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Recherche Agronomique, Université Blaise Pascal, Clermont-Ferrand, France, 5 Department of

Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis,

Tennessee, United States of America

* camille.rustenholz@inra.fr

Abstract

Cytochromes P450 are enzymes that participate in a wide range of functions in plants, from

hormonal signaling and biosynthesis of structural polymers, to defense or communication

with other organisms. They represent one of the largest gene/protein families in the plant

kingdom. The manual annotation of cytochrome P450 genes in the genome of Vitis vinifera

PN40024 revealed 579 P450 sequences, including 279 complete genes. Most of the P450

sequences in grapevine genome are organized in physical clusters, resulting from tandem

or segmental duplications. Although most of these clusters are small (2 to 35, median = 3),

some P450 families, such as CYP76 and CYP82, underwent multiple duplications and form

large clusters of homologous sequences. Analysis of gene expression revealed highly spe-

cific expression patterns, which are often the same within the genes in large physical clus-

ters. Some of these genes are induced upon biotic stress, which points to their role in plant

defense, whereas others are specifically activated during grape berry ripening and might be

responsible for the production of berry-specific metabolites, such as aroma compounds.

Our work provides an exhaustive and robust annotation including clear identification, struc-

tural organization, evolutionary dynamics and expression patterns for the grapevine cyto-

chrome P450 families, paving the way to efficient functional characterization of genes

involved in grapevine defense pathways and aroma biosynthesis.

Introduction

Grapevine (Vitis vinifera L.) is one of the oldest [1] and economically the most important [2]

fruit crop in the world. The majority of grapes produced worldwide are used in winemaking.

Modern cultivated grapevine has been shaped by thousands of years of selection for traits such
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as berry size, sugar content or skin color [3], but today’s viticulture is facing new challenges. In

addition to pathogen pressure, it has to deal with climate change [4,5], and shift of consumer

preference towards higher quality wines with a lower environmental impact [6,7]. Traditional

breeding is extremely difficult to apply in grapevine because of its long lifecycle, reduced fit-

ness of progeny and complexity of quality traits [8]. Sequencing of the grapevine genome in

2007 [9] and advances in the ‘omics’ techniques [10] set the stage for more efficient breeding

solutions. The next crucial step towards improved grapevine varieties is the identification of

genes underlying important traits, such as response towards pathogens, fruit development and

quality.

Many developmental as well as ecological response pathways in plants involve cytochrome

P450 oxygenases [11,12]. In plants, these enzymes catalyze regio- and stereospecific insertion

of an oxygen atom into small, hydrophobic substrates that range from terpenoids and fatty

acids to amino acids and their derivatives, such as phenolic compounds. In the model plant

Arabidopsis thaliana they control processes as diverse as plant growth and branching [13,14],

flower [15,16] and fruit development [17], formation of lignin and surface biopolymers

[18,19], emission of volatiles [20,21] or plant-pathogen and plant-insect interactions [21–23].

In crop plants, P450s play major roles in shaping agriculturally-relevant traits, such as fruit

size [24] or aroma biosynthesis [25]. This makes cytochromes P450 attractive targets for crop

improvement.

Cytochromes P450 in plants evolved into many distinct families, which are usually com-

posed by genes with 40% or higher protein sequence identity. Within one P450 family the bio-

chemical function is often conserved across the plant kingdom. For example, enzymes from

the CYP97 family are involved in carotenoid hydroxylation, CYP79s in the N-hydroxylation of

amino acid to aldoximes, CYP75s in the hydroxylation of flavonoids, and CYP704s in addition

to CYP703s in fatty acid hydroxylation to form the precursors to structural polymers sporopol-

lenin and cutin [26]. Members of other families, however, have divergent functions: some

members of CYP72 family are involved in iridoid biosynthesis, whereas others oxidize triter-

pene substrates [27]. These differences stem from different evolutionary pressures on genes

with different functions. Families with essential functions, such as hormone metabolism or

synthesis of biopolymers, usually show a low copy number and are submitted to high purifying

selection, whereas families with adaptive functions expanded or “bloomed” in certain taxa

[28]. A well-documented example is the bloom of the CYP76M subfamily in rice (Oryza
sativa), which consists of 11 genes and 2 pseudogenes. At least 4 members of this subfamily are

involved in the biosynthesis of diterpenoid antifungal compounds [29,30]. They are clustered

close together in the genome, which is another common feature of recently duplicated P450s

and probably result from sequential tandem duplications [28]. Interestingly, in other plants,

for example Arabidopsis thaliana or Catharanthus roseus, some CYP76 members have a differ-

ent biochemical function, namely oxidation of monoterpenols or their iridoid derivatives

[31,32]. Recently expanded P450 families might therefore have new ecological functions, but

those are more difficult to predict compared to functions of conserved P450 families. In addi-

tion, function of many P450 families is still unknown or poorly understood.

A previous annotation of P450s has highlighted some potentially interesting gene families

in the highly heterozygous V. vinifera cv. Pinot Noir genome [33–35]. In this work we per-

formed the first complete manual annotation of P450s in the nearly homozygous V. vinifera
reference genome PN40024 [9]. We discuss the structural organization of the genes with par-

ticular focus on gene clusters. We evaluate phylogenetic relationships between those genes in

order to be able to identify recently expanded gene families likely linked to adaptive traits or

domestication. Finally, we investigate spatio-temporal gene expression patterns, with

Vitis vinifera CYPome
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particular focus on berry development and pathogen response to detect P450s with potential

roles in these important physiological processes.

