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Abstract

As rats learn to search for multiple sources of food or water in a complex environment, they

generate increasingly efficient trajectories between reward sites. Such spatial navigation

capacity involves the replay of hippocampal place-cells during awake states, generating

small sequences of spatially related place-cell activity that we call “snippets”. These snip-

pets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such

replay events, as the animal is learning a traveling salesperson task (TSP) across multiple

trials. We hypothesize that snippet replay generates synthetic data that can substantially

expand and restructure the experience available and make learning more optimal. We

developed a model of snippet generation that is modulated by reward, propagated in the for-

ward and reverse directions. This implements a form of spatial credit assignment for rein-

forcement learning. We use a biologically motivated computational framework known as

‘reservoir computing’ to model prefrontal cortex (PFC) in sequence learning, in which large

pools of prewired neural elements process information dynamically through reverberations.

This PFC model consolidates snippets into larger spatial sequences that may be later

recalled by subsets of the original sequences. Our simulation experiments provide neuro-

physiological explanations for two pertinent observations related to navigation. Reward

modulation allows the system to reject non-optimal segments of experienced trajectories,

and reverse replay allows the system to “learn” trajectories that it has not physically experi-

enced, both of which significantly contribute to the TSP behavior.

Author summary

As rats search for multiple sources of food in a complex environment, they generate

increasingly efficient trajectories between reward sites, across multiple trials. This spatial
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navigation optimization behavior can be measured in the laboratory using a traveling

salesperson task (TSP). This likely involves the coordinated replay of place-cell “snippets”

between successive trials. We hypothesize that “snippets” can be used by the prefrontal

cortex (PFC) to implement a form of reward-modulated reinforcement learning. Our sim-

ulation experiments provide neurophysiological explanations for two pertinent observa-

tions related to navigation. Reward modulation allows the system to reject non-optimal

segments of experienced trajectories, and reverse replay allows the system to “learn” tra-

jectories that it has not physically experienced, both of which significantly contribute to

the TSP behavior.

Introduction

Spatial navigation in the rat involves the replay of place-cell sub-sequences, that we refer to as

snippets, during awake and sleep states in the hippocampus during sharp-wave-ripples (SWR)

[1–4]. In the awake state, replay has been observed to take place in forward and reverse direction

[2, 5–8], with respect to the physical order of the initial displacement of the animal. Both forward

and reverse replay are influenced by task contingencies and reward [6, 9, 10]. Reverse replay is

observed to originate from rewarded locations [11], with a greater frequency of replay for loca-

tions with greater reward, which could allow a propagation of value backwards from the rewarded

location [9]. An interesting example of the impact of reward on forward replay is seen in the

experiments of Gupta & van der Meer [6] where rats ran the left or right (or both) sides of a dual

maze. Replay occurred with equal proportions for the same and opposite side of the rat’s current

location. Same side forward replay tended to be prospective, and project forward from the current

location, as observed by Pfeiffer and Foster [12]. Interestingly, opposite-side forward replay pref-

erentially occurred retrospectively, as forward sweeps to reward locations starting from remote

locations. This suggests that more diverse forward replay including forward sweeps from remote

locations (as observed by Gupta & van der Meer [6]) will be observed as a function of specific task

characteristics and requirements. Liu and Sibille [8] have recently shown the predictive nature of

such forward sweeps, using essentially statistical data analysis techniques. Our work extends this

recent work in proposing an actual mechanism and neuronal model that could support it.

Thus, while it has been observed that in both 1D [5] and 2D [12], the bulk of awake replay

events are prospective, and depict future paths to upcoming goals, in more complex tasks, for-

ward retrospective sweeps from remote locations can be observed. In the current research with

multiple goal locations to be remembered (no foraging), and optimization of the paths (rather

than just their memorization), we argue (and the model predicts), that forward sweeps from

remote locations will predominantly carry information and be used to accomplish the task.

We focus on the role of replay during the awake state, as the animal generates increasingly

efficient trajectories between reward sites, across multiple trials. This trend toward near-opti-

mal solutions is reminiscent of the classic Traveling Salesperson Problem (TSP) [13]. The TSP

problem involves finding the shortest path that visits a set of “cities” on a 2D map. It is a com-

putationally complex problem, and is one of the most intensively studied problems in optimi-

zation [14, 15]. While it is clear that rats do not solve the TSP in the mathematical sense, they

remarkably display a robust tendency towards such optimization [13]. It appears likely that

such spatial navigation optimization involves planning and hence awake replay but the under-

lying neurophysiological mechanisms remain to be understood.

One obvious advantage of replay would be to provide additional internally generated train-

ing examples to otherwise slow reinforcement learning (RL) systems. Traditional RL methods

are usually inefficient, as they use each data sample once, to incrementally improve the
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solution, and then discard the sample. In a real-time learning situation, where the rat is opti-

mizing in less than ten trials, this approach is unlikely to succeed. Our model proposes to add

replay to reinforcement learning to overcome this problem and improve efficiency [16]. This

approach has been previously exploited with good results [17]. We will go beyond this by pri-

oritizing replay based on a spatial gradient of reward proximity that is built up during replay.

Our first hypothesis is that reward-modulated replay in hippocampus implements a simple

and efficient form of reinforcement learning [18], which allows recurrent dynamics in pre-

frontal cortex (PFC) to consolidate snippet representations into novel efficient sequences, by

rejecting sequences that are less robustly coded in the input.

An example of the behavior in question is illustrated in Fig 1. Panel A illustrates the optimal

path linking the five feeders (ABCDE) in red. Panels B-D illustrate navigation trajectories that

contain sub-sequences of the optimal path (in red), as well as non-optimal sub-sequences (in

blue). In the framework of reward modulated replay, snippets from the efficient sub-sequences in

panels B-D will be replayed more frequently, and will lead the system to autonomously generate

the optimal sequence as illustrated in panel A. We thus require a sequence learning system that

can re-assemble the target sequences from these replayed snippets. For this, we chose a biologi-

cally inspired recurrent network model of prefrontal cortex [19, 20] that we predict will be able to

integrate snippets from examples of non-optimal trajectories and to synthesize an optimal path.

Recurrent networks have excellent inherent sensitivity to serial and temporal structure,

which make them well adapted for sequence learning [21, 22]. Interestingly, primate cortex is

characterized by a vast majority of cortico-cortical connections being local and recurrent [23],

and thus cortex is a highly recurrent network [24]. We thus model frontal cortex as a recurrent

network. Interestingly, the computational complexity of credit assignment to recurrent con-

nections is high, because it involves keeping track of the role of each connection over succes-

sive time steps as the network evolves through its temporal dynamics [21]. One solution is to

unwind the recurrent network into a series of feedforward layers where each layer represents

the network activation at the next time step. This is efficient [22], but introduces an arbitrary

cut off of the recurrent dynamics. In order to allow the recurrent network to maintain com-

plete dynamics, Dominey et al. [25] chose to keep the recurrent connections fixed, with a ran-

dom distribution of positive and negative connections that ensured a rich network dynamics

that represented the influence of new inputs, and the fading effects of previous inputs. The

resulting representation of the spatiotemporal structure of the input can then be associated

with the desired output function by the modification of simple feedforward connections from

the recurrent network to the output neurons. Dominey and colleagues initially proposed that

the prefrontal cortex corresponds to the recurrent network, and the striatum, with its dopa-

mine-modifiable corticostriatal connections as the output layer [25]. This was in fact the first

characterization of reservoir computing, which was subsequently co-discovered by Jaeger [26,

27], and Maass & Natschlager [28]. It is now well established that frontal cortex can be charac-

terized as a recurrent reservoir model, via demonstrations that the high dimensional represen-

tations inherent to these recurrent networks is required for higher cognitive function, and is

omnipresent in frontal cortex [19, 29, 30]. The use of the reservoir structure is indeed an origi-

nality of our model, and an alternative to classical plastic recurrent networks such as those

used to model attractor network dynamics in hippocampus CA3 [31].

We test the hypothesis that the structure of snippet replay from the hippocampus will pro-

vide the PFC with constraints that can be integrated in order to contribute to solving the TSP

problem. Two principal physical and neurophysiological properties of navigation and replay

are exploited by the model and contribute to the system’s ability to converge onto an accept-

able solution to the TSP. First, during navigation between baited food wells in the TSP task,

non-optimal trajectories by definition cover more distance between rewards than near-optimal
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ones. Second, during the replay of recently activated places cells, the trajectories are encoded

in forward and reverse directions [5, 11]. Exploiting these observations, we test the hypotheses

that:

1. With replay biased by distance to reward, non-optimal trajectories will be less represented

in replay, allowing the PFC to eliminate non-optimal sub-sequences in constructing the

final efficient trajectory.

