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Abstract

Background

Heart rate variability (HRV) has been emerging in neonatal medicine. It may help for the

early diagnosis of pathology and estimation of autonomous maturation. There is a lack of

standardization and automation in the selection of the sequences to analyze and some fea-

tures have not been explored in this specific population. The main objective of this study

was to analyze the impact of the time length of the sequences on the estimation of linear

and non-linear HRV features, including horizontal visibility graphs (HVG).

Methods

HRV features were repeatedly measured with linear and non-linear methods on 2-, 5-, 10-

minute sequences selected from the longest 15-min sequence and recorded on a weekly

basis in 39 infants less than 31 weeks at birth. The associations between HRV measure-

ments were analyzed through principal component analysis and k-means clustering. The

effects of the time lengths on HRV measurements and post-menstrual age (PMA) were ana-

lyzed by linear mixed effect model for repeated measures.

Results

The domains of analysis were concordant for their descriptive parameters of short (rMSSD,

SD1 and HF) and long-term (SD, SD2 and LF) variability. α1 was correlated with the LF/HF

and SD2/SD1. DC and AC were correlated with short-term variability estimates and signifi-

cantly increased with GA and PMA. Shortening the windows of analysis increased the ran-

dom measurement error for all the features and increased the bias for all but short term

features and HVGs.
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Conclusion

The linear and non-linear measurements of HRV are correlated each other. Shortening the

windows of analysis increased the random error for all the features and increased the bias

for all but short term features and HVGs. Short-term HRV can be an index for evaluating the

maturation in whatever sequence length.

Introduction

Heart rate variability (HRV) analysis has been emerging as a promising diagnostic tool in neo-

natal care. Computer-based analysis of cardiac rhythms, using time and frequency domain

analysis, entropy, scale invariance coefficient and Poincaré geometry, has proved useful in

many settings. In this regard, specific heart period characteristics such as short deceleration,

low entropy and decreased long-range fractal correlation have been associated with proven

sepsis in premature infants [1, 2], viral infection [3], immunization [4, 5], pain [6, 7] and Kan-

garoo care [6, 8] in newborns.

HRV can be analyzed using very long recordings, i.e. 24 hours or more, to much shorter

recordings, depending on the features of interest [9]. Analyzing HRV on very long-term

recordings is difficult in premature infants because of their unstable clinical conditions, the

various ventilation supports they need, the frequent changes in body position, the spontaneous

movements and routine care that cause many artifacts. Thus, shorter recordings seem more

convenient for clinical applications in premature infants. Most of the studies in premature

infants used short recordings, i.e. 5-10 minutes. However, to our knowledge, there is no study

performing HRV analysis on ultra-short sequences in premature infants, evaluating how the

sequence length can affect HRV analysis.

Among the HRV features, some parameters can be extracted from a short recording,

while others require longer data sets. Some researchers have investigated whether ultra-short

sequences could replace the standard short-term sequences (at least 5 minutes). These studies

were conducted on healthy adults and they pointed out that rMSSD is measurable from a

record less or equal to 2 minutes [10, 11]. In most cases, this is a requirement related to the

underlying mathematical assumptions of each method, whatever linear or non-linear methods.

In this respect, horizontal visibility graphs (HVG), a new method of measuring HRV with dif-

ferent underlying principles [12, 13], has not been explored for its robustness to changes in

time length.

Furthermore, HRV refers to the regulation of the sinoatrial node by the sympathetic and

parasympathetic branches of the autonomic nervous system. It provides a window for observ-

ing the resulting beat-to-beat fluctuations in the rhythm of the heart in response to regulatory

impulses. In light of this information, maturation aspects of autonomic regulation have been

explored using HRV. In these studies, HRV was analyzed on long sequences, from 10 minutes

[14, 15], 15 minutes [16] to 2,5 hours [17]. These studies aimed at quantifying long-term vari-

ability, the very long-range correlations and multi-fractal properties of heartbeat dynamics

related to autonomic activity and its cascade feedback loops to control heart rate regulation

[18]. In a similar way as above, the short-term autonomic regulation of heart rhythm or which

is the shortest recording for analyzing autonomic nervous system has not been explored.