Material and methods

Gene annotation

We annotated the cytochromes P450 using the 12X.2 version of the assembly of the Vitis vinif-
era cv PN40024 genome ([9,36], https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/

Genome-sequences). Four publically available datasets of cytochromes P450 were used to per-

form similarity searches in the PN40024 genome. 947 protein sequences of grape P450s were

downloaded from the NCBI Protein database (http://www.ncbi.nlm.nih.gov/protein, Feb

2014). Three datasets were downloaded from David Nelson’s website (http://drnelson.uthsc.

edu/CytochromeP450.html, Feb 2014), which stores manually curated annotations of cyto-

chromes P450 for many species: 702 P450 protein sequences of Vitis vinifera cv Pinot Noir

clone ENTAV115 (28, http://drnelson.uthsc.edu/vitis.htm); 416 P450 protein sequences of

Vitis vinifera cv PN40024 from the 8x assembly version of the genome (10, http://drnelson.

uthsc.edu/Vitis.additionalP450s.htm); and 288 P450 protein sequences of Arabidopsis thaliana
(35, http://drnelson.uthsc.edu/Arabidopsis.Blast.file.html). Using these four datasets, we

expected to be as exhaustive as possible in the cytochromes P450 similarly search of the

PN40024 genome. The four datasets were masked for repeat sequences using the online tool

“Repeat Masking” from Censor (http://www.girinst.org/censor/index.php).

The four masked datasets were used to perform four independent TBLASTN analyses

[37] against the PN40024 12X.2 sequence with an e-value cutoff of 1e-3. The TBLASTN out-

puts were parsed using a homemade script. The hits from the three grape datasets were kept

if they were at least 50 amino acids long with at least 70% sequence identity. The hits from

the Arabidopsis dataset were kept if they were at least 50 amino acids long with an identity

percentage of at least 50%. The software Exonerate (version 2.2.0, build October 2008, [38])

was used to predict gene structures using the protein2genome parameter and the same cutoff

of sequence identity as above. A homemade script was used to reformat the output files from

exonerate into files in the gff format. These gff files were imported to the Artemis genome

browser [39] to perform the manual curation of the structures suggested by Exonerate. The

parsed hits identified through TBLASTN were used to improve or to complete the Exonerate

annotations. Every annotation starting with a start codon, ending with a stop codon and

with correct exon-intron borders (GT-AG or sometimes GC-AG) was considered as a com-

plete “gene”. Every annotation showing this gene structure (start and stop codons, correct

exon-intron borders) but with a single point mutation creating a frameshift, a premature

stop codon or a wrong exon-intron border was considered as a “putative pseudogene” also

marked “pseudogene?” because it may result from a mistake in the genome assembly.

Every annotation interrupted by a gap in the genomic sequence or including one was consid-

ered as a “partial” annotation. All the other annotations with wrong gene structure but

showing a significant similarity level with a cytochrome P450 from one of the four datasets

were annotated as “pseudogenes”. The genome annotation V1 stored in Grape Genome

Database hosted at CRIBI ([40]; http://genomes.cribi.unipd.it/DATA/GFF/V1.phase.gff3)

and a set of expertized and functional grape cytochromes P450 were used to guide the man-

ual curation.

To validate the gene structure, two transcript datasets were used. First, the Vitis vinifera uni-

gene set build #15 from the NCBI database was downloaded (ftp://ftp.ncbi.nih.gov/repository/

UniGene/Vitis_vinifera/Vvi.seq.uniq.gz). The 32,193 unigenes were mapped on the PN40024

12X.2 sequence using GMAP version 2013-11-27 [41] using the default parameters except for

Vitis vinifera CYPome
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the format parameter which was set to “gff3_match_cdna”. The second transcript dataset was

locally assembled using six RNA-Seq experiments ([42], SRR519450, SRR519456, SRR520380

and SRR520385; [43], all four samples; [44], SRR493740- SRR493746; [45], SRR866544,

SRR866570, SRR866571 and SRR866576; [46], SRR522472, SRR522477 and SRR522478; and

four RNA-Seq datasets submitted in the frame of this study. The software Tophat2 v2.0.11 [47]

was used to map the RNA-Seq reads against the PN40024 12X.2 sequence using the following

parameters: -p 5 -N 5—read-edit-dist 5. The software Cufflinks v2.2.1 [48] was used to assem-

ble the transcripts from all the RNA-Seq experiments. First the cufflinks command was used

with the -p 5 parameter and then the cuffmerge command with the -p 15 parameter and using

the fasta file of the PN40024 12X.2 sequence for the -s parameter. This assembly led to 32,219

transcripts and to a gtf file showing their mapped location in the PN40024 12X.2 sequence.

The two transcript datasets were formatted in gff format compatible with the Artemis Browser

so that the predicted gene structures of the cytochromes P450 could be compared with the

transcripts and edited if needed.

The command maskFastaFromBed v2.19.1 from the bedtools package [49] was used to

mask the regions of the PN40024 12X.2 sequence where we annotated cytochrome P450

exons after having reformatted the gff file of the annotations into a bed file. We performed

TBLASTN analyses of the four grape cytochrome P450 datasets against the masked PN40024

12X.2 sequence and parsing analyses using the same parameters and cutoffs as previously

described. This step allowed identifying the region of the grape genome for which a cyto-

chrome P450 similarity was missed during the manual curation.

To validate the set of complete genes of cytochromes P450 that we annotated, a BLAST

against non-redundant sequence database (NR) was performed and only the genes for

which the best hit was a cytochrome P450 were kept. For the pseudogenes, a BLASTX

was performed against the set of complete P450 genes that we annotated and we kept only

the ones that aligned over at least 30% of the query length with the percentage identity of

50%.