Fig 1. An optimal trajectory between feeders ABCDE is represented in panel A. Panel B, C and D display non optimal trajectories that contain a sub

trajectory of the ABCDE trajectory. The sub trajectory shared with the ABCDE trajectory is displayed in red and the non-optimal parts in blue. Panel B

contains the ABCED, panel C the EBCDA trajectory and panel D the BACDE trajectory.

https://doi.org/10.1371/journal.pcbi.1006624.g001
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2. Reverse replay will allow the model to exploit the information provided by a given sequence

in forward and backward directions, whereas the actual trajectory run by the rat has one

direction only.

In testing these hypotheses, we will illustrate how the system can meet the following

challenges:

1. Learn a global place-cell activation sequence from an unordered set of snippets

2. Consolidate multiple non-optimal sequences into a trajectory that efficiently links rewarded

locations, thus converging to a good solution to the TSP problem.

3. Experience a trajectory in the forward direction and then learn to generate it in forward

and backward direction, including concatenating parts of both forward and reverse

replayed snippets in order to generate novel trajectories as demonstrated in Gupta & van

der Meer [6]. The objective is to provide a coherent explanation of how critical aspects of

replay–notably its modulation by reward, and the forward and reverse aspects, can be

exploited by a cortical sequence learning system in order to display novel and efficient navi-

gation trajectory generation.

The model developed in this research provides a possible explanation of mechanisms that

allow PFC and hippocampus to interact to perform path optimization. This implies functional

connectivity between these two structures. In a recent review of hippocampal–prefrontal inter-

actions in memory-guided behavior Shin and Jadhav [32] outlined a diverse set of direct and

indirect connections that allow bi-directional interaction between these structures. Principal

direct connections to PFC originate in the ventral and intermediate CA1 regions of the hippo-

campus [33, 34]. Connections between hippocampus and PFC pass via the medial temporal

lobe (subiculum, entorhinal cortex, peri- and post-rhinal cortex) [35], and the nucleus reuniens

[36]. Indeed memory replay is observed to be coordinated across hippocampus and multiple

cortical areas including V1 [37]. There are direct connections from ventral CA1/subiculum to

the rodent medial frontal cortex[38] and from the mFC to dorsal CA1 [39], The connections

through the RE nucleus though may be of primary importance for HC-mFC communication

[40]. These studies allow us to consider that there are direct and indirect anatomical pathways

that justify the modeling of bi-directional interaction between PFC and hippocampus [41].

It is important to note that the model we describe should not be considered to be fully

autonomous in driving the behavior of the animal, because it relies on prior experience from

which to construct new behavior. This experience is assumed to be generated by visual and

olfactive processes that contribute to locally guided behavior.

Material & methods

Experiments are performed on navigation trajectories (observed from rat behavior, or gener-

ated automatically) that represent the recent experience from the simulated rat. Snippets are

extracted from this experience, and used to train the output connections of the PFC reservoir.

This requires the specification of a model of place-cell activation in order to generate snippets.

Based on this training, the sequence generation performance is evaluated to test the hypotheses

specified. The evaluation requires a method for comparing sequences generated with expected

sequences that is based on the Fréchet distance.

Navigation behavior and trajectories

A trajectory is a sequence of N contiguous two-dimensional coordinates sampled from time t1 to

time tN noted L(t1!tN) that corresponds to the rat’s traversal of the baited feeders. The spatial

Prefrontal—Hippocampal sequence learning by reward propagation
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resolution of trajectories are depicted at 20 points/m along the trajectory. Experiments were per-

formed using navigation trajectories, including those displayed in Fig 1, based on data recorded

from rats as they ran the TSP task [13] in a circular arena having a radius of 151cm. Twenty-one

fixed feeders are distributed according to a spiral shape. In a typical configuration, five feeders are

baited with a food pellet. For a given configuration, the rat runs several trials which are initially

random and inefficient, and become increasingly efficient over successive trials, characterizing

the TSP behavior [13]. Rat data that characterizes the TSP behavior is detailed in S1 Text, section

Rat navigation data. The principle concept is that TSP behavior can be characterized as illustrated

in Fig 1, where a system that is exposed to trajectories that contain elements of the efficient path

can extract and concatenate these sub-sequences in order to generate the efficient trajectory.

Place-cells

The modeled rat navigates in a closed space of 2x2 meters where it can move freely in all direc-

tion within a limited range (± 110˚ left and right of straight ahead), and encodes locations

using hippocampus place-cell activity. A given location s = (x,y) is associated with a place-cell

activation pattern by a set of 2D Gaussian place-fields:

fk sð Þ ¼ e�
ks� ckk

2

wk ð1Þ

Where:

• k is the index of the place-cell

• fk(s) is the mean firing rate of the kth place-cell

• ck is the (x,y) coordinate of the kth place-cell

• wk ¼
r2
k

� logðΘÞ is a constant that will constrain the highest activations of the place-cell to be

mostly contained in a circle of radius rk, centered in ck

• rk is the radius of the kth place-field

• Θ is the radius threshold which controls the spatial selectivity of the place-cell

Parameter wk is a manner of defining the variance of the 2D Gaussian surface with a dis-

tance to center related parameter rk. We model a uniform grid of 16x16 Gaussian place-fields

of equal size (mimicking dorsal hippocampus). In Fig 2 the spatial position and extent of the

place fields of several place-cells is represented in panel A by red circles. The degree of red

transparency represents the mean firing rate.

A mean firing rate close to one will result in a bright circle if the location s is close to the place-

field center ck of the place-cell k. For a more distant place-field center cl of place-cell l, the mean fir-

ing rate will be less important and the red circle representing this mean firing rate will be dimmer.

Thus, at each time step the place-cell coding that corresponds to a particular point in a tra-

jectory is defined as the projection of this L(tn) point through K radial basis functions (i.e.

Gaussian place-fields spatial response)

XinðtnÞ ¼ ffkðLðtnÞÞgk21...K ð2Þ

Each coordinate of the input vector Xin(tn) represents the mean firing rate of hippocampus

place-cells and its value lies between 0 and 1. Fig 2 represents in panel B the ABCED trajectory

L(t1!tN) and the corresponding place-cell mean firing rate raster Xin(t1!tN) is depicted in

panel C.

Prefrontal—Hippocampal sequence learning by reward propagation
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Hippocampus replay

The hippocampus replay observed during SWR complexes in the active rest phase (between two

trials in a given configuration of baited food wells) is modeled by generating condensed (time

compressed) sub-sequences of place-cell activation patterns (snippets) that are then replayed at

random so as to constitute a training set. The sampling distribution for drawing a random

place-cell activation pattern might be uniform or modulated by new or rewarding experience as

Fig 2. Place-cell and snippet coding. Panel A represents the place-cell activations that correspond to a single point.

Place-cell centers are represented by red points and the mean firing rate of each place-cell by a red circle with a fixed

radius, centered on the place-cell center. The transparency level of the circle represents the magnitude of the mean

firing rate. Panel B depicts the ABCED trajectory, and a snippet randomly drawn along the trajectory. The snippet

length is s = 5. Panel C represents the snippet replay likelihood as learnt by the Hippocampal replay model by

propagation of reward from rewarded locations at ABCE and D. Panel D represents the raster of the place-cell

activation along the ABCED trajectory. The time index where feeders A,B,C,D and E are encountered during the

ABCED trajectory are tagged above the raster and represented by a thin white vertical line. The snippet represented in

panel B is emphasized by a blue rectangle in panel D. Panel E represents the spatial extent of the snippet replay

likelihood. F illustrates part of a typical random replay episode, where multiple snippets from remote locations are

replayed.

https://doi.org/10.1371/journal.pcbi.1006624.g002
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described in [1]. Ambrose and Pfeiffer [9] demonstrated that during SWR sequences place-cell

activation occur in reverse order at the end of a run. We define a random replay generative

model that learns to preferentially generate snippets associated to a reward by using reverse

replay. For a trajectory encountered in forward direction, reverse replay allows the model to

anticipate the reward by propagating the reward information in the backwards direction. Once

learnt the model is able to generate snippets in forward and reverse order, hence representing

parts of a trajectory in reverse or forward direction. This innovative method for spatial propaga-

tion of reward during replay yields a computationally simple form of reinforcement learning.

