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Abstract

Polymorphonuclear neutrophils (PMNs) are the first line of defense against pathogens and

their activation needs to be tightly regulated in order to limit deleterious effects. Nrf2

(Nuclear factor (erythroïd-derived 2)-like 2) transcription factor regulates oxidative stress

and/or represses inflammation in various cells such as dendritic cells or macrophages. How-

ever, its involvement in PMN biology is still unclear. Using Nrf2 KO mice, we thus aimed to

investigate the protective role of Nrf2 in various PMN functions such as oxidative burst, neto-

sis, migration, cytokine production and phagocytosis, mainly in response to zymosan. We

found that zymosan induced Nrf2 accumulation in PMNs leading to the upregulation of

some target genes including Hmox-1, Nqo1 and Cat. Nrf2 was able to decrease zymosan-

induced PMN oxidative burst; sulforaphane-induced Nrf2 hyperexpression confirmed its

implication. Tnfα, Ccl3 and Cxcl2 gene transcription was decreased in zymosan-stimulated

Nrf2 KO PMNs, suggesting a role for Nrf2 in the regulation of proinflammatory cytokine pro-

duction. However, Nrf2 was not involved in phagocytosis. Finally, spontaneous migration of

Nrf2 KO PMNs was lower than that of WT PMNs. Moreover, in response to low concentra-

tions of CXCL2 or CXCL12, Nrf2 KO PMN migration was decreased despite similar CXCR2

and CXCR4 expression and ATP levels in PMNs from both genotypes. Nrf2 thus seems to

be required for an optimal migration. Altogether these results suggest that Nrf2 has a protec-

tive role in several PMN functions. In particular, it downregulates their activation in response

to zymosan and is required for an adequate migration.

Introduction

Polymorphonuclear neutrophils (PMNs) are the first cells to be mobilized against pathogens

present in both blood and tissues. They possess a variety of killing mechanisms such as reactive

oxygen species (ROS) release during oxidative burst, secretion of cytolytic enzymes and
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cytokines, phagocytosis and formation of neutrophil extracellular traps (NETs). They are cen-

tral players in critical illness [1,2] and in chronic inflammation [3]; therefore, their activation

needs to be tightly regulated to avoid tissue damage. Over the past two decades, a large number

of studies have evidenced that PMNs can also behave like immune-regulatory cells [2,4].

Among the recently described mechanisms, one can emphasize the following: i) myeloperoxi-

dase (MPO), a key PMN enzyme, can decrease mortality in a sepsis model and regulate in-

flammation [5,6], ii) our group and others have described PMN-induced dendritic cell

modulation in particular viaNETs [7,8], iii) NADPH oxidase 2 (NOX2) can limit inflamma-

tion in some situations [9] iiii) several inhibitory receptors and mediators have been described

such as immunoglobulin-like transcript 4 or Glucocorticoïd- Induced Leucine Zipper (GILZ)

[10,11].

Among the antioxidant and cytoprotective factors, nuclear factor (erythroïd-derived 2)-like

2 (Nrf2) is a transcription factor known as a master cell protector from ROS and electrophilic

insult [12]. At basal state, Nrf2 is repressed by its negative regulator kelch-like ECH-associated

protein 1 (Keap 1) [13]. Cellular exposure to oxidative stress or electrophiles can alter Keap1

conformation leading to nuclear translocation of Nrf2 [14]. Consequently, Nrf2 activates a bat-

tery of cytoprotective genes, such as Nqo1 [NAD(P)H quinone oxidoreductase 1],Hmox-1
(heme oxygenase-1) and Cat (catalase), all characterized by their antioxidant response element

(ARE) regulatory sequence [12,15]. Typical Nrf2 activators, such as sulforaphane (SFN) and

tert-butylhydroquinone (tBHQ), interact with certain cysteine residues of Keap1 implicating

an electrophilic modification [16]. In addition, Nrf2 can be activated by endogenous inflam-

matory products such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and NO-derived prod-

ucts [17].

The Nrf2-Keap1 pathway is involved in dendritic cell (DC) and macrophage functions [18].

In particular, we have shown that Nrf2 controls cell death induced by contact sensitizers in

DCs and upregulates antioxidant genes like Gsr, Cat, Gpx and Nos2 controlling ROS produc-

tion [19,20]. Recently, in a recent publication we described Nrf2 involvement in the control of

fibrosis and autoimmunity during sclerodermia [21]. The absence of Nrf2 in immature DCs

(iDCs) raises the intracellular levels of ROS and results in an enhanced co-stimulatory receptor

expression associated with an increased antigen-specific CD8 T cell stimulation capacity [22].

Furthermore, the absence of Nrf2 downregulates the phagocytic functions of DCs [22] and

macrophages [23,24], in particular via CD36 expression. In addition, Nrf2 downregulates the

transcription of pro-inflammatory cytokine genes in macrophages such as Il-6, Il-1β and Tnfα,

independently of redox control [19,25] and is involved in the expansion of suppressive mye-

loid-derived suppressor cells in steady state and during sepsis [26].

In contrast to DCs and macrophages, few studies have evaluated the role of Nrf2 in PMNs.

It has been suggested that ROS regulation, one of the major roles of Nrf2, could contribute to

the overall Nrf2 anti-inflammatory effect [24]. As Nrf2 activation is one of the ROS regulation

pathways (both mitochondrial [27] and NOX2 derived-ROS [9,28,29], it can be assumed that

Nrf2 could be a potential regulator of NOX2-dependent PMN functions, such as netosis. The

ex vivo ROS production capacity of PMNs from Nrf2 Knock-out mice (Nrf2 KO) has indeed

been shown to be increased during sepsis [24,30], in severe periodontitis [31] or in a model of

wound healing [32].