The presence of physical clusters of cytochrome P450s in the grape genome was tested

based on the following definition of a cluster. Two consecutive P450 annotations are part of a

cluster if they are separated by 200kb and 8 non-P450 genes at the most [50,51]. The two anno-

tations also have to be located on the same scaffold, which guaranties a precise estimation of

the intergenic distances. A bootstrap test was performed to check whether the cytochromes

P450 were more clustered than what is randomly expected. A homemade script was developed

with R version 3.0.2 [52]. Ten thousand sampling without replacement of 579 (number of

P450 annotations) or 279 features (number of complete P450 genes) were performed on the

genome annotation V1 stored in Grape Genome Database hosted at CRIBI counting 29,971

features. The percentage of features organized in clusters was computed using the same

protocol as for cytochromes P450. The p-value was calculated by counting each time a percent-

age equal of greater than the percentage of P450 in clusters divided by 10000 (number of

iterations).

Sequence similarity within and between clusters was analyzed by performing a BLASTP

search of translated complete P450 genes against themselves. Only the genes that aligned over

at least 70% of the query length with the percentage identity of 40% were kept. The Circos soft-

ware [53] was used to draw the figure. Clusters that contained less than two complete genes

were excluded from this analysis (i.e. clusters that contained partial genes, pseudogenes and

putative pseudogenes with less than 2 complete genes).

The dotter software version 4.23 [54] was used to draw the sequence similarity graphs of

the cluster 190 with its fasta sequence and annotations in a gff format as an input.

Vitis vinifera CYPome
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Sequence classification

Cytochrome P450 genes, partial genes and putative pseudogenes were aligned to the P450

sequences from the heterozygous Pinot Noir genome, retrieved from the cytochrome P450

homepage (http://drnelson.uthsc.edu/CytochromeP450.html). In the case of protein sequence

identity above 95%, the original name was kept. New sequences were assigned a family based

on the best hit among already named grapevine P450s. Twenty-two sequences were given a

new CYP name.

Phylogeny

Sequences from non-Vitis species were retrieved from the cytochrome P450 homepage (http://

drnelson.uthsc.edu/CytochromeP450.html). Pseudogenes and incomplete genes were

excluded from the analysis. 279 Vitis vinifera CYP (Fig 1) and 191 CYP76, 80 and 706 protein

sequences from Aquilegia caerulea, Nelumbo nucifera, Mimulus guttatus, Solanum lycopersi-
cum, Amborella trichopoda, Oryza sativa, Brachypodium distachyon, Arabidopsis thaliana, Med-
icago trunculata, Populus trichocarpa and Vitis vinifera (S1 Fig) were aligned with MUSCLE

[55] implemented in Seaview [56,57]. Conserved sites were selected in the alignment using

Gblocks [58] using the less stringent option parameters. Maximum likelihood phylogenies

were obtained from the full-length alignments and from the subset of more conserved sites

alignments (all Vitis CYP: 166 sites and 11 species CYP alignment: 278 sites) using RAxML (v

8.2.4) [59] via the CIPRES Science Gateway [60] and PhyML (implemented in Seaview v 4.5.4)

[61]. Bootstrap values are shown on the nodes of the Vitis all CYP phylogeny. Nodes with

bootstrap values below 60 were manually suppressed from the 11 species CYP phylogeny and

are shown as trifurcations (unsolved topologies). The trees were visualized and colored using

Figtree (http://tree.bio.ed.ac.uk/software/figtree). The species cladogram in (S1 Fig) was

inferred from the APGIII system [62].

Gene expression

We retrieved raw grape RNA-Seq data from NCBI SRA public database (http://www.ncbi.nlm.

nih.gov/sra). Fifty-nine sequence files generated in the framework of six different experiments

[42,43,45,46,63,64] and four RNA-Seq datasets submitted in the frame of this study were used.

The data were formatted in the fastq format using the fastq-dump command from the SRA

Toolkit package version 2.3.4 (http://www.ncbi.nlm.nih.gov/books/NBK158900).

Alignments of these reads against the PN40024 12X.2 sequence were then performed using

GSNAP version 2013-11-27 [65] with the following parameters: -B 4, -N 1, -n 3,—nofails and

the quality protocol according to the experiment. These files were parsed to keep the best,

unique and paired (if paired-end reads) alignments using a homemade script.

The number of fragments aligned on each annotation from the genome annotation V1

stored in Grape Genome Database hosted at CRIBI and the cytochromes P450 was counted

using the command htseq-count from the HTSeq framework version 0.6.0 [66] with the fol-

lowing parameters: -m intersection-nonempty and -s no. Using a homemade script, FPKMs

(Fragments Per Kilo base of exon per Million fragments mapped) were calculated for every

annotation.

Using all non-zero FPKM values, the 33th and 66th quantiles were calculated to assign the

expression values to one of the four levels of expression chosen: no, low, average and high

expression. The experiments were grouped into six categories regarding the conditions under

which the samples were obtained. These categories were: leaves, downy mildew (Plasmopara
viticola) infected leaves, powdery mildew (Erysiphe necator) infected leaves, flowers, young

berries and ripe berries. An average expression per category was then calculated for each gene

Vitis vinifera CYPome
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Fig 1. Molecular phylogenetic analysis of grapevine cytochrome P450. The alignment of full-length cytochrome P450 protein sequences was used to generate a

maximum likelihood tree. The dark blue clade is the clan 71, which often contains genes involved in specialized metabolism. The highlighted genes belong to the

seven largest physical clusters.

https://doi.org/10.1371/journal.pone.0199902.g001
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and assigned to one of the four levels of expression regarding its value: no expression if the

average was zero, low expression between zero and the 33% quantile, average expression

between 33% and 66% quantile and high expression for averages higher than the 66% quantile.