We define a snippet as the concatenation of a pattern of successive place-cell activations

from a previously traversed trajectory:

Sðn; sÞ ¼ Xinðtn ! tnþsÞ ð3Þ

Where: s is the number of place-cell activations (or the snippet length), and n is the offset in

the trajectory. Replay occurs during SWRs at ~150-200Hz with a duration ~50–120 ms [2], so

snippet length s in our experiments is typically 10 and varies from 5–20. We define a replay

episode as the period between trials in the TSP experiment (on the order of 2–5 minutes) dur-

ing which replay occurs. The duration of a replay episode is constrained by a time budget T,

defined in simulation update cycles. Place cell activations in the simulated replay occur on

each time step, with each time step corresponding to 5ms, or a 200Hz update rate. A replay

episode E is a set of snippets of length s:

EðsÞ ¼ fSðn; sÞg ð4Þ

such that sum of the durations of snippets replayed in E is constrained to be� T. In a typical

experiment described below T = 10000 and s = 10, which corresponds to 1000 snippets of length

10. In order to respect ecological orders of magnitude, we consider that during 2–5 minutes of

intertrial delay in the TSP task, SWRs occur at ~1Hz, corresponding to ~120–300 SWRs. In a

given SWR it is likely that across the dorsal hippocampus, 100s - 1000s of places cells will fire,

corresponding to an order of 101–102 snippets per SWR. This parallel replay of multiple inde-

pendent snippets within an SWR is hypothesized but has not yet been experimentally observed.

Over 2–5 minutes, this corresponds to a lower bound of 1.2x103—and an upper bound of 3x104

snippets during the intertrial period. We conservatively model this at 1x103. In a given episode

snippet length s is fixed. Individual snippets are spatially coherent, while successive snippets are

not, and can start from random locations along previously experienced trajectories.

In Fig 2, Panel B represents a particular trajectory through feeders A, B, C, E and D. The

depicted snippet is a sub-sequence of 5 contiguous locations belonging to the ABCED sequence.

The B and E feeders are baited and marked as rewarding (R1 and R2). Panel B shows the spatial

extent of a given snippet chosen in sequence ABCED and panel C shows the place-cell activa-

tion pattern of the ABCED trajectory and the corresponding snippet location in the raster.

Reward propagation. The snippet replay model favors snippets that are on efficient paths

linking rewarded sites (e.g. paths linking feeders A, B and C in panel B Fig 2), and not those that are

on inefficient paths (as in paths linking C, D and E in the same panel). This is achieved by propagat-

ing reward value backwards from rewarded locations, and calculating the probability of replay as a

function of proximity to a reward. Panel D of Fig 2 illustrates the resulting probability distributions

for snippet selection along the complete path. Panel E represents the spatial extent of snippet replay

likelihood. Note that the paths linking A, B and C have the highest probabilities for snippet replay.

Hippocampus place-cell replay can occur in forward or backward direction as suggested in [11].

We model the reverse replay as follows: For a given trajectory of N samples, there are N−s possible

snippets that can be replayed but only a limited number of snippets will be selected to fit the time

Prefrontal—Hippocampal sequence learning by reward propagation
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budget T. A snippet S(n;s) has a likelihood of being replayed if it is related to a reward prediction.

A generative model of snippet replay likelihood P is computed by first defining the reward predic-

tion V over time indices sequence t1−>tN of a trajectory described by N samples, noted V(t1−>tN).

This reward prediction value corresponds to the replay likelihood illustrated in Fig 2C and 2E. It is

initialized to a small positive random value as described in the algorithm replay-initialize:

Replay-initialize algorithm pseudocode

REPLAY-INITIALIZE

Input

�, a small positive constant

Output

V, the time indexed reward

prediction

Algorithm

1 for all i2{1,..,N} do /� For all time indices i in V�/

2 V(i) random(U[0,�]) /� Initialize V(i) by drawing a small positive random number from a uniform
distribution�/

3 end for

4 return V

https://doi.org/10.1371/journal.pcbi.1006624.t001

REPLAY LEARN

Input

R, the time indexed instantaneous reward

V, the time indexed reward prediction

βlearn, the reverse rate used during learning

α, the learning rate

γ, the discount rate

T, the time budget allocated to the replaylearn

algorithm

Output

V, the time indexed reward prediction

Algorithm

1 while T > 0 do

2 for all i2{1,..,N} do /� For all N time indices i in V �/

3 P ið Þ  VðiÞPN

j¼1
VðjÞ

/� Compute the snippet replay likelihood by normalizing the reward
prediction V�/

4 end for

5 t random(P) /� Select a random time index t by sampling from P distribution �/

6 r random(U[0,1]) /� Draw a random number r from the uniform distribution U[0, 1] �/

7 if r<Blearn then

8 τ {t,t−1,. . .,max(1,t−s+1)} /� Define a snippet τ in reverse direction �/

9 else

10 τ {t,t+1,. . .,min(N,t+s)} /� Define a snippet τ in forward direction �/

11 end if

12 for i in 2. . .length(τ) do /� For all time indices i in snippet τ �/

13 V(τi) α(R(τi−1)+γV(τi−1))+(1−α)V(τi) /� Apply a TD−λ algorithm on V by using successive time indices contained
in τ)�/

14 end for

15 T T−length(τ) /� compute the remaining time budget�/

16 end while

17 return V

https://doi.org/10.1371/journal.pcbi.1006624.t002

Prefrontal—Hippocampal sequence learning by reward propagation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006624 July 15, 2019 9 / 32

https://doi.org/10.1371/journal.pcbi.1006624.t001
https://doi.org/10.1371/journal.pcbi.1006624.t002
https://doi.org/10.1371/journal.pcbi.1006624


Then the reward prediction V is learned by propagating a time delayed reward information

according to the replay direction (forward/reverse) and the snippet duration. This is described

in the replay-learn algorithm pseudocode.

Replay-learn algorithm pseudocode

The timespan and the direction of a snippet acts as a propagation vector during the estima-

tion phase of the snippet replay likelihood. Line 13 of the replay-learn algorithm shows that V

is updated as a convex combination of the current estimate of the reward information V(τi) at

the next time step and the instantaneous reward information R(τi−1)+γV(τi−1) based on the pre-

viously observed reward signal R(τi−1) and delayed previous reward estimate γV(τi−1)). It imple-

ments a form of temporal difference learning. It is sufficient to define a coarse reward signal as:

RðtÞ ¼
1 if a baited feeder is encountered at time t

0 otherwise

(

The results of this reward propagation is visualized in Fig 2C and 2E. Once the reward pre-

diction is learned, it is used to generate snippets to train the PFC model. Note that this implies

a reward prediction estimation phase described above, and a snippet generation phase,

described below. For clarity we separate these phases, but they can be combined, by using the

snippets generated in the estimation phase for training the PFC.

Snippet generation during replay. The replay-generate algorithm is applied to the con-

densed version of the place-cell activation sequence that was previously encountered. This will

result in the extraction of a set of snippets biased by the reward propagation. This set of snip-

pets is a replay episode which models the place cell-activation observed during SWR in the

inter-trial interval.

REPLAY-GENERATE

Input

V, the time indexed reward prediction

βgenerate, the reverse rate used during snippet

generation

T, the time budget allocated to the replay-generate

algorithm

Output

S the collection of generated snippets

Algorithm

1 for all i2{1,..,Nk} do /� For all N time indices i in V �/

2 P ið Þ  VðiÞPN

j¼1
VðjÞ

/� Compute the snippet replay likelihood P by normalizing the reward
prediction V�/

3 end for

6 S Ø /� Initialize S as an empty collection �/

9 while T > 0 do

12 t random(P) /� Select a random time index t by sampling from P distribution �/

13 r random(U[0,1]) /� Draw a random number r from the uniform distribution U[0, 1] �/

14 if r<Bgenerate then

15 τ {t,t−1,. . .,max(1,t−s+1)} /� Define a snippet τ in reverse direction �/

16 else

17 τ {t,t+1,. . .,min(N,t+s)} /� Define a snippet τ in forward direction �/

18 end if

19 T T−length(τ) /� compute the remaining time budget�/

22 S S[τ /� append snippet τ in S�/

23 end while

24 return S

https://doi.org/10.1371/journal.pcbi.1006624.t003
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Replay-generate algorithm pseudocode

As indicated above, during a 2 minute (120 second) intertrial interval, we can assume that

~100 SWRs will occur, with ~10 cell sequences firing per SWRs across all the place cells with

fields on the maze, yielding ~1000 snippets per replay episode. Thus, learning with 1000 snip-

pets can be considered to take place in a biologically realistic timeframe. New in vivo imaging

techniques after spatial navigation in such a multi goal tasks would be useful in refining these

numbers.