Our aim was to better understand the role of Nrf2 in the regulation of oxidative burst and

several other PMN functions. In order to do this, we chose to use zymosan as a stimulus. This

insoluble cell wall preparation from Saccharomyces cerevisiae is known to activate phagocytes

(TLR-2 and Dectin ligand) via the phosphorylation of p47phox subunit and rac2 activation

[33]. We thus compared in vitro, several functions of bone marrow (BM)-derived PMNs from

wild type (WT) mice and Nrf2 Knock-Out (KO) mice. We found that Nrf2 exhibited a
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protective role in zymosan-stimulated PMNs. Nrf2 was indeed shown to activate the transcrip-

tion of the cytoprotective genes Nqo-1,Hmox-1 and Cat, to downregulate the pro-inflamma-

tory genes Tnfα, Cxcl2 and Ccl3 and to reduce ROS production. Furthermore, optimal

migration was linked to Nrf2 expression. Interestingly, Nrf2 was not required for phagocytosis

in our model. These findings could help clarify the implication of Nrf2 in clinical situations

associated with PMN recruitment and/or activation. Moreover, these new findings could

improve the yet to be developed comprehensive evaluation for the Nrf2-targeted therapy, as

recently discussed by Cuadrado et al. [34].

Material and methods

Ethics statements

All animal studies were performed according to European Commission guidelines in compli-

ance with French Animal Welfare Law (law n˚2013–1118 from February 1st 2013, article

R214.89). Mice were killed for the sole purpose of collecting tibias and femurs to isolate bone-

marrow. According to the French law cited above, this is not considered as an experimental

procedure and no ethical approval is needed from the French Ministry of Research nor the

French Ministry of Agriculture.

Tibias and femurs were collected immediately after cervical dislocation. This euthanasia

procedure is in agreement with Directive 2010/63/UE of September 22 2010 annex IV and law

n˚ 2013–1118 of February 1st 2013.

Mice

Wild-Type (WT, Nfe2l2+/+) and Nrf2 Knock-Out mice (Nrf2 KO, Nfe2l2−/−) were generated

from inbred C57BL/6J background nrf2 heterozygous mice. Nrf2−/− mice [35] were provided

by the RIKEN BRC in accordance with a material transfer agreement (MTA) signed with Prof.

S. Kerdine-Römer. The donating investigator reported that these mice were backcrossed to

C57BL/6J for at least 10 generations. Mice were housed in a pathogen-free facility and handled

in accordance with the principles and procedures outlined in Council Directive 2010/63/EU.

Mice were bred side by side in ventilated racks within a specific pathogen-free facility. Age-

and sex-matched mice were used at 8–14 weeks of age. Genotyping was performed by PCR

using genomic DNA that was isolated from tail snips as described [35].

BM-derived PMN isolation

PMNs were isolated from BM using the mouse neutrophil isolation Kit (Miltenyi Biotec, Berg-

ish Glabash, Germany) according to the manufacturer’s instructions. In brief, cells were col-

lected from the femur and tibia and resuspended in phosphate buffered saline (PBS) solution

containing 0.5% bovine serum albumin (BSA) and 2 mM Ethylene diamine tetraacetic acid

(EDTA). Cell suspension was then filtrated through pre-separation filters 70 μM (Miltenyi Bio-

tec) to remove cell aggregates or large particles and ensure effective magnetic cell labeling.

Cells were incubated with biotin-antibody cocktail for 10 min, washed and incubated with

anti-biotin microbeads for 15 min. Finally, cell suspension was washed and applied onto a LS

column placed in a magnetic field. Flow-through containing unlabeled cells representing the

enriched PMN suspension, were collected and suspended in Hank’s balanced salt solution

(HBSS) supplemented with 0.5% heat-inactivated fetal calf serum (FCS). Cells were kept at

4–8˚C during staining and magnetic bead isolation. Cell purity and viability were assessed by

flow cytometry (FACS Calibur, BD Biosciences, San Jose, USA) using antibodies against

CD11b and Ly6G (BioLegend, London, UK) and was always�95% (S1 Fig).
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In vitro Nrf2 activation by sulforaphane

In some experiments, sulforaphane (SFN) (Sigma-Aldrich, St. Louis, MO, USA) was used in

order to strongly activate Nrf2 in WT PMNs. Cells (1 × 106/ml) were pre-incubated with SFN

1 μM for 4 h at 37 ˚C with 5% CO2. As SFN can be toxic in some conditions, we checked that

none of the tested SFN concentrations (1 and 5 μM) were either toxic or induced apoptosis

within 4 h, using the Annexin V/7-amino-actinomycin (AnnV/7AAD) counterstaining (Bio-

Legend) followed by flow cytometry (FACS Calibur). Cells positive for Annexin V and nega-

tive for 7-AAD were considered as apoptotic cells (consistently under 3%), whereas double

positive cells were considered as necrotic cells (consistently under 8%) (S2 Fig).

Nrf2 quantification using flow cytometry

PMNs (1 × 106/ml) from WT mice were stimulated with SFN (1 μM), or with 5 μg/ml of zymo-

san A (Sigma-Aldrich, suspended uniformly in HBSS) for 4 h at 37 ˚C with 5% CO2. After

fixation and nuclear permeabilization using a commercial kit (ThermoFisher Scientific, Cali-

fornia, USA), cells were incubated with a rabbit monoclonal anti-Nrf2 antibody detecting

nuclear and cytoplasmic Nrf2 (ab62352, Abcam, Cambridge, UK), and then with a goat anti-

rabbit Alexa Fluor 488 IgG (ThermoFisher Scientific). IgG antibody isotype control was used

as a negative control (BD Biosciences). Intracellular total Nrf2 expression was quantified in all

the samples using an Attune NxT flow cytometer (Thermofisher Scientific). In some experi-

ments, whole BM cells were stained directly without PMN isolation; in that case, the anti-

Ly6G antibody was used to identify PMNs.