The main objective of this study was to analyze the effect of time length of the signal on

the estimation of linear and non-linear HRV features, including horizontal visibility graphs

(HVG). Firstly, we provided a comprehensive insight into the association between HRV

Heart rate variability in premature infant and time length
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features. Then we performed iterative measurements on 2-, 5-, 10- and 15- minute sequences

to investigate the impact of these different time lengths on features estimating autonomic mat-

uration in the preterm infants.

Materials and methods

Study population

The study was an ancillary of a longitudinal cohort study of premature infants conducted in

the neonatal unit of the University Hospital of Saint-Etienne, France, from August 2004 to July

2005 [16], and it was approved by the Commission Nationale de l´Informatique et des Libertés

(CNIL) and by the ethics committee of Saint-Etienne University Hospital in January 2004. The

information of study was informed by explanatory leaflet with time for reflection and the con-

sent was obtained by writing, with signature of parents or legal representatives.

Thirty-nine premature infants less than 32 weeks at birth and consecutively hospitalized in

the intensive care unit were included in this study. The exclusion criteria were as follows: the

presence of neurological or cardiac congenital defects; cardiac arrhythmia or the absence of

sinus rhythm; need for prolonged resuscitation at birth and/or an Apgar score less than 5 at

5 min; and any maternal nicotine use during pregnancy. Two premature infants were 25

weeks, one was 26 weeks, five were 27 weeks, sixteen were 28 weeks, seven were 29 weeks, four

were 30 weeks, and four were 31 weeks gestational age (GA). All of the premature newborns

received a daily dose of caffeine citrate adjusted to the weekly plasma caffeine levels. None

received morphine during hospitalization.

Data collection

Each premature infant underwent at least 15-minute recordings once per week from the

week of birth or following birth to 41 weeks post menstrual age (PMA) or discharge. All of the

recordings were obtained during quiet sleep, identified through physiological and behavior

monitoring [19], 30 minutes after a morning-time feeding period (between 8 and 12 a.m. with-

out painful or stressful procedures for at least 6 hours). Recording was delayed by 48 hours

when there was an unstable acute pathology at the scheduled time of recording or a thermo-

regulation disorder at the time of the examination or when general anesthesia or drugs with

cardiac effects were administered in the 7 days preceding the recording. All of the infants were

required to be supine during recordings. The environmental conditions were controlled for

incubator and ambient temperatures as well as for child position. During the recordings, clini-

cal status, events, medications and ventilation parameters were noted and recorded.

All of the infants were continuously monitored with an IntelliVue MP40 patient monitor

(Phillips Medical System, Eindhoven, Netherlands) with a Multi-Measurement Server

M3001A, a noninvasive blood pressure module, a FAST-SpO2 module and a Microstream

CO2 Extension (M3015A—Oridion Medical, Ltd.), which provided continuous monitoring of

heart rate (3 lead-ECG), respiratory rate, temperature, SpO2 and systolic, diastolic and mean

arterial pressure. A dedicated computer was devoted to record these signals for later analysis.

All data were fully anonymized.

Signal processing

The acquired ECG signals were processed using a set of custom signal processing scripts

designed in Matlab software (The Mathworks, Inc.) at the Laboratoire Traitement du Signal

et de L’image (INSERM UMR1099, University of Rennes 1). A noise-robust QRS detection

method was applied to obtain the RR series over the whole data acquisition period (typically

Heart rate variability in premature infant and time length
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15 minutes). The obtained RR series were manually verified for detection issues and corrected

when needed. The obtained series were finally cut on segments of different lengths for further

processing [20] by linear and non-linear methods. These time lengths and methods are

described here after.