The average expression values for each P450 annotation were used to perform a clustering

analysis using HCE version 3.5 [67] with a complete linkage method and a Pearson’s correla-

tion as distance measure. The cut-off to define the clusters was set at a Pearson’s correlation

coefficient of 0.656. The heatmap was drawn using the package “pheatmap” [68] after row nor-

malization ((FPKM value − row minimum) / row maximum) in R [52].

A RNA-Seq dataset of 48 conditions for berries at four developmental stages (bbch75 = pea

size; bbch77 prior to veraison; bbch85 at the end of veraison; bbch89 ripe) for four grapevine

varieties (Sangiovese, Barbera, Negro amaro and Refosco) in triplicate, published by Palumbo

and coworkers [69] was used to perform an analysis of differentially expressed genes. The

reads were aligned using STAR [70] and counted using featureCounts [71] on the grapevine

reference genome PN40024 12X.2 and the VCost.v3 annotation [72] supplemented with the

cytochrome P450 annotations. The analysis of differentially expressed genes across the four

varieties was performed on the whole gene set of the grapevine genome using the script

AskoR_DE.R (https://github.com/askomics/askoR) with the parameter cpm > 0.5.

Accession numbers

RNA-Seq datasets of green and mid-ripening berries from Riesling and Gewurztraminer were

submitted at NCBI SRA public database under the BioProject accession number PRJNA378596.

PRJNA254035, PRJNA168987, PRJNA244752, PRJNA203687 and PRJNA169607 RNA-Seq

BioProjects were retrieved to complete the analysis.

Results

Gene annotation, classification and phylogeny

A similarity search of the V. vinifera PN40024 genome with known P450 sequences revealed

579 putative P450 sequences (S1 File). We manually curated the sequences obtained with a

gene prediction algorithm, and validated the annotation with grapevine unigenes and RNAseq

reads (see Material and methods). We distributed them into four categories: genes, partial

genes, putative pseudogenes and pseudogenes. This led to the identification of 279 full-length

genes, which is fewer than the 315 genes reported for the heterozygous Pinot Noir genome on

the Cytochrome P450 homepage (http://drnelson.uthsc.edu/CytochromeP450.html), and sug-

gests that some sequences previously annotated as different genes are probably allelic variants.

The number of cytochromes P450 in grapevine is comparable to their number in other plants

(e.g. 242 in Arabidopsis thaliana, 272 in Solanum lycopersicum and 309 in Oryza sativa).

Twenty sequences were annotated as partial genes, lacking a segment of the sequence due to

gaps in the genome assembly. Eleven putative pseudogenes only contain one nonsense muta-

tion or frame shift, which could originate from sequencing errors or be genuine but still exist

as functional genes in some varieties. Finally, the 269 pseudogenes are fragments, either con-

taining multiple stop codons or frameshift mutations, or sequences not aligning to the whole

length of homologous P450 genes.

Grapevine P450s can be assigned to 48 families based on sequence identities. A phyloge-

netic analysis either of the full-length sequences or of a subset of conserved P450 sites con-

firmed this classification for most of the families. One exception is CYP90B, which is clustered

with CYP720 and CYP724 as previously observed [73]. Other exceptions are the families

CYP76 and CYP80, which form a monophyletic group (Fig 1, see Material and methods). We

thus investigated the phylogeny of these two families in the broader context of selected
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angiosperm species (S1 Fig). CYP80 clearly groups with CYP76 sequences, but forms an inde-

pendent clade between CYP76A/G and the rest of CYP76 sequences (labeled core CYP76).

Within the CYP76A/G clade, a eudicot duplication gave rise to the two subfamilies CYP76A

and CYP76G. Within the large “core CYP76” clade the uncertain position of both the monocot

and Amborella trichopoda CYP76s could be due to a problem of long-branch attraction. A spe-

cific core eudicot duplication gave rise to CYP76F/B/X on one side and CYP76T/C/E on the

other side. These tree topologies were obtained both with the full-length alignment and the

partial alignment of conserved sites. Although species-specific “blooms” appeared in the whole

CYP76/80 family, they are particularly abundant in the “core CYP76” clade. Different subfami-

lies expanded in different species.

Comparison of P450 family sizes between species (S2 Fig) allowed us to identify families

that expanded in grapevine and might have a role in the production of species-specific special-

ized metabolites. An expansion of the CYP75 family, involved in anthocyanin biosynthesis, is

already well documented [74], whereas the function of CYP82, the largest P450 family in

grapevine with 25 members, is currently unknown in this species. Other families that are larger

in grapevine than in most other species are: CYP76, CYP79, CYP80, CYP81, CYP87, CYP89

and CYP716.

Structural organization of the P450s in the PN40024 genome

The 579 cytochrome P450 sequences are distributed on all the 19 chromosomes. Some chro-

mosomes, namely 18, 19 and 6, carry a large number of P450s (77, 57 and 51 sequences,

respectively), whereas others, for example chromosome 5, carry very few (8 sequences) (S3

Fig). Twenty-four P450 sequences (7 genes, 6 partial genes, 11 pseudogenes) are located on the

“Unknown” chromosome, which is composed of scaffolds that could not be anchored on any

of the 19 chromosomes. Since the genome is not completely homozygous (estimated homozy-

gosity is 93% [9]), the “Unknown” chromosome may also contain allelic variants of genes that

are placed on the 19 chromosomes.