Quantitative reverse transcription-polymerase chain reaction (RT-qPCR)

PMNs (1 × 106/ml) from WT and Nrf2 KO mice were stimulated with SFN (1 μM), or with

zymosan (5 μg/ml) for 4 h at 37 ˚C with 5% CO2. Total RNA was extracted after PMN lysis

with RNA-PLUS reagent (MP Biomedicals, Santa Ana, CA, USA). Total RNA pellets were

resuspended in RNAse-free water and quantified by spectrophotometry. First-strand cDNA

was synthesized from total RNA on a thermocycler (Biometra, Göttingen, Germany). The

reaction used 1 μg of total RNA, a dNTP mixture (containing 25 mM dATP, dGTP, dCTP,

and dTTP) and 50 μM oligo (dT) primers (MWG Biotech, Ebersberg, Germany). Reverse tran-

scription was performed in 1× AMV reverse transcriptase reaction buffer (Promega, Charbon-

nières-les-Bains, France), with RNase inhibitor (RNasine; Promega) at 40 U/μl, AMV reverse

transcriptase (Promega) at 10 U/μl, and RNase-free water, to a final volume of 10 μl. A control

without reverse transcriptase was used to confirm the absence of DNA contamination. RT-

qPCR was performed with SYBR Green technology on a CFX96 system (Bio-Rad, Marnes-la-

Coquette, France). Each reaction mix consisted of 1:50 diluted cDNA in a 4 μl final volume of

nuclease-free water; 0.5 μM of each forward and reverse primer forHmox-1, Nqo1, Cat, Cxcl1,

Cxcl2, Ccl3, Il-6, Tnfα, Il-1β, Gapdh, β-actin; and Sso Advanced Supermix (Bio-Rad) in a total

reaction volume of 10 μl. The following specific primers were used (forward and reverse,

respectively): Hmox-1: 5’-AGG GTC AGG TGT CCA GAG AA-3’ and 5’-CTT CCA
GGG CCG TGT AGA TA-3’; Nqo1: 5’-ACG GGG ACA TGA ACG TCA TTC T-3’ and

5’-AGT GTG GCC AAT GCT GTA AAC C-3’; Cat: 5’-GTG GTT TTC ACT GAC
GAG ATG GCA-3’ and 5’-TCG TGG GTG ACC TCA AAG TAT CC-3’; Cxcl1: 5’-
GGC CCC ACT GCA CCC AAA CC-3’ and 5’-CCG AGC GAG ACG AGA CCA GGA
GA-3’; Cxcl2: 5’-CTC TCA AGG GCG GTC AAA AAG TT-3’ and 5’-TCA GAC AGC
GAG GCA CAT CAG GTA-3’; Ccl3: 5’-ACC ACT GCC CTT GCT-3’ and 5’-TGG
AAT CTT CCG GCT-3’; Il-6: 5’-AGT TGC CTT CTT GGG ACT GA-3’ and 5’-CAG
AAT TGC CAT TGC ACA AC-3’; Tnfα: 5’-CAC CAC GCT CTT CTG TCT AC-3’; Il-
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1β: 5’-ACA GCA GCA CAT CAA-3’ and 5’-GCA GGT TAT CAT CAT-3’; Gapdh:

5’-TGC ACC ACC AAC TGC TTA G-3’ and 5’-GAT CCA GGG ATG ATG TTC-3’;

β-actin: 5’-CCT TCT TGG GTA TGG AAT C-3’ and 5’-AGG TCT TTA CGG ATG
TCA AC-3’.

After 30 s at 95˚C for Sso7dfusion polymerase activation, amplification was allowed to pro-

ceed for 44 cycles, each consisting of denaturation at 95˚C for 5 s and annealing/extension at

60˚C for 5 s. Eightfold serial dilutions of mixed cDNA (from different samples) were analyzed

for each target gene, enabling us to construct linear standard curves from which the efficiency

(E) of each PCR run was evaluated. SYBR green fluorescence was detected at the end of each

elongation cycle, after which a melting curve was constructed to confirm the specificity of the

PCR products. Quantification was performed with CFX Manager Software (Bio-Rad), and

data were analyzed by the ΔΔCt method. Ratios were calculated as the geometric mean of (1

+ E) − ΔΔCt, where E is the efficiency and ΔΔCt is the target gene expression of treated cells

compared with normal levels in untreated cells, with correction for the expression of the refer-

ence genes β-actin and Gapdh. Results are expressed as the fold factor increase (i.e., ratio of (1

+ E)− ΔΔCt of treated cells/(1 + E) − ΔΔCt of untreated WT cells).

Analysis of ROS production

The sum of intra- and extra-cellular ROS produced was quantified by luminol (5-amino-

2,3-dihydro-1,4-phthalazindione)-amplified chemiluminescence assay. Isolated WT and Nrf2

KO PMNs were seeded at 1 × 105/well in a white flat bottom 96-well plate (Costar, Kennebunk

ME, USA) and treated with 0.06 mM luminol (Sigma-Aldrich). Cells were then stimulated

with increasing concentrations of zymosan (1, 5 and 10 μg/ml). In some experiments, a prein-

cubation with SFN 1 μM for 4 h was carried out before cell stimulation, allowing for optimal

Nrf2 expression. PMNs without stimulation were used as controls. ROS-dependent chemilu-

minescence was analyzed immediately using a multimode microplate reader (TristarTM

LB941 Berthold, Bad Wildbad, Germany). ROS release was monitored for 60 min every 30 sec

at 37˚C. All samples were tested in triplicate. The area under the curve (AUC) of each sample

was calculated.

Induction and quantification of neutrophil extracellular traps (NETs)

NET analysis was performed as previously described [36]. Briefly, staining with the non-cell-

permeable DNA dye SYTOXgreen (Invitrogen, Carlsbad, USA) was used to evaluate the kinet-

ics of extracellular DNA release. PMNs (1 × 105) in HBSS medium were seeded to a Cellstar

black 96-well plate (Greiner Bio-One, Frickenhausen, Germany). SYTOXgreen (5 μM) was

added 20 min before PMN stimulation or not with PMA 100 nM or zymosan 50 μg/ml. The

fluorescence of NET-bound SYTOXgreen (excitation: 488 nm, emission: 510 nm) was ana-

lyzed for a period of 3 h every 15 min at 37˚C using LB 941 Multimode reader TriStar. NET

release was calculated as the difference between the mean relative fluorescence unit (RFU) at

time 15 min and the RFU at time 180 min.