Definition of time length. Time length of the sequences were defined as long (L) for the

whole 15-minute sequences that was weekly recorded for each patient, short (S5 or S10) for 5

or 10-minute sequences and ultra-short (US) for the 2-minute sequences that were encom-

passed in above-mentioned at least 15-minute sequences. The ultra-short and short sequences

were extracted consecutively with 50% overlap from the whole recording.

Linear methods

• Time domain analysis: It consisted of the extraction of the mean (Mean), the standard devia-

tion (SD), which is an estimate of global variability, and the square root of the mean squared

differences of successive samples of the series (rMSSD), which is an estimate of short-term

beat-to-beat variability [9].

• Frequency domain analysis: RR series, re-sampled at 4 Hz, were also analyzed in the fre-

quency domain by an auto-regressive estimation of the power spectrum of order 12 and by

integration of the low-frequency (LF) (0.02-0.2 Hz) and high-frequency (HF) (0.2-2 Hz)

spectral bands and the LF/HF. Very low frequency variations (0-0.02 Hz) were not consid-

ered for the analysis of these short-duration segments [21, 22]

Non-linear methods

• Poincaré plot analysis: In this method, a scatter plot of the current R-R interval against the

preceding R-R interval. From the analysis of this plot, three indexes are obtained: the stan-

dard deviation of the instantaneous beat-to-beat RR interval variability (minor axis of the

ellipse or SD1), the standard deviation of the continuous long-term RR interval variability

(major axis of the ellipse or SD2) as well as the axis ratio (SD2/SD1) [23].

• Sample entropy (SampEn): This marker provides an estimation of the regularity of the

selected RR series. A high value of entropy reflects a strongly irregular and unpredictable

sequence, while a low value reflects abnormal oversimplification. SampEn was calculated with

a fixed window length (m) and tolerance (r) parameters. These parameters were optimized

according to the strategy proposed by [24] on the database and finally we selected m = 3 and r

to be 0.25 that resulted in the best value of the efficiency metric, which was less than 0.15.

• Detrended Fluctuation Analysis (DFA): The long-range dependence, i.e., the scale invari-

ance, was tested through Detrended Fluctuation Analysis (DFA). The DFA technique char-

acterizes the RR series using a self-similarity parameter (α) that represents the long-range

fractal correlation properties of the signal: α is 0.5 for white noise with uncorrelated random-

ness, 1 for 1/f noise and long-range fractal correlations, and 1.5 for Brown motion. We evalu-

ated the fractal scaling exponent from 4 to 40 beats (α1), and from 40 beats to quarter length

of the sequence (α2) [25].

• Deceleration capacity (DC) and acceleration capacity (AC) were also computed from the RR

series by: i) detecting all of the intervals longer (for DC) or shorter (for AC) than the preced-

ing interval; ii) defining a common temporal support for all deceleration or acceleration

intervals; iii) applying phase-rectified signal averaging; and iv) quantifying DC and AC by

the application of a four-term slope estimation. While DC is considered to reflect parasym-

pathetic control of the sinus rhythm, the meaning of AC remains unclear [26].

Heart rate variability in premature infant and time length
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• Horizontal visibility graphs (HVG, so called Z) were obtained by transformation of the RR

series into graphs maintaining their inherent characteristics [12]. They reflect the fact that a

sample of the RR series at time k is able to “see” another sample on the same time series. In

this study, we used the topological property of HVG called HVG 4-node motifs (Z4) as previ-

ously described in [13].

Statistical analysis

The distributions of HRV features were plotted and tested for normality using Q-Q plots and

the Shapiro-Wilk test. Data were presented as median and quartiles (Q1, Q3). To explore asso-

ciations among HRV features and to analyze simultaneously the large-scale behavior of the

system, we performed a principal component analysis (PCA) including all the HRV features

measured either on 2-, 5-, 10- or 15-min sequences. The squared coordinates of the variables

were used to estimate the quality of their representation (cos2) and their contribution (cos2 of

the variable � 100 / total cos2 of the component) to the first factorial plane. Then, to identify

groups of variables, the features were classified through hierarchical and k-means clustering.