We further investigated the distribution of cytochrome P450 sequences in clusters or

groups in close physical proximity (separated by less than 200 kb and eight non-P450 genes

[50,51]). Our results show that P450 sequences are organized in clusters and not randomly dis-

tributed in the genome (bootstrap test, p-value< 0.0001). A large majority of cytochrome

P450 sequences (452 or 78%) are part of one of the 85 clusters and only 22% (127 P450

sequences) are isolated in the grape genome. The largest number of clusters (40%) are only

composed of two P450 sequences, whereas the largest cluster counts thirty-five P450

sequences. On average, there are five P450s per cluster and the median is three P450s per clus-

ter (S4 Fig). The clusters are not enriched neither in complete genes nor pseudogenes, com-

pared to isolated annotations (data not shown). Some chromosomes, such as 16 and 18, are

enriched in clustered P450s, whereas others, such as chromosomes 4 and 11, are enriched in

isolated P450 (Fig 2 and S3 Fig).

Cytochrome P450 families group genes with higher sequence similarity (�40% protein

sequence identity) and often a similar function. A majority of physical clusters are composed

of members of only one P450 family (63 clusters, 74%) and the remaining clusters are com-

posed of up to three P450 families. The four largest clusters are composed of several P450 fami-

lies, whereas the clusters with single P450 families are smaller (Fig 2 and S4 Fig). Most of the

largest P450 families (CYP82, CYP71, CYP81, CYP76, CYP72 and others) are organized in

clusters (S1 Table).

Clustering by P450 family already indicates that more similar P450 sequences cluster in

closer physical proximity. But many P450 families are dispersed among several clusters. We
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thus wished to explore whether the closest paralogs belong to the same or different clusters

(Fig 3). The majority of clustered P450 genes (86%) have their closest paralog (the best BLAST

hit) in the same cluster. The second and third closest paralogs (second and third best BLAST

hit) are in the same cluster for 58% and 49% of the clustered P450 genes. The sequence similar-

ities within the same cluster are thus higher than between clusters.

Large P450 clusters in V. vinifera genome formed via different mechanisms

To investigate the mechanisms underlying the formation of large groups of physically close

cytochrome P450 genes (hereafter called physical clusters), we further analyzed the sequence

similarity within clusters, taking into account not only the coding P450 sequences, but also the

surrounding non-coding-sequences. This allowed us to infer the mechanism of cluster forma-

tion. We focused on the seven largest physical clusters, which comprises between eleven to

thirty-five P450 sequences (Table 1). Together, these seven clusters contain 23% of all P450

genes, and a similar fraction of total P450 sequences. Most of the sequences in these clusters

are part of “clan 71”, which is a large clade of plant cytochromes P450 often involved in the

biosynthesis of species-specific adaptative metabolites (Fig 1).

Analysis of similarity blocks within these clusters showed they differ remarkably in their

structures (S5 Fig). One of the largest physical clusters, cluster 65, is characterized by low simi-

larities, both among the P450 sequences and surrounding non-coding regions. The similarity

blocks of two other large physical clusters, 71 and 171, are restricted to P450 sequences and do

not extend to the intergenic regions. Single gene duplications were thus probably the main

mechanism of formation of these two clusters. The similarity blocks of physical clusters 138

and 182 extend to the non-coding regions around the cytochromes P450 annotations. This

suggests the duplication events leading to formation of these clusters happened relatively

recently. High similarity between the non-coding regions, which include the promoter regions,

should result in similar expression profiles. Cluster 138 has the highest fraction (73%) of

Fig 2. Physical map of cytochrome P450 sequences on the 19 V. vinifera chromosomes. Yellow circles represent isolated annotations, light blue circles represent

physical clusters composed of members of only one P450 family and the purple circles represent physical clusters composed of members of 2–3 P450 families. The

circle size is proportional to the number of sequences in the cluster. The numbers 1–19 are chromosome numbers and “Un” is “Unknown chromosome” which

contains sequences with unknown chromosome location.

https://doi.org/10.1371/journal.pone.0199902.g002
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pseudogenes of all the seven large clusters. In physical clusters 92 and 190, the similarity blocks

extend over even longer regions that include three to four cytochrome P450 sequences and

their intergenic regions (Fig 4). In addition, the type of annotation (gene or pseudogene) was

also maintained in the same order between duplicated blocks. This suggests these two clusters

formed through very recent proximal segmental duplications.

Expression profiles of grapevine P450s

To identify P450 genes with potential roles in pathogen resistance or biosynthesis of berry

metabolites we analyzed the expression of the 579 P450 sequences. Pseudogenes were included

in the analysis of expression to account for recently pseudogenized sequences that may still be

expressed to some extent. We used 59 RNA-Seq datasets (S2 Table), which describe gene

expression in different tissues (flowers, berries, leaves), different stages of berry development,

and pathogen infection (downy and powdery mildews). To enable a meaningful comparison

of gene expression between different experiments we calculated fragment number per kilobase

of transcript per million mapped reads (FPKM) for each P450 sequence (S1 File). The majority

Fig 3. Similarity of the P450 genes between and within clusters. For each circle, the grey bars correspond to the 19 grape chromosomes and the “Unknown

chromosome”. The lines connect complete P450 genes according to their similarity. The lines outside the circles show the similarity between genes of the same

cluster, whereas the lines in the circle connect similar genes of different clusters. Only P450 genes that form clusters composed of at least two complete genes are

illustrated here. The seven largest clusters are labeled with numbers corresponding to Table 1. The lines are connecting the genes corresponding to the best BLAST

hit (A), second best hit (B) or third best blast hit (C).

https://doi.org/10.1371/journal.pone.0199902.g003
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Table 1. Description of the seven largest physical P450 clusters in the V. vinifera genome.

Label Chr Location Total seq. Complete genes Expressed seq. Co-expression Organization

65 15 15572751..