Phagocytosis analysis

Phagocytosis analysis was performed as per supplier’s instructions using pHrodo Red zymosan

BioParticles (Life Technologies, Carlsbad, USA) conjugate for phagocytosis. Briefly, isolated

WT and Nrf2 KO PMNs (1 × 106/ml) were seeded in duplicate wells, pretreated or not with

cytochalasin D (20 μM) (Sigma-Aldrich) at 37 ˚C with 5% CO2 for 30 min and then incubated

for 90 min in the dark, alone or with increasing concentrations of zymosan bioparticles (5–

50 μg/ml). Using flow cytometry (FACS Calibur), phagocytosis was quantified by the increase

The role of Nrf2 transcription factor in neutrophil biology
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in particle fluorescence in acidic compartments. Cells were subjected to a one-color analysis

(FL-3, PerCP) for the percent of zymosan positive cells.

Chemotaxis assay

Chemotaxis assay was performed on freshly isolated WT and Nrf2 KO PMNs using transwell

migration assay, as previously described [37]. Briefly, PMNs (1 × 106 cells) were added to the

upper chamber of Transwell filters (3 μm pore diameter, Costar). These chambers were placed

in 24-well cell culture plates containing 600 μL assay buffer without chemoattractant or with

N-Formylmethionyl-leucyl-phenylalanine (fMLP, 1 μM) (Sigma-Aldrich), increasing concen-

trations of CXCL2 (0.5–200 nM) and increasing concentrations of CXCL12 (50–400 nM) (both

from BioLegend). In some experiments, cells were preincubated with AMD3100 octahy-

drochloride 50 nM (Sigma-Aldrich) for 30 min before being placed in the upper Transwell

chamber to confirm the specificity of CXCR4-dependent migration. Chambers were then incu-

bated for 60 min at 37˚C with 5% CO2 and the cells that had migrated to the bottom chamber

were recovered and stained with antibodies against Ly6G (PercP. Cy5.5) and CD11b (FITC)

(both from BioLegend) for flow cytometry analysis (FACS Calibur). Chemotactic indexes were

then calculated by dividing the number of PMNs counted in chemokine-stimulated wells by the

number of PMNs counted in filter-free wells (input well without any chemokine).

Quantification of receptor expression

The expression of TLR2, CXCR2 and CXCR4 on freshly isolated WT and KO PMNs was eval-

uated using flow cytometry. First, PMNs were incubated with anti-FcR antibody (anti-CD16/

CD32, BD Biosciences) at 4˚C for 15 min. Then, cells were washed and incubated in the dark

with antibodies against Ly6G, TLR2, CXCR2 and CXCR4 or with corresponding isotypes (all

from BioLegend). Ly6G positive cells were subjected to a double-color analysis to measure the

mean fluorescence intensity (MFI) for receptors.

ATP measurement

The level of ATP was measured in freshly isolated PMNs using Luminescence ATP detection

Assay Kit (Abcam) following the manufacturer’s instructions. Isolated resting WT and Nrf2

KO PMNs were seeded at 1 × 105/well in a white flat bottom 96-well plate (Costar) without

any stimulation. Samples were tested in triplicate. Luminescence was quantified using the mul-

timode microplate reader (TristarTM LB941 Berthold) and then converted to ATP concentra-

tion (in μM) using standard curve.

Statistical analysis

Nonparametric analyses were performed using GraphPad Prism software: the Mann Whitney

test was used to compare two independent groups and the Kruskal-Wallis test for more than

two independent groups. Data are expressed as means ± SEM. P<0.05 was considered to

denote statistical signficance.

Results

Nrf2 is inducible in BM-derived WT PMNs and triggers the activation of its

target genes

As a first step, we assessed Nrf2 expression in WT PMNs since Nrf2 is an ubiquitous transcrip-

tion factor, constantly ubiquitinilated by its cytosolic repressor Keap1 [38]. In a first set of

experiments, BM cells from WT mice were stained directly after filtration in order to quantify

The role of Nrf2 transcription factor in neutrophil biology
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Nrf2 endogenous expression in PMNs, in comparison to other BM cells. As expected, Nrf2

was expressed in almost all BM cells; interestingly, its expression in PMNs (identified as Ly6G+

cells) was at least 2-fold higher than in the other BM cells (Fig 1A).

As Nrf2 was highly expressed in WT PMNs, we evaluated its accumulation in response to

SFN (a well-known Nrf2 activator) used as a positive control stimulus, or to zymosan a strong

PMN stimulus. Freshly isolated BM-derived WT PMNs were thus incubated alone, with SFN

Fig 1. Nrf2 endogenous expression is high in PMNs and increases in response to SFN and zymosan. Freshly obtained BM cells were stained with

anti-Ly6G and rabbit anti-Nrf2 IgG or with corresponding isotype, then with goat anti-rabbit Alexa Fluor 488 Ab. Isolated PMNs were incubated for 4

h alone (NS), with 1 μM of SFN before staining or with zymosan 5 μg/ml. (A) Endogenous Nrf2 was quantified in BM cells using intracellular staining

followed by flow cytometry. PMNs were identified as Ly6G+, while Ly6G- cells represents the rest of BM cells. Nrf2 expression was quantified as the

mean fluorescence intensity (MFI) and compared between Ly6G+ and Ly6G- cells (#p<0.05 and ##p<0.01, Kruskal-Wallis test). (B) Nrf2 accumulation

in isolated PMNs after incubation with SFN 1 μM or zymosan 5 μg/ml, was measured using flow cytometry. The ratio of Nrf2 expression was calculated

by dividing the MFI of treated PMNs by the MFI of untreated PMNs (NS). Ratios greater than 1 indicate Nrf2 accumulation in stimulated PMNs

(Mann-Whitney test). Results are the mean ± SEM of samples from 4 independent experiments, n = 4.

https://doi.org/10.1371/journal.pone.0216465.g001
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or with zymosan, for 4 h. Using flow cytometry, we evidenced that zymosan as well as SFN

1 μM were able to significantly increase the intracellular staining of Nrf2 in WT PMNs, indi-

cating its accumulation (Fig 1B).