These snippets will serve as inputs to the reservoir model of PFC described below. As illus-

trated in Fig 2D and 2E, the replay is biased by proximity to reward, which has been spatially

propagated. Based on this reward propagation, the behavior generated by the model favors the

shortest trajectories that cover the learned baited feeders. The propagation of reward is illus-

trated in Fig 2C and 2E. Panel C displays the 2D propagation of reward value backwards from

the rewarded targets. Note that for short trajectories between rewards (e.g. sub-sequence ABC)

there is a continuous dense reward distribution that will favor replay of this sub-sequence. For

long meandering trajectories the reward density diminishes to zero (e.g. sub-sequence CE),

thus disfavoring replay of snippets on these sub-sequences. Panel 2E displays the 1D equivalent

view of the reward propagation. Again note the continuous high density of reward along ABC,

vs. the discontinuities with zero reward values for the sub-sequences CED. Starting from feed-

ers C, D or E, reward prediction is discontinuous and/or absent (replay likelihood is zero in

areas along these segments) thus the PFC model will fail to consolidate a path along these

segments.

Reservoir model of PFC for snippet consolidation

We model the prefrontal cortex as a recurrent reservoir network. Reservoir computing refers

to a class of recurrent network models with fixed recurrent connections. The reservoir units

are driven by external inputs and the network dynamics provides a high dimensional represen-

tation of the inputs from which the desired outputs can then be read out by a trained linear

combination of the reservoir unit activities. The principle has been co-developed in distinct

contexts as the temporal recurrent network [20], the liquid state machine [28], and the echo

state network [26]. The version that we use to model the frontal cortex employs leaky integra-

tor neurons in the recurrent network. This model of PFC is particularly appropriate because

the recurrent network generates dynamic state trajectories that will allow overlapping snippets

to have overlapping state trajectories. This property will favor consolidation of a whole

sequence from its snippet parts. At each time-step, the network is updated according to the fol-

lowing schema:

The hippocampus place-cells project into the reservoir through feed-forward synaptic con-

nections noted Wffwd. The projection operation is a simple matrix-vector product. Hence, the

input projection through feed-forward synaptic connections is defined by:

UffwdðtnÞ ¼Wffwd � XinðtnÞ ð5Þ

Where:

• Wffwd is a fixed connectivity matrix whose values do not depend on time.

Synaptic weights are randomly selected at the beginning of the simulation. Practically

speaking [42], sampling U[−1,1] a uniform distribution is sufficient. A positive synaptic weight

in a connectivity matrix models an excitatory connection and a negative weight models an

inhibitory connection between two neurons (that could be implemented via an intervening

inhibitory interneuron). Let N be the number of neurons in the reservoir. Reservoir’s neurons

Prefrontal—Hippocampal sequence learning by reward propagation
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are driven by both sensory position inputs Xin(tn) and, importantly by the recurrent connec-

tions that project an image of the previous reservoir state back into the reservoir. The recurrent

projection is defined as:

UrecðtnÞ ¼Wrec � Xresðtn� 1Þ ð6Þ

Where:

• Wrec is a N by N square connectivity matrix.

• Xres is the reservoir activation (mean firing rate) (Eq (10)

Synaptic weights are drawn from a U[−1,1] uniform distribution, scaled by a S N; Kð Þ ¼ K 1ffiffiffi
N
p

factor. The same sign convention as in Eq (5) applies for the recurrent connectivity matrix.

Self-connections (i.e. wi;i
rec with i21. . .N) are forced to zero. Wrec is also fixed and its values

do not depend on time. The contributions of afferent neurons to the reservoir’s neurons is

summarized by

UresðtnÞ ¼ UffwdðtnÞ þ UrecðtnÞ ð7Þ

The membrane potential of the reservoir’s neurons Pres then is computed by solving the fol-

lowing ordinary derivative equation (ODE):

t
@Pres

@t
¼ � Pres tn� 1ð Þ þ Ures tnð Þ ð8Þ

Where:

• τ is the neuron’s time constant. It models the resistive and capacitive properties of the neu-

ron’s membrane.

In this article, we will consider a contiguous assembly of neurons that share the same time

constant. The inverse of the time constant is called the leak rate and is noted h. By choosing

the Euler’s forward method for solving Eq (8), the membrane potential is computed recursively

by the equation:

PresðtnÞ ¼ h � UresðtnÞ þ ð1 � hÞ � Presðtn� 1Þ ð9Þ

This is a convex combination between instantaneous contributions of afferents neurons

Ures(tn) and the previous value Pres(tn−1) of the membrane potential. The current membrane

potential state carries information about the previous activation values of the reservoir, pro-

vided by the recurrent weights. The influence of the history is partially controlled by the leak

rate. A high leak rate will result in a responsive reservoir with a very limited temporal memory.

A low leak rate will result in a slowly varying network whose activation values depend more on

the global temporal structure of the input sequence.

Finally, the mean firing rate of a reservoir’s neuron is given by:

XresðtnÞ ¼ sresðPresðtnÞ;ΘresÞ ð10Þ

Where:

• σres is the non-linear activation function of the reservoir neurons

• Θres is a bias that will act as a threshold for the neuron’s activation function.

We chose a σres�tanh hyperbolic tangent activation function with a zero bias forΘres. Nega-

tive firing rate values represent the inhibitory/excitatory connection type in conjunction with

Prefrontal—Hippocampal sequence learning by reward propagation
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the sign of the synaptic weight. Only the product of the mean firing rate of the afferent neuron

by its associated synaptic weight is viewed by the leaky integrator neuron. See S1 Text High

dimensional processing in the reservoir for more details on interpreting activity in the

reservoir.

Learning in modifiable PFC connections to readout. Based on the rich activity patterns

in the reservoir, it is possible to decode the reservoir’s state in a supervised manner in order to

produce the desired output as a function of the input sequence. This decoding is provided by

the readout layer and the matrix of modifiable synaptic weights linking the reservoir to the

readout layer, noted Wro and represented by dash lines in Fig 3.

The readout activation pattern Xro(tn) is given by the equation:

XroðtnÞ ¼ sroðWro � XresðtnÞ;ΘroÞ ð11Þ

Where:

• σro is the non-linear activation function of the readout neurons

• Θro is a bias that will act as a threshold for the neuron’s activation function

We chose a σro�tanh hyperbolic tangent activation function with a zero bias for Θro.

Notice that the update algorithm described above is a very particular procedure inherited

from feedforward neural networks. We chose to use it because it is computationally efficient

and deterministic.

Once the neural network states are updated, the readout synaptic weights are updated by

using a stochastic gradient descent algorithm. By deriving the Widrow-Hoff Delta rule [43] for

hyperbolic tangent readout neurons, we have the following update equation:

WroðtnÞ ¼Wroðtn� bþ1Þ þ a � Xresðtn� bþ1 ! tnÞ � ðXroðtn� bþ1 ! tnÞ � Xdesðtn� bþ1

! tnÞÞ � ð1 � Xroðtn� bþ1 ! tnÞ
2
Þ ð12Þ

Where:

• α is a small positive constant called the learning rate

• tn−b+1!tn is the concatenation of b time steps from tn−b+1 to tn

When b = 1, Eq (12) computes a stochastic gradient descent. The case when b>1 is called a

mini-batch gradient descent and allows one to estimate the synaptic weight gradient base on b

successive observations of predicted and desired activation values. A mini batch gradient

allows one to compute efficiently and robustly the synaptic weight gradient. Empirically,

b = 32 gives satisfying results.

In this study, we will focus on the prediction of the next place-cell activation pattern (Xdes):

XdesðtnÞ ¼ Xinðtnþ1Þ ð13Þ

This readout is considered to take place in the striatum, as part of a cortico-striatal learning

system. This is consistent with data indicating that while hippocampus codes future paths, the

striatum codes actual location [44].

Training. The model is trained using a dataset, typically 1000 snippets, that is generated

by the snippet replay mechanism described above in the paragraph on Hippocampus replay.