The optimal number of clusters was determined by maximal average silhouette width. Finally,

GA and PMA were projected on the first factorial planes as continuous supplementary vari-

ables to highlight correlation between maturation and HRV features.

The quality of estimation of the parameters was assessed on different time lengths by

Median Absolute Deviation (MAD) from the median which is equal for of a selected parameter

Xj to:

MAD ¼ medianðj Xj
i � medianðXjÞ jÞ ð1Þ

where median is the median value, Xj
i is one realization of a particular HRV feature on a spe-

cific window (US, S5, S10, L) and Xj ¼ fXj
1;X

j
2; . . . ;Xj

ng is the vector of all the realizations of

the particular HRV feature Xj on a specific window (US, S5, S10, L). Then, we analyzed the

effects of the time length (2, 5, 10 and 15-minutes) of the sequences on the absolute measures

and MAD of HRV features using linear mixed effects models. The patients were considered

to be random effect, PMA and GA to be fixed effects. PMA (less than 28, 32, 36, more than 36

weeks) and sequences’ length (L, S10 S5 and US) were included as categorical variables. To re-

mediate deviations from assumptions of the linear regression model, dependent variables with

skewed distribution were transformed through the Box-Cox procedure. In addition, to calcu-

late the mixed effects mean bias and limits of agreement (LoA), we analysed the differences of

each time length to the mean value using a mixed effects regression model, including patients

as a random effect and PMA and GA as fixed effects [27]. Absolute measures and MAD of the

most representative variables of each cluster, i.e. with the highest cos2 value, were depicted

against PMA and time length of the sequences in box plots. The statistical significance of the

tests was set at 5%. Statistical analyses were performed using R software [28] with packages

nlme [29], FactoMineR [30], factoextra [31] and cluster [32].

Results

Patient characteristics

The premature infants group consisted of 39 infants (25 boys and 14 girls) ranging from 25

weeks to 31 weeks at birth. Two premature infants were 25 weeks, one was 26 weeks, five were

27 weeks, sixteen were 28 weeks, seven were 29 weeks, four were 30 weeks, and four were 31

weeks gestational age (GA). Their mean birth weight was 1032 g, ranging from 504 g to 1750 g.

Their 5 min Apgar scores ranged from 5 to 10. Some newborns did not complete the 10

Heart rate variability in premature infant and time length
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successive weeks of recordings because of postnatal death (n = 1), early discharge to another

neonatal center (n = 3) or early discharge to home (n = 18).

Associations between HRV features

The principal component analysis performed on tables crossing all the features, showed

similar projections on the first factor map whether the features were estimated on 2-, 5-, 10- or

15-min sequences, except for α2 that was poorly represented when estimated on 2- or 5-min

sequences with a contribution below 1%. The first two dimensions explained more than 60%

of the total inertia. As seen in Fig 1 where the features were estimated on 10-min sequences,

the projection of the variables on the factor map showed good quality of representation and

coherent associations for most of the features. (i) AC, DC, (ii) HF, rMSSD, SD1, (iii) LF, SD

and SD2, (iv) LF/HF, SD2/SD1, α1, and (v) SampEn that appeared isolated. Nevertheless,

squared coordinates of the variables Mean and α2 were low, indicating that they were poorly

represented on this factor map of the first 2 components, whatever was the time length of the

measurements. Indeed, they both mainly contributed to the third and fifth dimension. Simi-

larly, all HVG features but Z4
1

and Z4
2

were poorly represented on the factor map of the first 2

dimensions. They mainly contributed to the fourth dimensions.

The k-means clustering revealed lower variance within the clusters and higher variance

between the clusters when the measurements were performed on 10-min sequences. The opti-

mal number k of clusters was 8 and HRV features were allocated as follow: (i) Z4
1
, DC, AC; (ii)

SD2, SD, LF; (iii) rMSSD, SD1, HF, (iv) SD2/SD1, LF/HF, α1 (v) α2 (vi) Mean, SampEn; (vii)
Z4

4
, Z4

3
; and finally (viii) Z4

5
, Z4

2
, Z4

6
(Fig 2). The greater distance we observed was between the

group encompassing Mean, SampEn and all HVGs but Z4
1

and the group of all the other fea-

tures(Fig 2).