Finally, the transcription of three downstream target genes of Nrf2 (Nqo1,Hmox-1 and

Cat) was evaluated in WT and Nrf2 KO PMNs, in response to SFN and zymosan. In accor-

dance with flow cytometry results, SFN and zymosan induced the transcription of Nqo1,

Hmox-1 and Cat in WT PMNs (Fig 2).

Taken together, these results strongly suggest that like SFN, zymosan can induce Nrf2 accu-

mulation and activate its target genes in WT PMNs. As expected, no Nrf2 target gene tran-

scription was observed in Nrf2 KO PMNs.

Nrf2 activation in PMNs participates in the regulation of zymosan-induced

oxidative burst

As Nrf2 is inducible in PMNs, we aimed to study its implication in oxidative burst. First, a

luminol-amplified chemiluminescence assay was used to evaluate the role of Nrf2 on both

Fig 2. Nrf2 upregulates the transcription of 3 main target genes in response to SFN and zymosan. WT and Nrf2 KO PMNs were incubated or not (NS)

with SFN 1μM or zymosan 5 μg/ml for 4 h. mRNA expression ofNqo1,Hmox-1 and Cat was quantified using RT-qPCR. Results are expressed as fold

increase normalized to WT NS and corrected by the expression of the housekeeping genes β-actin and gapdh in all RT-qPCR experiments. Results are the

mean ± SEM of samples from 4 independent experiments, n = 4 (� indicates a significant difference between WT and Nrf2 KO PMNs throughout the study,
�p<0.05, Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0216465.g002
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intra- and extracellular ROS production in response to zymosan. In comparison to WT, PMNs

from Nrf2 KO mice exhibit a shift in the kinetics of ROS production, characterized by an early

peak at 25 min following stimulation with zymosan (Fig 3A). In response to increasing con-

centrations of zymosan (1, 5 and 10 μg/ml), we quantified a significantly higher production of

ROS in Nrf2 KO PMNs than in WT PMNs suggesting an implication of Nrf2 in the regulation

of ROS production (Fig 3A and 3B). As zymosan-induced activation is dependent on TLR2

activation, we wondered if Nrf2 KO PMNs displayed a higher basal expression of TLR2. Flow

cytometric analysis showed that PMNs from both genotypes displayed a similar expression of

TLR2 (Fig 3C). Similar results were observed with dectin-1 expression, another receptor

involved in zymosan-induced PMN activation (data not shown).

Next, the effect of a significant Nrf2 accumulation on the regulation of ROS production was

assessed. WT and Nrf2 KO PMNs were thus pre-treated or not with 1 μM of SFN at 37˚C for 4

h, before stimulation with zymosan at 5 μg/ml. As shown in Fig 3D, SFN-preincubation more

significantly decreased ROS production in WT PMNs than in Nrf2 KO PMNs suggesting that

Nrf2 activation decreases ROS production in PMNs.

As netosis can be related to ROS production in most conditions, we wanted to examine the

possibility that Nrf2 might also modulate this function, using the SYTOXgreen assay. We

found that PMA-induced extracellular DNA release was similar in WT and KO PMNs, as

zymosan failed to induce netosis in PMNs from WT and Nrf2 KO mice (S3 Fig). We could

thus rule out a potential effect for Nrf2 in these conditions.

Altogether, these results provide evidence that Nrf2 activation participates in the regulation

of ROS production in BM-derived PMNs in response to zymosan independently of TLR2

expression level.

Nrf2 modulates the transcription of some pro-inflammatory genes

TNFα, IL-6 and IL-1β are key pro-inflammatory cytokines produced by PMNs. We sought to

demonstrate whether Nrf2 could control the transcription of genes encoding these cytokines

as well as the chemokines CCL3, CXCL1 and CXCL2. For that, their transcriptional level was

quantified in WT and Nrf2 KO PMNs stimulated or not with zymosan 5 μg/ml for 4 h. Inter-

estingly, the lack of Nrf2 allowed for considerable transcription of genes encoding CCL3,

CXCL2, TNFα and IL-1β in response to zymosan. As shown in Fig 4, Nrf2 KO PMNs dis-

played a significantly enhanced Tnfα, Cxcl2 and Ccl3mRNA expression as compared to WT

PMNs, while Il-6, Cxcl1 and Il-1βmRNA expressions were not significantly increased in the

absence of Nrf2.

Nrf2 is not involved in the phagocytic capacity of PMNs

We then compared the phagocytic capacity between WT and Nrf2 KO PMNs. This function

was analyzed using pHrodo Red Zymosan Bioparticles Conjugates. We found that WT and

Nrf2 KO PMNs showed similar capacity to phagocyte zymosan bioparticles after 90 min, in a

concentration-dependent manner. Similarly, the inhibition effect of Cytochalasin D (inhibitor

of actin polymerization) was similar in both genotypes (Fig 5A and 5B). These data suggest

that Nrf2 does not seem to be involved in the phagocytosis of zymosan particles by PMNs.