15909327

20 CYP76

4 CYP704

10 20 Flowers and constitutive Low similarity among members

71 16 401789..

596606

16 CYP89 11 14 All leaves Single gene duplications

92 18 9625486..

9912876

22 CYP82

1 CYP74

1 CYP704

14 16 Powdery mildew infection

and ripe berries

Duplicated blocks with co-expression;

some single gene duplications

138 3 4387722..

4512089

22 CYP82 5 16 Young berries Small duplicated blocks, a few are co-

expressed, single gene duplications

171 6 16790972..

17446396

21 CYP75

14 CYP79

8 28 All leaves and powdery

mildew infection

Single gene duplications

182 7 22260680..

22372250

20 CYP81 9 15 Berries Small duplicated blocks, a few are co-

expressed, single gene duplications

190 8 18038159..

18121816

11 CYP76 7 9 Flowers Duplicated blocks with co-expression;

some single gene duplication

Label—sequential number of each cluster in the genome; Chr—chromosome number; Location—chromosome coordinates; Total seq.—number of P450 sequences in

each cluster, including complete and partial genes, putative pseudogenes and pseudogenes with their family distribution; Complete genes—number of complete P450

genes in the cluster; Expressed sequences—number of expressed P450 sequences in the cluster, co-expression—expression pattern of the cluster; Organization—

description of structural organization and mechanism of formation of each cluster.

https://doi.org/10.1371/journal.pone.0199902.t001

Fig 4. Dot matrix of segmental duplications in the physical cluster 92. Physical cluster 92 is located on chromosome 18 and comprises twenty-two CYP82

sequences, one CYP74 sequence and one CYP704 sequence. The dots and the black lines represent the sequence similarities in cluster 92 compared to itself. The

red rectangles on the sides of the graph represent cytochrome P450 sequences. Complete genes are labeled with their name and pseudogenes are labeled with “p”

and the P450 family. A) The similarities for the whole cluster 92. B) A zoom of the red squared region, which contains two 30kb blocks with very high similarity.

Analysis of gene expression showed that CYP82D15 and CYP82D18 are co-expressed (expression cluster A, expression in ripe berries) as well as CYP82D17 and

CYP82D20v2 (expression cluster C, expression in downy mildew infected leaves). The pseudogenes of the enlarged segment are not expressed.

https://doi.org/10.1371/journal.pone.0199902.g004
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of P450 sequences (457 or 79%) were expressed in at least two experiments. Of the remaining

122 non-expressed P450 sequences, only seven were complete genes. Out of the expressed

P450 sequences, complete genes showed higher expression (mean FPKM = 10.6, median

FPKM = 0.4) compared to pseudogenes and putative pseudogenes (mean FPKM = 2.4, median

FPKM = 0) or partial genes (mean FPKM = 1.7, median = 0.1).

To simplify the dataset, we grouped the 59 experiments in six categories: leaves, downy mil-

dew (Plasmopara viticola) infected leaves, powdery mildew (Erysiphe necator) infected leaves,

flowers, young berries and ripe berries. “Flowers”, “young” and “ripe berries” categories were

significantly enriched in expressed P450 sequences whereas “leaves” and “downy mildew” cat-

egories were depleted (chi2 test, p-value = 1E-15). In addition, we grouped the expression lev-

els into four classes (no, low, medium or high expression). The “powdery mildew” category

was found to be significantly enriched for highly expressed P450 sequences whereas the

“leaves” category was depleted (chi2 test, p-value = 9E-16). Altogether, these results indicate a

significant induction of P450 expression caused by biotic stress, especially powdery mildew

infection, and in grapevine organs synthesizing aromas and volatile compounds.

We analyzed the expression patterns by clustering the expression profiles of the 457

expressed cytochrome P450 sequences. A Pearsons’ correlation coefficient cut-off of 0.656

resulted in eight expression clusters, shown in Fig 5. Only twenty-seven P450 sequences (6%,

grouped in expression cluster G) are expressed constitutively, that means expressed at similar

levels over the six categories, but the vast majority of the P450 genes are expressed in specific

organs or under particular conditions. Among constitutively expressed genes, the CYP76 fam-

ily was significantly enriched (chi2 test, p-value = 3E-7).

A major shift in P450 expression pattern occurs during berry development. Indeed, the

three largest expression clusters F (97 sequences), A (88 sequences) and H (76 sequences)

grouped P450 sequences preferentially expressed in flowers, ripe berries and young berries,

respectively. Among the large CYP families, CYP76, CYP716 and CYP714 were significantly

enriched in cluster F whereas CYP72 was significantly depleted. CYP716 was also enriched in

cluster H. CYP78 and CYP80 were significantly enriched in cluster A. In addition, this cluster

featured the P450 gene with the highest expression in all experiments: CYP78A41 with an aver-

age FPKM value in ripe berries of 1292. Beside this expression analysis on multiple organs of

the plant, an analysis of differentially expressed genes during berries development (four stages)

for four grapevine varieties was performed using previously published data [70]. Two hundred

and forty five P450 genes were significantly differentially expressed for at least one variety (S6

Fig). Notably, CYP76, CYP82, CYP71, CYP72, CYP75, CYP81 and CYP89 families that are

enlarged in the grapevine genome and/or that are involved in secondary metabolism showed

the greatest number of differentially expressed genes (20, 19, 19, 18, 18, 14 and 13, respec-

tively). This result strengthens the hypothesis that these cytochrome P450 gene families play a

major role in the biosynthesis of aroma compounds and especially the varietal-specific aromas.

