it seems likely that, similar to the requirement 

of most antiangiogenic agents to be used in combination 
with chemotherapy or other tumor cell-targeting drugs 
in cancer patients, pro-angiogenic therapies should be 
combined with pharmacological treatments that reduce 
vascular endothelial dysfunction (25). Given the complex 
clinical setting, it is noteworthy that exceedingly rare 
are the experimental studies that evaluate angiogenic 
therapies in combination with standard cardiovascular 
drugs. In contrast, in clinical trials conducted with pro-
angiogenic agents (gene, protein or cell therapy), the 
patients are maintained on these various cardiovascular 
pharmacological treatments. The observation that 
little progress has been made to stably improve tissue  
perfusion with angiogenic therapy in patients may 
suggest that (a) the pharmacological treatments are 
inefficient to restore endothelial function with persistent 
angiogenic resistance mechanisms preventing successful 
revascularization and/or (b) angiogenic agents have been 
sub-optimally formulated.

Considering the first option, that is whether the 
issue is endothelial angiogenic resistance, it is currently 
unknown how the penetrance of endothelial dysfunction 
may vary between different micro- and macrovascular 
beds, and further to what degree different pharmacological 
treatments restore vascular endothelial function in 
distinct vascular beds. Moreover, it should be considered 
that endothelial cells are not the only vascular cell type 
suffering in the presence of cardiovascular risk factors. It is 
likely that pericyte dysfunction also contributes to vascular 
malfunction, notably maintenance of vascular barrier, 
with increased vascular permeability reported in diabetes, 
for example, in dermal capillaries in humans (26) and in 
bone marrow capillaries in mice (27). Consideration of 
such multicellular vascular dysfunctions is expected to 
benefit future investigations of angiogenic therapy. In 
the next section, we will shift our focus to the second 
option, that is how angiogenic therapy may be improved. 
We will briefly present the evolving strategies applied for 
therapeutic revascularization, with examples drawn from 
the ischemic heart, followed by some suggestions for 
future directions in the field.

Evolving approaches for 
therapeutic angiogenesis

Gene and protein therapies

The first clinical trials on therapeutic angiogenesis were 
conducted with naked growth factors or plasmid-based 
gene therapy delivered systemically or intracoronary 
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in patients with acute refractory angina due to non-
operable, coronary artery disease (CAD) or following 
myocardial infarction (MI). These trials, similar to the 
promising experimental studies that preceded them, were 
based on treatment with single growth factors: VEGF 
family members VEGF-A or VEGF-C, or fibroblast growth 
factor (FGF) family members FGF-1, FGF-2 or FGF-4 (28, 
29). Following the translational failures of these initial 
angiogenic gene and protein therapies, different solutions 
were proposed for how to improve angiogenic therapy 
for the clinic (28, 30, 31, 32, 33). These guidelines can 
be summarized as increasing the duration of therapy and/
or applying combinations of growth factors or angiogenic 
master transcription factors stimulating the growth of both 
endothelial and mural cells to achieve arteriogenesis and 
not only angiogenesis for the generation of functional 
blood vessels that significantly and sustainably increase 
tissue perfusion. Indeed, both plasmid and adenoviral 
gene delivery only lead to short-term (5-10  days) 
overexpression, as the vectors and infected cells are 
rapidly cleared by immune cells. However, it remains 
uncertain what duration of stimulation with growth 
factors is necessary to create stable and functional blood 
vessels in patients. Further, while insufficient duration 
of therapy will fail to induce durable results, unreglated 
VEGF-A expression levels have been found to induce non-
functional angioma-like blood vessel growth (34). The 
improved approaches that have since been developed 
include (a) intramyocardial injection of adeno-associated 
virus (AAV) or lentiviral vectors that significantly prolong 

gene expression over plasmid or adenoviral vectors  
(29) and (b) implantable or injectable biopolymers that 
allow spatiotemporally targeted delivery of multiple 
growth factor proteins (35).

The validity of the latter combinatorial approach has 
been suggested by experimental reports of durably improved 
tissue perfusion and function with either bicistronic 
dual gene delivery (36, 37) or biopolymeric dual protein 
delivery of multiple growth factors (Fig. 1), for example 
VEGF-A or FGF-2 combined with either platelet derived 
growth factor (PDGF)-BB (38, 39) or hepatocyte growth 
factor (HGF) (40). Promisingly, we and others have shown 
that such combinatorial growth factor treatments allowed 
prevention of heart failure development in rats (40) and 
pigs (41). Of note, therapeutic angiogenesis approaches 
that have shown benefit in models of experimental 
ischemia in animals suffering from comorbidities have 
been based on such combinatorial treatments (20, 22, 23, 
24, 42), indicating that this direction may indeed be the 
way to go to successfully bridge the translational bench-
to-bed gap. However, in patients with refractory angina, 
intramyocardial dual delivery of VEGF-A and FGF-2 failed 
to increase perfusion, likely due to the use of plasmids 
rather than viral vectors for delivery (43). This highlights 
the additional requirement for control over both doses 
and duration of treatment for efficient induction of 
vascular growth and remodeling. Future tunable gene 
or biopolymeric protein therapies, building on these 
improved approaches, may hold significant promise for 
clinical success.