Nrf2 is required for an optimal PMN migration independently of

chemokine receptor expression and ATP level

We finally studied the role of Nrf2 in the modulation of PMN migration. We focused on two

axes (CXCR2 and CXCR4) because in vivo PMN recruitment relies heavily on their ligands

CXCL2 and CXCL12 respectively; fMLP was used as a positive control. Using a transwell
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Fig 3. Nrf2 activation decreases PMN ROS production in response to zymosan. WT and Nrf2 KO PMNs were stimulated or not

with increasing concentrations of zymosan. The sum of intra- and extracellular ROS was monitored for 60 min by the luminol-

amplified chemiluminescence assay. (A) Graphs from one representative experiment show the kinetic of ROS production in

unstimulated PMNs (left panel) or in response to zymosan 10 μg/ml (right panel). (B) The area under curve (AUC) from the kinetic

curves of 6 independent experiments was used to calculate the ratio of ROS production (KO AUC/WT AUC). Ratios greater than 1

correspond to higher ROS production in KO PMNs (��p<0.01, Mann-Whitney test). (C) The expression of TLR2 was assessed on

freshly isolated WT and Nrf2 KO PMNs (grey filled curves) in comparison to corresponding isotypes (black unfilled curves). The

associated graph represents the mean ± SEM of TLR2 MFI, n = 4. (D) To ensure an important Nrf2 accumulation, PMNs were

pretreated or not (NT) with SFN 1 μM for 4 h then stimulated with 5 μg/ml of zymosan. ROS production was then measured for 60
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migration assay, PMNs were allowed to migrate for 1 h spontaneously, toward 1 μM of fMLP

or toward gradual concentrations of CXCL2 and CXCL12. In the absence of Nrf2, PMN spon-

taneous migration and migration in response to fMLP were significantly decreased as com-

pared with WT PMN migration. Concerning the response to increasing concentrations of

CXCL12, both WT and Nrf2 KO PMNs displayed a relatively weak capacity to migrate. In-

terestingly, Nrf2 KO PMNs displayed a significantly decreased capacity to migrate in response

to the lowest concentration of CXCL12 as compared to WT PMNs. This migration was

completely abolished in the presence of AMD, a competitive inhibitor of CXCL12. Concern-

ing the dose-response of CXCL2, two distinct bell curves could be observed, one shifted in

relation to the other. Indeed, Nrf2 KO PMNs displayed a significantly decreased capacity to

migrate in response to the two lower concentrations of CXCL2, while migration in response

to higher concentrations was similar in both WT and Nrf2 KO PMNs (Fig 6A). These results

suggest that Nrf2 could participate in PMN motility by increasing their sensitivity to

chemoattractants.

In order to assess whether these differences in migration in the absence of Nrf2 could be

linked to differences in the expression of chemokine receptors, we analyzed CXCR4 and

CXCR2 membrane expression on freshly isolated PMNs. As observed, WT and Nrf2 KO

PMNs displayed similar expression of both receptors (Fig 6B), suggesting that Nrf2 can partici-

pate in PMN migration independently of chemokine receptor expression.

In order to better understand the mechanism of Nrf2 KO PMN affected migration, we ana-

lyzed the PMN phenotype after 1 h of migration by quantifying the expression of the β2 integ-

rin CD11b/CD18 adhesion molecule. We found that the migration-induced upregulation of

CD11b was significantly increased in Nrf2 KO PMNs as compared with WT PMNs, in

response to low concentrations of CXCL2 (Fig 6C).

Finally, as ATP is mandatory for an optimized migration we hypothesized that ATP levels

could differ in Nrf2 KO PMNs. We found no significant difference between both genotypes at

resting state, even if ATP levels seemed to be slightly higher in WT PMNs (Fig 6D).

Discussion

PMNs play a key role in host defense against pathogens, but inadequate or excessive activation

can lead to deleterious effects, contributing to the pathophysiology of many acute and chronic

inflammatory diseases. In parallel, Nrf2 plays an active role in the control of inflammation, via

several mechanisms. In this study, using an in vitromodel, we found that Nrf2 participates in

the regulation of murine BM-derived PMN response to the fungal stimulus zymosan, via the

activation of cytoprotective genes and the downregulation of pro-inflammatory genes. ROS

production depends on Nrf2 activation, while phagocytosis is similar in WT and Nrf2 KO

mice PMNs. Our results thus highlight the impact of Nrf2 on PMN activation, providing new

findings relevant to the regulation of neutrophil activation by zymosan.

min by the luminol-amplified chemiluminescence assay. Graphs show the kinetics of ROS production from one representative

experiment (left panel) and the mean ± SEM of AUC from the kinetic curves of 6 independent experiments (right panel, n = 6;
�p<0.05, Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0216465.g003
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Several studies have led to the consensus that PMNs are able to finely regulate both innate

and adaptive immune responses, engaging with T lymphocytes or antigen-presenting cells,

releasing anti-inflammatory mediators or expressing regulatory receptors; this broader role in

immunity also led to the definition of several functional PMN subpopulations [4,39–41]. In

particular, our group evidenced that isolated NETs or neutrophil-derived ectosomes were able

to downregulate LPS-induced DC maturation and their capacity to induce T lymphocyte pro-

liferation [7,42]. We also evidenced that GILZ, a potent anti-inflammatory mediator

Fig 4. Nrf2 modulates Ccl3, Cxcl2 and Tnfα transcription. WT and Nrf2 KO PMNs were incubated or not with zymosan 5 μg/ml for 4

h. mRNA expression of Ccl3, Cxcl2, Cxcl1, Tnfα, Il-1β and Il-6, were measured using RT-qPCR. All results are expressed as fold increase

normalized to WT NS and corrected by the expression of the housekeeping genes β-actin and gapdh (4 independent experiments, n = 4;
�p<0.05 Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0216465.g004
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Fig 5. The lack of Nrf2 does not affect PMN phagocytic capacity. Cells were incubated for 90 min alone or with the

determined concentrations of pHRodo Red Zymosan Bioparticles. (A) Flow cytometry-based analysis was used to

evaluate PMN zymosan uptake. PMNs were subjected to a one-color analysis for the percent of zymosan (25 μg/ml)

positive events. (B) Graph representing the percentage of PMNs that phagocytosed increasing concentrations of

zymosan (5, 25 and 50 μg/ml). PMNs were pretreated for 30 min with 20 μM of cytochalasin D for negative control. All

data are presented as the mean ± SEM, 4 independent experiments, n = 4.