The analysis of gene expression on multiple organs of grapevine also highlighted some

P450 sequences with potential role in biotic stress response. Indeed, cluster D (59 sequences)

and cluster C (35 sequences) grouped P450 sequences preferentially expressed during powdery

and downy mildew infections, respectively. Among the large CYP families, CYP82, CYP87

and CYP736 were significantly enriched in cluster D whereas CYP72 was significantly

enriched in cluster C.

We more thoroughly investigated co-expression of cytochrome P450 sequences within

the physical clusters. We found that 245 out of the 343 expressed P450 sequences that are part

of a physical cluster (71%) show an expression profile similar to at least one member of the

same physical cluster. This level of co-expression is highly significant (bootstrap test, p-

value<0.0001), which means that P450 physical clusters are highly enriched in co-expressed
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sequences. The co-expression was analyzed further in the seven largest physical clusters to

check whether tandem duplicated genes observed in the previous section maintained similar

expression profiles (Table 1). Especially, we identified four large clusters with high similarity,

not only among the coding, but also the non-coding regions. These non-coding regions

Fig 5. Heatmap of the P450 sequences, clustered according to their expression profile. The expression levels were averaged over the experiments classified in

one of the six experimental categories: leaves, downy mildew (Plasmopara viticola) infected leaves, powdery mildew (Erysiphe necator) infected leaves, flowers,

young berries and ripe berries. This heatmap includes the 457 expressed cytochrome P450 sequences. The color scale for the expression level represents FPKM

values normalized by row ((FPKM value − row minimum) / row maximum). The color bars on the left are showing the eight expression clusters, which are

designated by the letters on the side.

https://doi.org/10.1371/journal.pone.0199902.g005
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presumably include promoter sequences, so the genes in these clusters are expected to have

the same expression pattern. Indeed, the 30 kb duplicated block within cluster 92 (Fig 4)

retained the same expression profile after the segmental duplication. The duplicated segment

consists of four P450 sequences: two genes and two pseudogenes. The two pseudogenes in

both blocks were not expressed, whereas the two complete genes in both blocks (CYP82D15

and CYP82D18; CYP82D17 and CYP82D20v2) were co-expressed in ripe berries (cluster A)

and downy mildew infected leaves (cluster C), respectively. Six out of sixteen expressed

sequences in this cluster show induction in powdery mildew infected leaves (cluster D),

whereas five other P450 sequences in the same cluster were up-regulated in ripe berries (cluster

A). Interestingly, cluster 138 is also composed of CYP82 sequences, but these sequences were

preferentially expressed in young berries (cluster H). Eight out of nine expressed CYP76

sequences in the physical cluster 190, on the other hand, were co-expressed in flowers (cluster

F). In cluster 71, five out of fourteen expressed CYP89 genes were specifically expressed in

leaves (cluster B). Cluster 182 grouped ten out of fifteen expressed CYP81 sequences specifi-

cally expressed in berries (5 sequences in cluster A and 5 sequences in cluster H).

Discussion

We produced an exhaustive, reliable and validated manual annotation of cytochromes P450 in

the genome of the nearly homozygous grapevine (V. vinifera) accession PN40024 [9]. Cyto-

chrome P450 superfamily in Vitis vinifera contains both very similar and very divergent genes

(sequence identity ranges from 10% to almost 100%), and often form clusters in very close

physical proximity, which makes it challenging for automated annotation algorithms. Manual

curation is therefore necessary to produce a reliable annotation, suitable for demanding down-

stream applications such as phylogenetic or gene expression analysis. Grapevine P450s have

been previously manually annotated (Cytochrome P450 homepage, http://drnelson.uthsc.edu/

vitis.htm) in the highly heterozygous genome of Pinot noir cultivar [33]. Our annotation

represents an improvement over the existing dataset for several reasons. The assembly of

PN40024 genome is of better quality compared to the Pinot noir genome: it contains fewer

gaps and a higher fraction of anchored contigs. The homozygosity of the genome not only

enabled a better quality of the assembly, but also assured that most of the annotated sequences

are individual loci and not allelic variants. This can partially explain a lower number of cyto-

chrome P450 genes in our annotation—279—compared to the 315 genes reported on the

Cytochrome P450 homepage. Additionally, the annotation on the Cytochrome P450 home-

page classifies the sequences in only two categories, genes and pseudogenes, whereas we

employed a more stringent classification into genes, partial genes, putative pseudogenes and

pseudogenes. Lastly, we report the exact genomic coordinates of the P450 sequences, which

facilitate comparison to annotations of other genes, and provide insights into structural orga-

nization of the grapevine CYPome.

Several gene families involved in the biosynthesis of specialized metabolites, such as terpene

synthase and stilbene synthase genes, have expanded in grapevine genome compared to

other species [9,75,76]. Although the total number of cytochrome P450 genes in grapevine is

comparable to other species, individual P450 families experienced similar expansions. These

expanded P450 families, similarly to terpene and stilbene synthases, form large physical clus-

ters of more than ten homologous sequences. One of such families is CYP75, which together

with CYP79 family members forms the largest physical cluster of thirty-five P450 sequences on

chromosome 6. Expansion of CYP75 genes in grapevine was previously documented, but the

presence of another P450 family, CYP79, in the same cluster was not reported [74]. Clustered

genes with low or no homology sometimes participate in the same biosynthetic pathway
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[77,78], but this is unlikely in the case of CYP75 and CYP79, since both families have well

established roles in different biosynthetic pathways: CYP79 genes code for amino acid N-

hydroxylases [27] for the synthesis of oxime derivatives precursors of cyanogenic glucosides,

whereas CYP75A genes code for flavonoid 3’,5’-hydroxylases [79], crucial enzymes in the bio-

synthesis of blue anthocyanins in the grape skin [74,80]. However, we cannot exclude the

recruitment of some of these genes in other pathways. Interestingly, the sequencing of the

genome of the grapevine cultivar Tannat, characterized by its very deep color, revealed an even

higher number of CYP75 genes compared to the PN40024 accession [45]. Copy number of

genes in a cluster can therefore vary between cultivars and could influence varietal characteris-

tics. Other expanded P450 families in the grapevine genome are CYP82, CYP76, CYP81 and

CYP89. They are forming large clusters resulting from gene duplication, a mechanism proven

to favor emergence of new metabolic functions, especially for P450 genes [81].