The snippet dataset is generated from trajectories that were run in previous trials. In the con-

solidation experiments, the previous trials correspond to the trajectories illustrated in Fig 1B–

1D. The readout synaptic weights are learned online by using the learning rule described in

the Learning in Modifiable PFC Connections to Readout section. The model does not receive

Prefrontal—Hippocampal sequence learning by reward propagation
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any form of feedback from the environment and it learns place-cell activation sequences based

only on random replay of snippets.

Between each sequence of the training set (snippets in our case), the states of the reservoir

and readout are set to a small random uniform value centered on zero. This models a time

between the replays of two snippets that is sufficiently long for inducing states in the neural

network that are not correlated with the previous stimulus. This is required for having the

same effect as simulating a longer time after each snippet but without having to pay the

computational cost associated to this extra simulation time.

Embodied simulation of sensory-motor loop via the spatial filter

Once the model is trained, we need to evaluate its performance and the trajectories it can gen-

erate. The model is primed with the first p steps of the place-cell activation sequence the model

is supposed to produce. This sequence is called the target sequence. Then the model’s ability to

generate a place-cell activation sequence is evaluated by injecting the output prediction of the

next place-cell activation pattern as the input at the next step. In this iterative procedure, the

system should autonomously reproduce the trained sequence pattern of place-cell activations.

Fig 3. Reservoir computing model. The Temporal Recurrent Network (TRN) is a model of the prefrontal cortex (PFC) that takes into account cortico-

cortical loops by defining a fixed recurrent adjacency matrix for the leaky integrator neurons that model PFC neurons. Inputs of the TRN are modelled

hippocampus (HIPP) place-cells. During the training phase, place-cells activations are provided by the algorithmic model of SWR replay (red pathway), and

the striatum model learns to predict the next place-cell activation from the PFC model states by modifying the synaptic weights that project the PFC model

into the striatum model according to the delta learning rule. During the generation phase, the model is no longer learning and the place-cell activation

patterns result from the new position of the agent, reconstructed with a Bayesian algorithm from the next place-cell activation prediction of the modeled

striatum (blue pathway).

https://doi.org/10.1371/journal.pcbi.1006624.g003
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Predicted place-cell activation values might be noisy, and the reinjection of even small

amounts of noise in this autonomous generation procedure can lead to divergence. We thus

employ a procedure that determines the location coded by the place-cell activation vector out-

put, and reconstructs a proper place-cell activation vector coding this location. We call this

denoising procedure the spatial filter as referred to in Fig 3.

We model the rat action as ‘reaching the most probable nearby location’. Since only the pre-

diction of the next place-cell activation pattern η is available, we need to estimate the most

probable point s�(tn+1) = (x�(tn+1),y�(tn+1)). From a Bayesian point of view, we need to deter-

mine the most probable next location s(tn+1), given the current location s(tn) and the predicted

place-cell activation pattern η(tn). We can state our problem as:

s�ðtnþ1Þ ¼ argmaxsðtnþ1Þ
Pðsðtnþ1ÞjZðtnÞ; sðtnÞÞ þ u ð14Þ

Where:

• u is a noise function sampling a uniform distribution Uð0;mÞ

u is useful at least in degenerate cases when a zero place-cell activation prediction generates

an invalid location coding. It is also used for biasing the generation procedure and to explore

other branches of the possible trajectories the model can generate as described in section Eval-

uating Behavior with Random walk.

The system is then moved to this new location s� and a new noise/interference free place-

cell activation pattern is generated by the place-field model. We refer to this place-cell predic-

tion/de-noising method as the spatial filter, which emulates a sensory-motor loop for the navi-

gating rat in this study. Fig 3 depicts this sensory motor loop.

Evaluating behavior with random walk

Once the model has been trained, it is then primed with place-cell activation inputs corre-

sponding to the first few steps of the trajectory to be generated. The readout from the PFC res-

ervoir generates the next place-cell activation pattern in the trajectory, which is then reinjected

into the reservoir via the spatial filter, in a closed loop process. This loop evaluation procedure

is called autonomous generation. In order to evaluate the model in a particular experimental

condition, several instances of the same model are evaluated multiple times in a random walk

procedure. The batch of generated trajectories (typically 1000) are accumulated in a stencil

buffer which acts as a two dimensional histogram showing the most frequently generated tra-

jectories. The arena is drawn with its feeders and a vector field is computed from trajectories

in order to show the main direction of these trajectories. Trajectories are superimposed and

summed, resulting in a two-dimensional histogram representing the space occupied by trajec-

tories. Fig 4 shows an example of random walk trajectories, illustrating the model’s ability to

autonomously generate a long and complex sequence when learning without snippets. Fig 4B

illustrates a 2D histogram formed by superimposing trajectories autonomously generated by

1000 reservoirs evaluated ten times each with noise, in order to validate the robustness of the

behavior.

In cases where small errors in the readout are reinjected as input, they can be amplified,

causing the trajectory to diverge. It is possible to overcome this difficulty by providing as input

the expected position at each time step instead of the predicted position. The error/distance

measurement can still be made, and will quantify the diverging prediction, while allowing the

trajectory generation to continue. This method is called non-autonomous generation and it

evaluates only the ability of a model to predict the next place-cell activation pattern, given an

input sequence of place-cell activations.

Prefrontal—Hippocampal sequence learning by reward propagation
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Comparing produced and ideal sequences using discrete Fréchet distance

The joint PFC-HIPP model can be evaluated by comparing an expected place-cell firing pat-

tern with its prediction by the readout layer. At each time step, an error metric is computed

and then averaged over the duration of the expected neurons firing rate sequence. The simplest

measure is the mean square error. This is the error that the learning rule described in Eq (12)

minimizes.

Although the model output is place-cell coding, what is of interest is the corresponding spa-

tial trajectory. A useful measurement in the context of comparing spatial trajectories is the dis-

crete Fréchet distance. It is a measure of similarity between two curves that takes into account

the location and ordering of the points along the curve. We use the discrete Fréchet distance

applied to polygonal curves as initially described in Eiter and Mannila [45]. In [46] the Discrete

Fréchet distance F between two curves A and B is defined by:

FðA;BÞ ¼ min
a;b

max
t2½1;mþn�

½dðAðaðtÞÞ;BðbðtÞÞÞ� ð15Þ

Where d(.,.) is the Euclidean distance, m is the number of steps of the curve A, n is the num-

ber of steps of the curve B, and α,β are reparametrizations of the curves A and B. Parameteriza-

tion of this measure is described in more detail in S1 Text Frechet distance parameters.

Results

For robustness purposes, results are based on a population of neural networks rather than a

single instance. The population size is usually 1000 for evaluating a condition and the metrics

described above are aggregated by computing their mean μ(.) and standard-deviation σ(.). For

convenience, we define a custom score function associated to a batch of coherent measure-

ments as:

scoreðXÞ ¼ mðXÞ þ sðXÞ ð16Þ

Results having a low mean and standard deviation will be reported as low score whilst other

possible configurations will result in a higher score. We chose this method rather than Z-score,

Fig 4. Sequence learning. Panel A illustrates a long convoluted trajectory taken by a rat in configuration 38. Panel B

illustrates the probability maps of trajectories generated by the trained model in autonomous sequence generation

mode. The 2D trajectory histogram is generated by superposing the trajectories generated when 10 batches of 100

reservoirs each were trained and each model instance was evaluated 10 times with noise. Note that there are two

locations where the trajectory crosses itself. At the point of crossing, there are two possible paths that preserve path

continuity. The system has memory of the context of how it got to that intersection point, and thus can continue on

that trajectory. This illustrates that the model is well able to learn such complex sequences.

https://doi.org/10.1371/journal.pcbi.1006624.g004
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which penalizes low standard deviations. We first established that the model displays standard

sequence learning capabilities (e.g. illustrated in Fig 4) and studied parameter sensitivity (see

S1 Text Basic Sequence learning and parameter search), and then addressed consolidation

from replay.

Consolidation from snippet replay

The model is able to learn and generate navigation sequences from place-cell activation pat-

terns. The important questions is whether a sequence can be learned by the same model when

it is trained on randomly presented snippets, instead of the continuous sequence.