https://doi.org/10.1371/journal.pone.0216465.g005
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Fig 6. Nrf2 is necessary for optimal PMN migration toward CXCL12 and CXCL2 without regulating receptors expression. (A) WT

and Nrf2 KO PMNs were allowed to migrate for 1 h across transwell filters spontaneously or toward fMLP 1 μM, CXCL12 or CXCL2. The

negative control in CXCL12-dependent migration was obtained by pretreating PMNs with 50 μM of AMD300. Chemotactic indexes were

then calculated by dividing the number of PMNs that were counted in the chemokine-stimulated well by the number of PMNs that were

counted in the input well (�p<0.05 ��p<0.01 Mann-Whitney test). (B) The expression of CXCR2 (B, left panel) and CXCR4 (B, right panel)

were assessed on freshly isolated WT PMNs (solid grey line) and Nrf2 KO PMNs (dashed black line) in comparison to corresponding

isotypes (unfilled curves). The associated graph represents the mean ± SEM of CXCR2 and CXCR4 MFI, n = 4. (C) The MFI fold variation

of CD11b was assessed on PMNs that have migrated through the transwell in comparison to PMNs in the input well. (D) ATP levels in
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implicated in cell survival, was present in human neutrophils, promoted apoptosis viaMcl-1

downregulation, and was upregulated in patients with the acute respiratory distress syndrome

in relation to severity [11,43]. Our group is also very involved in studying the role of Nrf2 in

several pathophysiological conditions. For instance, we showed that Nrf2 can control inflam-

mation in a model of allergic contact dermatitis (both sensitization and effector phases) [44]

and during sclerodermia [21]. We also highlighted the role of Nrf2 in the control of DC cell

death induced by chemical sensitizers and we found that Nrf2 positively controls antioxidant

genes like gsr, catalase, gpx, nos2 and some immune genes in response to contact sensitizers

[19]. We thus addressed the question of the potential immunoregulatory role of Nrf2 in

numerous PMN functions.

Our first aim was to study Nrf2 activation in BM-derived PMNs. Joshi et al. recently dem-

onstrated that the transcription level of Nrf2 was strong in circulating PMNs and in wound tis-

sue PMNs [32]. Here, using flow cytometry, we confirm that Nrf2 is highly expressed in BM-

derived WT PMNs as compared to other BM-derived cells. Moreover, using SFN, a well-char-

acterized Nrf2 activator, we demonstrate that Nrf2 can be mobilized and activated in WT

PMNs as several target genes were induced; SFN was particularly potent for the activation of

Nqo1 and Cat. In addition, our study evidences for the first time that zymosan, a TLR2 agonist

is also able to mobilize Nrf2 in WT PMNs and to activate the same target genes. These results

showing the important activity of Nrf2 in PMNs are consistent with those of Joshi et al. in

mouse blood PMNs [32], and with those of R Thimmulappa et al. in human PMNs [30] and

VC Araujo et al. in human PMNs from fungal oral granuloma [45].

Since Keap1/Nrf2 signaling maintains redox homeostasis in the cell, we studied the role of

Nrf2 in PMN oxidative burst. We thus performed a set of experiments aiming to document

the contribution of Nrf2 in ROS production. C Sima et al. have recently reported that in

response to PMA, Nrf2 KO PMNs displayed a normal ROS production [31]. Conversely, an

enhanced ROS release in Nrf2 KO PMNs has been described in the literature in response to

LPS; however, experimental conditions were quite different as PMNs were collected from the

peritoneal fluid 4 h after thioglycolate injection [24]. In our study, we were able to detect a low

but significant Nrf2-mediated regulation of ROS production in response to zymosan, indepen-

dently of TLR2 and dectin-1 expression level. This suggests that Nrf2 could rather intervene in

the downstream signaling of these receptors. We chose non opsonized zymosan as a stimulus

as it has been demonstrated that it induces NADPH oxidase activation in human blood PMNs

leading to high ROS production [33]. Since zymosan induces Nrf2 accumulation, the antago-

nistic activities of Nrf2 and NADPH oxidase [27] could explain the exacerbated zymosan-

induced ROS production in the absence of Nrf2. Our second set of experiments was designed

to greatly upregulate Nrf2 before stimulating oxidative burst. We indeed found that SFN pre-

treatment reduced zymosan-induced ROS to a greater extent in WT PMNs than in Nrf2 KO

PMNs, suggesting that Nrf2 has a crucial role in ROS regulation in BM-derived PMNs. Of

note, we only used here low concentrations of SFN to avoid activation of other signaling path-

ways [46]. The latter results are consistent with those of Thimmulappa et al. using the triterpe-

noid CDDO-Im as Nrf2 enhancer or those of Dias et al. using SFN in human PMNs [47,48].

freshly isolated PMNs were quantified using an ATP luminescent assay. The expression levels from 6 independent experiments are shown

as the mean of MFI ± SEM (n = 6).

https://doi.org/10.1371/journal.pone.0216465.g006
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Using live cell imaging of brain hippocampal glio-neuronal cultures, other authors also found

that a graded expression of Nrf2 paralleled a graded production of ROS [27].

Several studies have documented the Nrf2-induced decrease in transcriptional expression

of some pro-inflammatory cytokines in various cell types, such as human epithelial cells or

macrophages [49,50]. In PMNs, few results have been reported. Here we have clearly shown

that, in response to zymosan, Nrf2 KO PMNs displayed a significantly increased Ccl3, Cxcl2
and TnfαmRNA expression. This suggests that Nrf2 can modulate inflammatory gene tran-

scription in BM-derived mice PMNs, as already suggested in peritoneal PMNs in a model of

LPS-induced inflammation [30] and in human blood PMNs [47]. Moreover, we would suggest

that Nrf2 activation in zymosan-induced peritonitis could limit neutrophil activation and

auto-recruitment mainly via the regulation of TNFα, CXCL2 and CCL3 production in the

peritoneal fluid [51]. Concerning IL-6, WT and Nrf2 KO PMNs exhibited similar transcript

levels, in accordance with N Joshi et al. recent study [32]. Although Nrf2 decreases the tran-

scriptional upregulation of Il-6 and Il-1β in LPS-stimulated macrophages through the inhibi-

tion of RNA Pol II recruitment, no direct interference could be observed in PMNs [25].