Effect of the length of the sequences

The time length of the sequences had a significant effect on the precision of the measurements

of all the HRV features as determined by their absolute deviation from the median (Fig 3).

These random measurement errors were greater for shorter time lengths. MAD was minimal

for 10-min (S10) and 15-min (L) sequences, depending on the feature (Fig 3).

Similarly, time length of the sequences had a significant effect on the accuracy of the mea-

surements of most of the features. SampEn was significantly higher when measured on US

(Fig 4D) and its mean bias was +21% [-10.6, 52.5]. SD2 and SD2/SD1 were significantly lower

(Fig 4A and 4B). Their mean bias and LoA were -15.8% [-36.3, 3.8] and -13.8% [-30.5, 2.8]

respectively. Besides, short-term features such as SD1 (Fig 4C) and HVGs (Fig 4E, 4F and 4G)

had very low bias. Mean bias and LoA for SD1 ranged from 0.9% [-4.6, 6.3] to -1.1% [-6.8, 4.6]

when measured on L and US sequences respectively. Mean bias for HVG was between -1.5

and +1.7%, minimal lower LoA -14% and maximal upper LoA was +12%.

Effect of PMA on HRV features

Short-term HRV features significantly increased with PMA as seen in the PCA factor map of

the first 2 dimensions (Fig 1) and in the representation of the absolute measurements of SD1

against PMA (Fig 4). Similarly, Z4
2

significantly decreased with PMA. On the contrary, SD2/

SD1 and LF/HF ratios, α1 and SampEn did not change significantly with PMA, whatever the

sequence length.

Heart rate variability in premature infant and time length
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Discussion

This is the first study that extensively explore the maturation of linear and non-linear proper-

ties of HRV features in the preterm infants, including horizontal visibility graphs. The three

main methods of HRV analysis were concordant for their descriptive features of short-term

(rMSSD, SD1 and HF) and long-term (SD, SD2 and LF) variability. They increased with PMA,

as did DC and AC. On the contrary, SD2/SD1 and LF/HF ratios, α1 and SampEn didn’t change

with PMA. HVG and α2 seemed to carry distinct information. At last, shortening the time

length of analysis increased random measurement error for all the features and systematic

measurement error for all but short term features and HVGs.

Fig 1. Principal component analysis of heart rate variability features estimated on 10-minute sequence. Projection of the variables on the factor

map of the first 2 dimensions of the principal component analysis (63% of the variance). contrib: contribution of the variables calculated from their

eigenvalues. cos2: squared coordinates of the variables, which is an estimate of the quality of their representation.

https://doi.org/10.1371/journal.pone.0220692.g001
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Impact of sequences’ length on HRV features

Effort to shorten the duration of recording is important to improve efficiency in both clinical

and research settings. This is particularly true when analyzing HRV in premature infants that

are hospitalized in intensive care units where sources of artifacts are frequent. Even if 24-hour

HRV appears to be a gold standard for clinical HRV assessment since it encompasses many

long term influences, e.g. core body temperature, metabolism, sleep cycles, and the renin–

Fig 2. Dendrogram of the cluster analysis of HRV features estimated on 10-min sequences (S10). Each color shade represents a distinct cluster

determined by the k-means clustering, which are the same clusters as determined by hierarchical cluster analysis (grey boxes).

https://doi.org/10.1371/journal.pone.0220692.g002
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angiotensin system, a shorter recording may also be efficient in evaluating the relationship

between sympathetic and parasympathetic nervous system at given time. Short-term HRV has

been widely used for many years but there is no consensus on the time length for the measure-

ments. Therefore, we aimed to explore the impact of sequences’ time length on HRV measure-

ments comparing the 15-min time length used in the original study of Patural et al. [16] with

shorter time lengths, i.e. ultra-short (2-min) and short (5-, 10-min) sequences.