In this experiment, no reward is used, and thus each snippet has equal chance of being

replayed. The only free parameter is the snippet size. In order to analyze the reservoir response,

we collect the state-trajectories of reservoir neurons when exposed to snippets. Recall that the

internal state of the reservoir is driven by the external inputs, and by recurrent internal dynam-

ics, thus the reservoir adopts a dynamical state-trajectory when presented with an input

sequence. Such a trajectory is visualized in Fig 5D. This is a 2D (low dimensional) visualiza-

tion, via PCA, of the high dimensional state transitions realized by the 1000 neurons reservoir

as the input sequence corresponding to ABCDE is presented. Panels A-C illustrate the trajecto-

ries that the reservoir state traverses as it is exposed to an increasing number of randomly

selected snippets generated for the same ABCDE sequence. We observe that as snippets are

presented, the corresponding reservoir state-trajectories start roughly from the same point

because of the random initial state of the reservoir before each snippet is replayed. Then the

trajectories evolve and partially overlap with the state-trajectory produced by the complete

sequence. In other words, snippets quickly drive the reservoir state from an initial random

activation (corresponding to the grey area at the center of each panel) onto their correspond-

ing locations in the reservoir activation state-trajectory of the complete sequence. Replaying

snippets at random allows the reservoir to reconstruct the original intact reservoir state trajec-

tory because the reservoir states overlap when snippet trajectories overlap.

Thus, we see that the state trajectories traversed by driving the reservoir with snippets over-

laps with those from the original intact sequence. As illustrated in 5A and 5B, 100 to 1000 snip-

pets are required for allowing the consolidation to occur in the readout layer with the learning

rule described in Eq (12). A smaller learning error is achieved with 10000 snippets because the

reservoir states that correspond to the whole sequence depicted in panel D are observed more

often and the error gradient corrected more often by modifying the readout synaptic weights.

See further details of sequence learning by snippet replay in S1 Text Sequence complexity

effects on consolidation.

Longer paths are rejected

Here we examine how using reward proximity to modulate snippet replay probability distribu-

tions (as described in the hippocampal replay description) allows the rejection of longer, ineffi-

cient paths between rewarded targets. In this experiment, 1000 copies of the model are run 10

times. Each is exposed to the reward modulated replay of two sequences ABC and ABD having

a common prefix AB as illustrated in Fig 6. The model is trained on snippets replayed from tra-

jectories ABC and ABD. The random replay is not uniform and takes into account the reward

associated with a baited feeder when food was consumed, as describe in the Hippocampal

Replay section above. Effectively, snippets close to a reward have more chance to be replayed

and thus to be consolidated into a trajectory.

Panel A in Fig 6 illustrates the distribution of snippets selected from the two sequences,

ABC in pink and ABD in blue. At the crucial point of choice at location B, the distribution of
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snippets for sequence ABC largely outnumbers those for sequence ABD. This is due to the

propagation of rewards respectively from points C and D. Per design, rewards propagated

Fig 5. Illustration of snippet integration in reservoir state space. Here we visualize the high dimensional reservoir space in a low (2D) PCA space, in order

to see how pieces (snippets) of the overall sequence are consolidated. In this experiment, the sequence ABCDE is broken into snippets, which are then used to

train the model. The challenge is that only local structure is presented to the model, which must consolidate the global structure. Panels A-C represent the

state trajectory of reservoir activation after 100, 1000 and 10000 snippets. While each snippet represents part of the actual trajectory, each is taken out of its

overall spatial context in the sequence. Panel D represents the trajectory of reservoir state during the complete presentation of the intact sequence. Panel C

reproduces this trajectory, but in addition we see “ghost” trajectories leading to the ABCDE trajectory. These ghost elements represent the reservoir state

transitions from an initial random state as the first few elements of each snippet take the reservoir from the initial undefined state onto the component of the

ABCDE trajectory coded by that snippet.

https://doi.org/10.1371/journal.pcbi.1006624.g005
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from a more proximal location will have a greater influence on snippet generation. Panel C

shows the 2D histogram of autonomously generated sequences when the model is primed with

the initial sequence prefix starting at point A. We observe a complete preference for the shorter

sequence ABC illustrated in panel E.

The snippet generation model described above takes into account the location of rewards,

and the magnitude of rewards. Panel B illustrates the distribution of snippets allocated to paths

ABC and ABD when a 10x stronger reward is presented at location D. This strong reward

dominates the snippet generation and produces a distribution that strongly favors the trajec-

tory towards location D, despite its farther distance. Panel F illustrates the error measures for

model reconstruction of the two sequences and confirms this observation. This suggests an

interesting interaction between distance and reward magnitude. For both conditions, distances

to the expected sequence have been measured for every trajectory generated (10 000 for ABC

and 10 000 for ABD). Then a Kruskall Wallis test confirms (p-value ~ = 0) for both cases that

trajectories generated autonomously are significantly more accurate for the expected trajecto-

ries (i.e. ABC when rewards are equal and ABD when reward at D is x10).

Novel efficient sequence creation

Based on the previously demonstrated dynamic properties, we determined that when rewards

of equal magnitudes are used, the model would favor shorter trajectories between rewards. We

now test the model’s ability to exploit this capability, in order to generate a novel and efficient

trajectory from trajectories that contain sub-paths of the efficient trajectory. That is, we deter-

mine whether the model can assemble the efficient sub-sequences together, and reject the lon-

ger inefficient sub-sequences in order to generate a globally efficient trajectory. Fig 1 (Panel A)

illustrates the desired trajectory that should be created without direct experience, after experi-

ence with the three trajectories in panels B-D that each contain part of the optimal trajectory

(red), which will be used to train the model.

The reward-biased replay is based on the following trajectories: (1) ABCED that contains the

ABC part of the ABCDE target sequence, (2) EBCDA that contains the BCD part of the ABCDE

target sequence, and (3) BACDE that contains the CDE part of the ABCDE target sequence. Fig

7A illustrates how the hippocampal replay model generates distributions of snippets that signifi-

cantly favor the representation of the efficient sub-sequences of each of the three training

sequences. This is revealed as the three successive peaks of snippet distributions on the time his-

togram for the blue (ABCED) sequence, favoring its initial part ABC, the yellow (EBCDA)

sequence, favoring its middle part BCD, and the pink (BACDE) sequence, favoring its final part

CDE. When observing each of the three color-coded snippet distributions corresponding to

each of the three sequences we see that each sequence is favored (with high replay density) pre-

cisely where it is most efficient. Thus, based on this distribution of snippets that is biased towards

the efficient sub-sequences, the reservoir should be able to extract the efficient sequence.

Reservoir learning is illustrated in Fig 7B, which displays the autonomously generated

sequences for 1000 instances of the model executed 10 times each. Training is based on 1000

snippets of length 10 selected from the distribution illustrated in Fig 7A. The spatial histogram

reveals that the model is able to extract and concatenate the efficient sub-sequences to create

the optimal path, though it was never seen in its entirety in the input. Panel C illustrate the

significant differences in performance between the favored efficient sequence vs. the three

that contain non-efficient sub-sequences. A Kruskal-Wallis test confirms these significant

differences in reconstruction error for the efficient vs non-efficient sequences (maximum

p = 5.9605e-08). These robust results demonstrate that our hypothesis for efficient sequence

discovery based on reward-modulated replay is validated.
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Reverse replay

In [1], hippocampus replay during SWR is characterized by the activation order of the place-

cells which occurs in backward and forward direction. We hypothesize that reverse replay

allows the rat to explore a trajectory in one direction but consolidate it in both directions. This

means that an actual trajectory, and its unexplored reverse version, can equally contribute to

new behavior. Thus fewer actual trajectories are required for gathering information for solving

the TSP problem. A systematic treatment of this effect on learning can be seen in S1 Text Anal-

ysis of different degrees of reverse replay.

We now investigate how reverse replay can be exploited in a recombination task where

some sequences are experienced in the forward direction, and others in the reverse direction,

with respect to the order of the sequence to be generated. We use the same setup as described

above for novel sequence generation, but we invert the direction of sequence EBCDA in the

training set. Without EBCDA, the model is not exposed to sub trajectories linking feeders B to

C and C to D and the recombination cannot occur. We then introduce a partial reverse replay,

which allows snippets to be played in forward and reverse order. This allows the reservoir to

access segments BC and CD (even though they are not present in the forward version of the

experienced trajectory.

Fig 8 illustrates the histogram of sequence performance for 10000 runs of the model (1000

models run 10 times each) on this novel sequence generation task with and without 50%

reverse replay. We observe a significant shift towards reduced errors (i.e. towards the left) in

the presence of reverse replay.

We then examine a more realistic situation based on the observation of spontaneous crea-

tion of “shortcuts” described in [47]. The model is exposed to a random replay of snippets

extracted from two trajectories having different direction (clockwise CW and counter clock-

wise CCW). The system thus experiences different parts of the maze in different directions.

We examine whether the use of reverse replay can allow the system to generate novel

shortcuts.