Interestingly, it was also reported that Nrf2 and its target genes were not needed for interferon

γ production by lung PMNs in a mouse model of pneumonia [52]. We can thus suggest that,

Nrf2 is needed for the transcriptional regulation of several but not all inflammatory cytokines

and chemokines in PMNs.

We also examined whether the lack of Nrf2 can affect PMN capacity to phagocyte zymosan

particles. We found that Nrf2 KO and WT PMNs exhibited similar capacity to phagocyte

zymosan bioparticles. While Nrf2 KO peritoneal macrophages have been described to exhibit

impaired phagocytosis during sepsis as compared with WT cells [24], our results suggest that

Nrf2 is not involved in PMN phagocytosis, unlike macrophages. This result highlights several

specific roles of Nrf2 depending on cell type.

The role of ROS in PMN migration has been widely studied over the past few years [53,54].

A potential link between Nrf2 and PMN migration can thus be suspected. Although some

studies have shown an enhanced PMN recruitment in Nrf2 KO mice in different inflammatory

settings [55,56], the use of a full Nrf2 KO model could not lead to clear conclusions concerning

Nrf2 role in PMN migration; in particular, Sima et al. suggested that Nrf2 could slow down

fMLP-induced PMN migration in vitro as early as 15 min of migration [57]. We thus further

investigate this mechanism, using an one hour-transwell migration assay with fMLP and

increasing concentrations of two other chemokines, CXCL2 and CXCL12 that antagonistically

modulate PMN chemotaxis [58,59]. In contrast with ROS shifted curves, the chemokine bell-

shaped migration curves suggested that Nrf2 improved PMN ability to migrate toward fMLP

or low concentrations of CXCL2 and CXCL12. Of note, WT and Nrf2 KO PMNs displayed a

similar expression of CXCR2 and CXCR4. Nrf2 has been previously reported to partially con-

trol hematopoiesis through the regulation of CXCR4 signaling [60]. Here, we saw that Nrf2

could also regulate PMN CXCR2- and CXCR4-dependent migration independently from the

expression level of both receptors. To better understand the mechanism of Nrf2-modulated

migration, we compared the modification of expression of β2 integrin CD11b/CD18 after 1 h

of migration and found that Nrf2 KO PMNs exhibit a significant upregulation of CD11b even

in response to low concentrations of CXCL2. CD11b upregulation on in vitro-migrating

PMNs has already been described, in particular in a recent model of airway epithelial cells

[61]. This suggests that Nrf2 ensures an optimal migration of PMNs via the control of migrat-

ing cell activation level. Some studies have evidenced that Nrf2 could potentially enhance the

synthesis of ATP in various cell models [62,63]. As ATP is crucial for PMN migration [64], we

thus hypothesized that ATP could be involved in the modified migration observed in Nrf2 KO

PMNs. However, we failed to evidence a significant difference between ATP levels in resting
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WT and Nrf2 KO PMNs suggesting that Nrf2 plays a weak role in this setting. Based on our

findings, we can suggest that the intense recruitment of PMNs observed in Nrf2 KO mice in

several inflammatory in vivomodels [55,56] might not be related to an intrinsic control of

PMN migration by Nrf2. Nevertheless, Nrf2 could ensure an optimal PMN motility and che-

mokine sensing needed, in particular to drive PMN migration from the BM to the tissues at

the very early stages of inflammation.

This in vitro evaluation of Nrf2 implication in PMN functions need also to be analyzed

from a clinical point of view as Nrf2 diseasome and drugome have been recently defined [34].

Indeed, in the numerous clinical settings associated with significant PMN tissue infiltration

and/or PMN activation, it is important to better understand the implication and the efficiency

of regulatory mechanisms including Nrf2 pathway. For instance, in the lung, activating Nrf2

leads to protective effects during acute lung injury or asthma, but also enhances advanced

stages of carcinogenesis [65,66]. We can thus assume that activating or inhibiting Nrf2 in

PMN-associated diseases is an important issue that needs to be fully considered.

Taken together, our results contribute to a better understanding of the Nrf2 protective role

in PMNs, particularly in response to zymosan that is a physiological stimulus mimicking yeast

infection, and widely used in experimental models of arthritis or peritonitis. This study indi-

cates that Nrf2 cytoprotective target genes are inducible in PMNs and highlights its oxidative

burst regulation capacity. In addition, this study demonstrates that Nrf2 is needed for an opti-

mal PMN migration. Future research into understanding the role of Nrf2 in PMN recruitment

in a context of inflammation may provide insight and novel approaches in the field of

inflammation.

Supporting information

S1 Fig. Flow cytometry-based assessment of PMN purity. Following negative isolation,

PMN purity was assessed using antibodies against Ly6G and CD11b. Ly6G+, CD11b+ cells rep-

resent BM PMN. PMN purity was > 95% in all experiments.

(TIF)

S2 Fig. Assessment of SFN toxicity through AnnexinV-7AAD staining. PMN were incu-

bated alone or with the indicated concentrations of SFN for 4 h, and then stained with Annex-

inV and 7-AAD. AnnV+ cells represent apoptotic cells while double positive cells

(AnnV+,7-AAD+) represent necrotic cells. Data are shown as representative FACS analysis (A)

and as the mean ± SEM of 3 independent experiments (B).

(TIF)

S3 Fig. Zymosan fails to induce DNA release in netosis. PMN were incubated for 3 h, alone

or with PMA 100 nM and zymosan 50 μg/ml. Time dependent DNA release was monitored

using the fluorescent SYTOXgreen. (A) Data from one representative experiment shows the

kinetic of DNA release in response to PMA 100 nM. (B) Results from 4 independent experi-

ments are expressed as the difference between RFU at time 15 min and the RFU at time 180

min.

(TIF)
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Martin.

Writing – review & editing: Doumet Georges Helou, Luc De Chaisemartin, Vanessa Granger,

Marc Pallardy, Saadia Kerdine-Römer, Sylvie Chollet-Martin.
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