The study of Shaffer et al. suggested the minimum duration that HRV could be calculated,

for example: a 10-second segment successfully estimated mean heart rate; A 60-second seg-

ment estimated SDNN, rMSSD; a 90-second segment estimated, LF power, SD1, and SD2; a

Fig 3. Median absolute deviation from the median of HRV features against time length of the sequence. Each box-plot represents median, IQR and

extrema of Median Absolute Deviation of HRV feature measurement for a given time length against PMA. Color shades are respectively for PMA less

than 28 wks (red), 28 to 32 wks (green), 32 to 36 wks (blue) and 36 wks and above (purple). The effects of time length (2-min (US), 5-min (S5), 10-min

(S10) and 15-min (L)) were analyzed using linear mixed effects models p<0.05 (�), p<0.01 (��), p<0.001 (���) and p<0.0001 (����).

https://doi.org/10.1371/journal.pone.0220692.g003

Fig 4. Absolute measurements of HRV features against PMA. Each box-plot represents an HRV estimate. The colors shades represent the different

time lengths: 2-min (US), 5-min (S5), 10-min (S10) and 15-min (L). The effects of time length were analyzed using linear mixed effects models p<0.05

(�), p<0.01 (��), p<0.001 (���) and p<0.0001 (����).

https://doi.org/10.1371/journal.pone.0220692.g004
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120-second segment estimated DFA α1; a 180-second segment estimated, LFnu, HF power,

HFnu, LF/HF power, SampEn, DFA α2; a 240-second segment estimated SampEn. [11]. In the

current study, ultra short sequences were investigated for the very first time in the premature

infants, a challenging subject exposed to many unstable clinical conditions and difficult arti-

facting procedures. We found that shortening the time length increased random measurement

error and bias. Shaffer et al. only used the Pearson product-moment correlation coefficient

that cannot account for random and systematic difference between the measurements. The

method we choose allowed to detect such errors. On another side, our results are concordant

with those of Munoz et al. They investigated to what extent (ultra-)short recordings capture

the “actual” HRV on recordings of 10s, 30s, and 120s selected from the longest (gold-standard)

recording of 240s to 300s. They found out that decrease in the bias and in the width of the

95%LoA interval were observed as the recording length increased from 10s to 120s, for both

SDNN and rMSSD [10]. Indeed, we observed similar results for all HRV features when record-

ing length increased from 120s to 600s.

Interactions between linear and non-linear explanatory variables of the

HRV

The correlations between HRV features have physiological origins above and beyond their

mathematical relationships. The HF component of HRV is mainly under parasympathetic reg-

ulation, as observed in clinical and experimental observations of autonomic maneuvers, such

as electrical vagal stimulation [33], muscarinic receptor blockade [34], and vagotomy [35].

Although they can also be influenced by the sympathetic nervous system [35], HF, SD1 and

rMSSD are strongly affected by vagal activity [36]. The interpretation of the LF component is

more complex. It has long been considered a marker of sympathetic modulation, especially

when expressed in normalized units [37, 38] or as the LF/HF [35]. Nevertheless, sympathetic

blockade does not suppress LF oscillations, while parasympathetic blockade strongly affects

them, and sympathetically induced LF oscillations of blood pressure induce LF oscillations in

the vagal outflow and RR through the baroreceptor reflex [36]. Consequently, the LF compo-

nent appears to include both sympathetic and vagal influences. The relationship between AC,

DC and spectral indices of HRV has observed in the study of Wang et al. As in our study, they

pointed out a strong correlation between AC, DC and rMSSD, SD, LHF (low and high fre-

quency) [39].