The left and right trajectories used for training are illustrated in Fig 9A and 9B. In A, the

system starts at MS, head up and to the left at T2 (counter clockwise) and terminates back at

MS. In B, up and to the right (clockwise) again terminating at MS. Possible shortcuts can take

place at the end of a trajectory at MS as the system continues on to complete the whole outer

circuit rather than stopping at MS. We can also test for shortcuts that traverse the top part of

the maze by starting at MS and heading left or right and following the outer circuit in the CW

or CCW direction, thus yielding 4 possible shortcuts. The model is trained with snippets from

the sequences in A and B using different random replay rates, and evaluated in non-autono-

mous mode with sequences representing the 4 possible types of shortcut. Fig 9C shows with no

reverse replay, when attempting the CCW path, there is low error until the system enters the

zone that has only been learned in the CW direction. There, the system displays clear devia-

tions from the desired path. In the non-autonomous evaluation mode used in this experiment,

after each response, the system is provided with the desired next location, which in this case

Fig 6. Longer paths are rejected (left), and stronger rewards are favored (right). Panels A and B illustrate snippet counts for T maze trajectories pictured in

panels C and D. In Panel C, sequences begin at location A, and rewards are given at locations C and D. Based on the reward proximity and propagation, there

is a higher probability of snippets being selected along path AC than path AD. This is revealed in panel A, a histogram of snippets for the sequences ABC (in

Blue) and ABD (in Orange). Panels B and D illustrate how distance and reward intensity interact. By increasing the strength of the reward, a longer trajectory

can be rendered virtually shorter and more favored, by increasing the probability that snippets will be selected from this trajectory, as revealed in Panel B.

Panels C and D reveal the 2D trajectory histograms generated by superposing the trajectories generated when 10 batches of 100 reservoirs each were trained

and each model instance was evaluated 10 times with noise. Panel E and F confirm a robust tendency to generate autonomously sequences significantly

similar to the ABC and ABD sequence respectively (p-value = 0).

https://doi.org/10.1371/journal.pcbi.1006624.g006
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creates a zigzag effect, corresponding to the spatial error. In panel D, with 50% reverse replay,

this error is reduced and the system can perform the shortcut without having experienced the

right hand part in the correct direction. Thus, in the right hand part of the maze, it is as if the

system had experienced this already in the CCW direction, though in reality this has never

occurred, but is simulated by the reverse replay. This illustrates the utility of mixed forward

and reverse replay. Panel E illustrates the difficulty when 100% reverse replay is used. Fig 9F

illustrates the reconstruction errors for a shortcut path as a function of degree of reverse. The

trajectory is evaluated in non-autonomous mode and the position of the agent necessarily fol-

lows the target trajectory. In this case, the expected trajectory describes a CCW path. Results

are not significantly different with a replay rate 25% and 75% (p = 0.02), where the best perfor-

mance is observed, and all the other conditions are significantly different (p� 1.1921e-07).

This phenomenon was obtained for the 4 possible shortcuts.

Effects of consolidation and reverse replay

The model demonstrates the ability to accumulate and consolidate paths over multiple trials,

and to exploit reverse replay. Here we examine these effects on the more extensive and variable

dataset extracted from rat behavior [13]. We show the positive effects of replay on trajectories

from rats trying to optimize spatial navigation in the TSP task. In the prototypical TSP behav-

ior, in a given configuration of baited wells, on successive trials the rat traverses different effi-

cient sub-sequences of the overall efficient sequence, and then finally puts it all together and

generates the efficient sequence. This suggests that as partial data about the efficient sequence

are successively accumulated, the system performance will successively improve. To explore

this, the model is trained on navigation trajectories that were generated by rats in the TSP task.

We selected data from configurations where the rats found the optimal path after first travers-

ing sub-sequences of that path in previous trials. Interestingly, these data contain examples

where the previous informative trials include traversal of part of the optimal sequence in either

the forward or reverse directions, and sometimes both (see S Rat navigation data). We trained

the model with random replay of combinations of informative trials where informative trials

are successively added, in order to evaluate the ability of the model to successively accumulate

information. For each combination of informative trials, the random replay is evaluated with

0%, 25%, 50%, 75% and 100% of reverse replay rate in order to assess the joint effect of random

replay and combination of informative trials. The model is then evaluated in non-autonomous

mode with the target sequences that consist in a set of trajectories linking the baited feeders in

the correct order. An idealized sequence is added to the target sequence set because trajectories

generated by the rat might contain edges that do not relate the shortest distance between two

vertices. Agent’s moves are restricted to a circle having a 10 cm radius.

Fig 10 illustrates the combined effects of successive integration of experience and its contri-

bution to reducing error, and of the presence of different mixtures of forward and reverse

replay. The ANOVA revealed that there is a significant effect for combination (F(2, 585) =

Fig 7. Efficient sequence synthesis. A. Distribution of snippets drawn from the sequences illustrated in Fig 1B, 1C and

1D. Globally we observe snippet selection favors snippets from the beginning of sequence ABCED (blue), the middle of

EBCDA (yellow), and the end of sequence BACDE (pink), which corresponds exactly to the efficient sub-sequences

(ABC, BCD, and CDE) of these three sequences. This distribution of snippets is used to train the model. The results of

the training are illustrated in panel B. Here we see a 2D histogram of sequences generated by the model in the ABCDE

recombination experiment. The 2D trajectory histogram is generated by superposing the trajectories generated when

10 batches of 100 reservoirs each were trained and each model instance was evaluated 10 times with noise. Panel C

displays the Frechet distance between the autonomously generated sequence and the four reference sequences.

Kruskal-Wallis comparison confirms that the trajectories generated autonomously are significantly more similar to the

target sequence ABCDE than to the experienced non-efficient sequences (p< 0.0001).

https://doi.org/10.1371/journal.pcbi.1006624.g007
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32.84, p< 0.01), as performance increases with exposure to more previous experience (Panel

A). There is also a significant effect for reverse replay rate (F(4, 585) = 3.71, p� 0.01), illus-

trated in Panel B. There was no significant interaction between consolidation and replay direc-

tion (F(8, 585) = 0.03, p = 1). This indicates that when trained on trajectories produced by

behaving rats, the model displays the expected behavior of improving with more experience,

and of benefitting from a mixture of forward and reverse replay.

Discussion

We tested the hypothesis that hippocampus replay observed during sharp wave ripple events

in the awake animal can play a role in learning by exposing the prefrontal cortex between suc-

cessive trials to short sub-sequences of place-cell activation patterns. This replay can poten-

tially play a crucial role in learning, essentially by generating synthetic data (based on

Fig 8. Reverse replay facilitates efficient sequence discovery. Using the same sequences illustrated in Fig 1, we reversed

the direction of sequence EBCDA, and then tested the model’s ability to synthesize the ABCDE sequence from ABCED

ACDBE and BACDE. A. Error reduction with reverse replay. B. Effects of reverse replay in generation and learning.

https://doi.org/10.1371/journal.pcbi.1006624.g008
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Fig 9. Reverse replay allows novel shortcut path generation. Panels A and B illustrate the trajectories for left and right

trajectories, based on Gupta et al. After training on these two trajectories, we test the ability to generate a shortcut that makes the
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experience) for training the system. The behavior of interest is a form of spatial navigation tra-

jectory optimization in a task, mimicking the well-known traveling salesperson problem. It is a

NP-Hard (non-polynomial) problem and finding an exact solution would require significant

time and computing resources. Nevertheless, it has been observed that a rat was able to quickly

find good solutions of simplified versions of this problem [13, 48]. The idea of exploiting

replay in navigation sequence learning has been demonstrated to have a positive influence on

learning [17], and here we go beyond this by further exploiting reward structure in the replay.

In the behavior of interest, rats are observed to converge quickly to a near-optimal path link-

ing 5 baited food wells in a 151cm radius open arena. During their successive approximation to

the optimal path, the rats often traversed segments of the optimal trajectory, as well as non-opti-

mal segments. Observing this behavior, we conjectured the existence of neural mechanisms that

would allow the optimal segments to be reinforced and the non-optical segments to be rejected,

thus leading to the production of the overall near-optimal trajectory. We propose that the over-

all mechanism can be decomposed into two distinct neural systems. The first is a replay mecha-

nism that favors the representation of snippets that occurred on these optimal segments, and

that in contrast will give reduced representation to snippets that correspond to non-optimal tra-

jectory segments. Here we demonstrate a simple but powerful method based on spatial reward

propagation that implements this mechanism. Interestingly, this characterization of replay is

broadly consistent with the effects of reward on replay observed in behaving animals [9].