Figure 1
Combinatorial vascular approaches. Upper panel: 
Intermingled vascular networks including 
capillaries (podocalyxin+), arteries and arterioles 
(α-smooth muscle actin+) and lymphatics (LYVE1+) 
in healthy rodent hearts visualized by light sheet 
imaging of whole-mount stained clarified 
samples. Lower panel: Examples of additive or 
synergistic growth factor combinations (indicated 
by solid lines) evaluated for therapeutic 
angiogenesis, arteriogenesis or 
lymphangiogenesis using gene or protein therapy 
(20, 23, 24, 37, 38, 39, 60, 61).
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Cell therapies and exosomes

In parallel to these advances in angiogenic gene and 
protein therapies, cell therapy emerged around the year 
2000 as an interesting alternative that would potentially 
solve both the problem of duration, would the cells be 
stably engrafted, and of delivery of multiple factors, as 
the cellular secretome contains an elaborate cocktail of 
angiogenic mediators. Initially, the proposed therapy 
was based on elusive endothelial progenitor cells 
(EPCs), with the intent to stimulate vasculogenesis (44). 
Subsequently, therapies were refocused on expansion, 
priming and delivery of paracrine-acting angiogenesis-
promoting cells (45), in the form of either circulating 
mononuclear cells (CAC) or stem cells of mesenchymal 
(MSC), bone marrow (BMC) or cardiac (CSC) origin. 
Currently, in response to poor cell engraftment 
observed with cell therapy, the field is turning toward 
the use of cell-free alternatives in the form of exosomes 
or microvesicles as a shelfable source of regenerative 
benefit including, but not limited to, stimulation of 
angiogenesis. These extracellular vesicles (EVs), shedded 
by cardiac stem cells or by embryonic or induced 
pluripotent stem cell (iPS)-derived cardiomyocytes, act, 
following endocytosis, to release intracellularly various 
angiogenic regulators including transcription factors, 
growth factors, bioactive lipids, as well as epigenetic 
regulators such as microRNA (miR) and long-noncoding 
RNA that together may better orchestrate tissue repair 
and regeneration (46, 47, 48, 49). The first phase I clinical 
trial with exosomes for ischemia, aiming at stimulation 
of angiogenesis as well as modulation of inflammation, 
is set to start in 2019 in patients with ischemic stroke 
(clinicaltrials.gov/NCT03384433).

A major weakness of EV-based treatments is that the 
duration and cell-targeting of the therapy is currently no 
better than with liposome-based plasmid gene delivery. 
Further, the molecular content of exosomes remains 
uncontrolled and heterogeneous with considerable 
uncertainty regarding cell-dependent impact of exosome-
enriched miRs, such as miR146a (50, 51). Finally, it is 
currently unclear if a single injection of exosomes will 
suffice to grow stable and functional blood vessels in large 
animals (52), or if repeated intramyocardial injections 
will be required. In view of these various limitations, 
alternative cell-free, synthetic targeted delivery solutions 
such as polymeric artificial cells may favorably be 
considered in the future (53).

Future perspectives: supplementing 
angiogenesis with lymphangiogenesis?

In most vascularized tissues, blood vessels are 
accompanied by lymphatic vessels that maintain tissue 
homeostasis, including regulation of fluid balance and 
immune cell trafficking (54). We and others have recently 
shown that cardiac lymphatic structure and function are 
severely altered following MI, and that poor lymphatic 
repair (lymphangiogenesis) contributes to adverse cardiac 
remodeling and dysfunction in rodents (55, 56). To 
restore organ function in ischemic diseases, stimulation of 
both vascular systems would thus seem critical to restore 
tissue perfusion as well as lymphatic drainage to limit 
ischemia, edema and inflammation and create a favorable 
microenvironment permissive for tissue repair and 
regeneration (57). Although experimental data are still 
lacking on the potential functional benefit of stimulating 

Figure 2
Challenges for therapeutic angiogenesis. In order 
to grow stable and functional blood vessels in 
patients with ischemic diseases, several important 
therapeutic challenges remain, including both 
basic science and clinical questions (What cocktail 
of angiogenic factors must be applied to stimulate 
both capillary and arteriolar growth? How can 
therapies overcome potential inherent angiogenic 
resistance in patients?) as well as technical hurdles 
(How to control spatiotemporally the release of 
multiple angiogenic factors?). This may require 
devising multimodal solutions, based on 
combinations of different aspects of gene, protein 
and cell/cell-free exosome therapy, for efficient 
and safe targeting of angiogenic therapies in 
patients.
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lymphangiogenesis concomitantly with angiogenesis 
in ischemic diseases, the first such dual-targeted clinical 
trial has recently shown safety in patients with CAD (58). 
Rather than applying growth factor combinations, this 
trial takes advantage of the dual activities of a member of 
the VEGF family, VEGF-D, which like VEGF-C stimulates 
both blood and lymphatic endothelial cell growth (59). 
Future Phase II investigations with this intramyocardial 
adenoviral gene therapy approach will reveal whether 
short-term exposure to a single pleiotropic growth factor 
will suffice to grow stable and functional blood and 
lymphatic vasculatures in ischemic hearts, or whether 
long-term exposure to growth factor combinations again 
may be required.

Conclusions

The evolving approaches for therapeutic angiogenesis/
arteriogenesis are incorporating hard lessons learned 
from failing clinical trials, including the need for 
multiple factors and spatiotemporally-controlled delivery. 
Whether therapeutic efficacy in patients will come from 
multicistronic gene therapy, biopolymeric or exosome-
based protein/miR/lipid delivery, or combinations of 
these modalities incorporated into an injectable tissue 
engineering solution that stimulates both angiogenesis 
and lymphangiogenesis, remains to be determined. In 
parallel to these biodrug developments, a more widespread 
use of pertinent experimental models, mimicking the 
clinical situation with multiple comorbidities, potentially 
coupled with patient-derived tissue-on-a-chip ex vivo 
models, is expected to improve clinical translation. 
Finally, deepened knowledge of patient- and vascular 
bed-specific vascular endothelial angiogenesis-resistance 
mechanisms, as well as pharmacological options that 
reverse them, may be required before angiogenic 
therapies at last will assume their long-anticipated 
place as a valid clinical treatment option for ischemic  
diseases (Fig. 2).
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