Poincaré plot geometry. The Poincaré plots, in which RR interval is plotted as a function

of the previous RR interval, portray the nature of RR interval fluctuations. Poincaré plot analy-

sis is both a quantitative and visual technique. In addition to the traditional linear methods

that completely ignore the time series structure, Poincaré plot analysis can provide some addi-

tional information about the balance between short- and long-term variability. Poincaré plot

analysis is easier and more sensitive at evaluating the sympatho-vagal balance and observing

the beat-to-beat HRV. The very strong correlation between SD1 and rMSSD was described by

Brennan et al. [40], then Hoshi et al. [23]. These two features have been shown both empiri-

cally and mathematically to be identical HRV metrics [41]. Correlations between SD, SD2 and

LF on one side, and SD2/SD1 and DFA on the other, were also observed in the study of Hoshi

et al. [23].

Entropy. Entropy estimation appears to be useful and may be calculated from much

shorter series. Common estimates for calculating entropy rates in physiologic signals are Sam-

pEn and approximate entropy. In current study, we concentrated on the calculation of Sam-

pEn because this measure of complexity is less biased and more reliable [42]. It is assumed that

SampEn depends on autonomic nervous system activity, but also on other mechanisms such
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as mechano-receptors afferent activity for example [43]. This could be the reason why SampEn

mainly contributes to different dimensions while traditional HRV features mainly contribute

to first and second dimensions.

Horizontal visibility graph. Horizontal visibility graphs are networks constructed of

time series. Some recent researches proved benefits of using visibility graph for EEG analyses.

In analyzing HRV, this method is still new and needs further investigation. HVG has been

explored in some diseases in adults such as congestive heart failure or primary cardiomyopathy

[44]. There is currently no study in the preterm infants. In the current study, one of the HVG

features appeared to correlate with traditional HRV features, i.e. Z4
1
, while others had little sim-

ilarities with time and frequency domain HRV features. Therefore, HVG appears to hold com-

plementary information to traditional features and could be useful for HRV analyses.

Clinical relevance

HRV analysis is a promising diagnostic tool in the neonatal care. Beside other physiological

signs, HRV features add important information on the status of premature infants and may

improve the performance of a decision support system. Our study pointed out that none of the

features were robust to the changes in time length. The shortening of the signal was associated

with an increased random measurement error in all features estimations and an increased bias

in all features estimation but HF, rMSSD, SD1, AC, DC and HVGs. 10-min time length pro-

vided a good compromise with minimal error for all the features and minimal bias for SD2/

SD1, SD2 and SampEn.

Many studies used frequency domain analysis to estimate autonomic maturation in pre-

term infants. They also used various time lengths to estimate HRV features, from 10 minutes

[14, 15] or 15 minutes [16] to 2.5 hours [17]. As observed in the current work, the frequency

domain feature HF is strongly correlated with rMSSD, SD1, AC and DC. All these short-term

features significantly increase with PMA with minimal bias in their measurement when short-

ening the time length of the sequences. They consequently are better candidates for the estima-

tion of autonomic maturation than SD2/SD1, LF/HF, α2 that do not significantly change with

the PMA.

Conclusion

Computer-based systems for the analysis of cardiac rhythm are very useful for diagnosis and

disease management. Several projects intend to propose decision support system to assist

clinicians in their decision-making that integrate physiological features. In this sense, this

work can be seen as a new contribution in the difficult context of prematurity where signals

are highly corrupted by noise and artifacts. The current study suggest that time length for the

measurements has to be optimized and selected regarding regarding the question to explore.

Comparisons have to done on features measured on the same time length. HRV features can

be extracted from ultra-short sequences but with greater random and systematic errors.
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the Heart Rate Is Associated with Sepsis in Sick Premature Infants. Neonatology. 2009; 96(2):109–

114. https://doi.org/10.1159/000208792 PMID: 19279394

2. Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwinkel J, Porcelli PJ, et al. Septicemia mortal-

ity reduction in neonates in a heart rate characteristics monitoring trial. Pediatric Research. 2013; 74

(5):570–575. https://doi.org/10.1038/pr.2013.136 PMID: 23942558
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