The second neural system required to achieve this integrative performance is a sequence

learning system that can integrate multiple sub-sequences (i.e. snippets) into a consolidated

representation, taking into consideration the probability distributions of replay so as to favor

more frequently replayed snippets. Here we considered a well-characterized model of sequence

learning based on recurrent connections in prefrontal cortex that is perfectly suited to meet

the sequence learning requirements.

Replay mechanism

Replay is modeled using a procedure that randomly selects a subset of place-cells coding part

of a sequence, and outputs this snippet while taking into account the proximity of this snippet

to a future reward. Each time a reward is encountered, it is taken into consideration in generat-

ing the snippet, and reward value is propagated backwards along the sequence, thus imple-

menting a form of spatio-temporal credit assignment. This can be viewed in the Figs 2, 6 and 7

illustrating the snippet probability densities. The replay mechanism also implements a second

feature observed in animal data, which is a tendency to replay snippets in reverse order. These

two features of the replay model correspond to what is observed in the rat neurophysiology,

and they also make fundamental contributions to the model’s ability to converge on an effi-

cient navigation path. This extends previous demonstrations of the value of replay to include

reward-modulated optimization [17].

Reservoir network

Reservoir computing exploits the spatio-temporal dynamics of recurrently connected neurons

that are sensitive to the spatiotemporal structure of input sequences [20, 27, 28]. The frontal

complete outer loop in one direction. Panel C–without reverse replay, significant spatial errors are revealed when the system

attempts to complete the counter-clockwise loop on the right side of the maze. Panel D illustrates the beneficial effects of reverse

replay during trajectory learning. Panel E illustrates the effect of a model training with 100% reverse replay. It is similar to using 0%

reverse replay but the effect is observed on the left lap trajectory part. Panel F–when reverse replay is introduced, this error is

attenuated.

https://doi.org/10.1371/journal.pcbi.1006624.g009
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cortex has been demonstrated to operate on these reservoir properties [19]. Here we demon-

strated how a reservoir model of PFC meets two requirements for sequence learning: First, it

can concatenate randomly replayed sub-sequences (snippets) in order to generate the com-

plete original sequence. Second, it is sensitive to the statistics of replay, and thus can learn to

ignore rare snippets (which correspond to snippets on inefficient sub-sequences, far from

rewards) thus learning to optimize.

Effects of reward and reinforcement learning

The instantaneous reward information acquired during a past experience is used for recur-

sively updating the snippet replay likelihood in the hippocampus model. This creates a reward

gradient and allows the optimal sequence to be assembled by the prefrontal cortex and stria-

tum model. This is a novel combination of prioritized replay and reservoir computing in the

context of reinforcement learning. The reward gradient is propagated along the spatial trajec-

tory, and used to create a bias in the probability of replay. This biased replay is then provided

as input to the reservoir PFC model. This is complementary to [49] who used replay to train a

Dyna-Q reinforcement learning model. Both models benefit from replay, and can adapt to

changes in reward contingencies. In our system, when the distant feeder is given a higher

reward, this large reward produces a shift in replay probabilities (illustrated in Fig 6B), and the

model learns this new distribution and favors the longer path to target D (illustrated in Fig

6D). The distinction is that we modulate the replay by reward probability, thus biasing the

input to the sequence learning model towards the optimal solution. A secondary effect of

rewards could be observed when rewards are sufficiently close for allowing a mutual contribu-

tion to the snippet replay likelihood surrounding the locations associated with reward delivery.

Thus, we predict that a cluster of reward sites will have the effect of propagating the reward

information farther than a single reward.

While we were principally motivated to study reward-prioritized replay combined with res-

ervoir sequence learning in the TSP task, one can ask if the model generalizes to other tasks,

Fig 10. Consolidation and reverse replay applied to behavioral data. Measured variable is Frechet distance between generated and desired sequence. Data from

the rat TSP configurations are used for training and testing the model. A. Effects of consolidation: as successive trials are added to the replay repertoire; the

trajectory reconstruction error is significantly reduced. B. Effects of reverse replay: as reverse replay is introduced in snippet formation for training the PFC model,

reconstruction error is significantly reduced.

https://doi.org/10.1371/journal.pcbi.1006624.g010
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particularly those that directly involve manipulation of reward. We thus observed that by

changing the reward magnitudes, the system adapts and chooses a longer trajectory that leads

to a larger reward. However, in more difficult problems that include the discovery of a long

route to a single reward, the model could participate in the consolidation of partial solutions as

illustrated in the current research, but would not be able to solve such problems

autonomously.

Effects of reverse replay

The reverse replay mechanism has a dual effect. First, it provides the mechanism for the back-

wards propagation of reward along a trajectory. Based on this reward propagation, place-cell

activation sequences leading to a nearby reward are represented more frequently and earlier

than other less efficient sub-paths, which are thus rejected. This results in a form of spatio-tem-

poral credit assignment that allows to take advantage of the reservoir network ability to com-

bine multiple snippets into a whole sequence. We showed that it is possible to consolidate

multiple sequences featuring parts of the same underlying optimal sequence into one efficient

sequence and to generate it autonomously. Second, when the snippet replay likelihood is

learned, a non-zero reverse replay rate allows the prefrontal cortex to be exposed to sequences

of place-cell activations in both forward and reverse direction. This results in sequence learn-

ing in both directions while having experienced a place-cell activation sequence in one direc-

tion only. These results can be tested experimentally by recording place cells activities in SWR

during the task.

Predictions

During the intertrial period, the model predicts a co-occurrence of reverse replay from remote

rewarded sites backwards to propagate the reward, and forward replay from remote locations

towards rewarded sites to generate snippets from the optimal sub-sequences so as to generate

the optimal path. Importantly, it also predicts that there will be a low probability of replay for

subsequences that were on non-optimal trajectories. Future research should test these

predictions.

A model of replay should predict which experiences should be replayed at each time to

enable the most rewarding future decisions. Mattar and Daw [50] developed an elegant model

of replay based on utility, characterized by a gain term that prioritizes states behind the agent

when an unexpected outcome is encountered and a need term that prioritizes states ahead of

the agent that are imminently relevant. This model predicts predominantly forward sequences

prior to a run, and reverse sequences after a run. It accounts for a wide variety of behavioral

and neurophysiological data, often in protocols where replay is observed during a run. We

address a problem where the system is in a neutral area between trials in the TSP task. Thus,

the current position of the animal is of low relevance. In this context, our model replays snip-

pets that lie on the shortest route through the five baited paths. It would be interesting to

observe how the Mattar and Daw model would respond during intertrial intervals in resolving

the TSP problem.

Conclusions and limitations

The model we studied here is able to mimic the rat’s ability to find good approximations to the

traveling salesperson problem by taking advantage of recent rewarding experiences for updat-

ing a trajectory generative model using hippocampus awake replay. We showed that reverse

replay allows the agent to reduce the TSP task complexity by considering an undirected graph

where feeders are vertices and trajectories are the edges instead of a directed graph. In this
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case, autonomous sequence generation is no longer possible but the information available in

each prediction of the prefrontal cortex contains the expected locations. This allows the build-

ing of a navigation policy taking into account the salient actions suggested by the prefrontal

cortex predictions, which are learned from hippocampus replay.

Supporting information

S1 Text. This supporting information provides details on the rat navigation data, and the

functioning of the model, including high dimensional processing in the reservoir, the spa-

tial filter implementation and parameters, the sensor and transition model components of

the simulation system, the Frechet distance parameters, basic sequence learning and

parameter search, the effects of sequence complexity on consolidation, analysis of different

degrees of reverse replay.

(PDF)

S1 Fig. Rat trajectory and its idealized representation.

(TIF)

S2 Fig. Internal representations in the reservoir.

(TIF)

S3 Fig. Spatial filter characterization.

(TIF)

S4 Fig. Fréchet distance visualization.

(TIF)

S5 Fig. Spatial resolution vs. reservoir neuron leak rate.

(TIF)

S6 Fig. Effects of snippet size on sequence learning for sequences of varying difficulty.

(TIF)

S7 Fig. Effects of reverse replay and initial sequence direction.

(TIF)

S1 Table. Classification of rat behavioral configurations by direction in which executed

trajectories relate to desired trajectory.

(DOCX)

S2 Table. Summary of the 10 parameter sets optimized by the parallel simulated annealing

algorithm.

(DOCX)
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