Large-scale analysis of gene expression across several tissues and conditions provides a first

hint to the putative P450 functions in grapevine. Pathogen infection causes a major shift in the

P450 expression, inducing members from families CYP736, CYP81, CYP82 and CYP87. Their

homologs in other species have been shown to participate in biosynthesis of highly specialized

defense compounds (S1 Table). Interestingly, CYP736A25v1, which was shown to be upregu-

lated upon infection with the Pierce disease pathogen Xylella fastidiosa [82], is also upregulated

upon infection with powdery mildew and downy mildew pathogens. Two other sequences

from the CYP736 family are also induced by biotic stress but their expression level is lower.

Another large shift in expression occurs in developing grape berries. The most upregulated

P450 families in the ripe berries expression cluster are CYP81, CYP82 and CYP78. Along with

CYP76, CYP71, CYP72, CYP75 and CYP89, they are also differentially expressed across grape-

vine varieties during berry development. Therefore, these P450s are likely to participate in the

biosynthesis of defense compounds or compounds important for the organoleptic properties

of wine (aroma, colour, taste, mouthfeel).

The P450 gene with the overall highest expression level and the most up-regulated P450

gene in ripe berries is CYP78A41. A member of the same P450 family in tomato (S. lycopersi-
cum) was selected during domestication to increase fruit size [24]. High expression of

CYP78A41 in grape berries points to a similar event in grapevine domestication.

The most striking result in our analysis probably concerns the CYP76 family. From a

structural point of view, we confirmed that CYP76 family is expanded in grapevine refer-

ence genome compared to most of the other plant genomes [35]. Furthermore, the CYP76

family was found to be highly clustered and part of the largest cluster, cluster190, in which a

recent tandem duplication involving three consecutive genes was identified. This suggests

an active evolution dynamics for this particular CYP family which could favor emergence of

new metabolic functions [81] in particular grapevine varieties. We also found that the

expression of the CYP76 family was mostly upregulated in grapevine flowers, similarly to

what Boachon and coworkers [21] found in Arabidopsis. Interestingly, grapevine flowers,

just like berries, are very rich in terpenes, some of the most important volatile compounds

contributing to the floral bouquet of wine [75,83,84] and CYP76s were already found to be

involved in terpene biosynthesis in Arabidopsis and grapevine [21,31,85,86]. More, CYP76

family showed the greatest number of genes with varietal-specific expression patterns dur-

ing berry development. Altogether, its evolutionary dynamics along with its role in terpene

pathway make the CYP76 genes major candidates to understand the diversity of grapevine

and wine aromas, as recently shown for CYP76F14, a member of CYP76 family, which was

identified as a key player in the production of wine lactone, a typical aroma of aged wines

[25].
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Conclusions

The phylogenetic and structural data suggest that some P450 families underwent multiple tan-

dem or segmental duplications, which resulted in large physical clusters of homologous

sequences that are often co-expressed. Most of these P450 families are involved in biosynthesis

of highly specialized metabolites in other plant species. These genes are often expressed in spe-

cific conditions and tissues, such as leaves upon pathogen infection or during berry develop-

ment. Finally, our work provides an exhaustive and robust annotation including clear

identification, structural organization, evolutionary dynamics and expression patterns for the

grapevine cytochrome P450 families, paving the way to efficient functional characterization of

genes involved in grapevine defense pathways and aroma biosynthesis. Especially, our study

points out towards the CYP76 family as the key candidate for further understanding the

extraordinary diversity of grape and wine aromas.

Supporting information

S1 Fig. Phylogeny of CYP80 and CYP76 in angiosperms. Maximum likelihood tree of full

length CYP76 and CYP80 protein sequences from a selection of angiosperms, rooted with

CYP706 from all the included species. Nodes with bootstrap values below 60 are collapsed to

trifurcations. Species specific clades with more than two members (except V. vinifera) are col-

lapsed to triangles. The label of the triangle gives the subfamily and the number of members

contained in the clade.

(PDF)

S2 Fig. Comparison of the number of P450 genes per family between species. Dot size is

proportional to the relative family size (number of genes per family) in a given species com-

pared to Vitis vinifera (Vv = Vitis vinifera, Nn = Nelumbo nucifera, Os = Oryza sativa, Bd =

Brachypodium distachyon, Sl = Solanum lycopersicum, At = Arabidopsis thaliana, Pt = Populus
trichocarpa, Gm = Glycine max, Mt = Medicago truncatula). The numbers in the first column

are the absolute family sizes (numbers of genes per family) in Vitis vinifera. The number of

genes per family was retrieved from the cytochrome P450 homepage. Pseudogenes and fami-

lies not present in V. vinifera (CYP83, CYP99, CYP702, CYP705, CYP708, CYP718 and

CYP729) were excluded from the count.

(PDF)

S3 Fig. Distribution of the V. vinifera P450s per chromosome. The blue bar corresponds to

clustered annotations and the yellow bar to the isolated annotations. The “Unknown chromo-

some” is labeled as “Un”.

(PDF)

S4 Fig. Distribution of the P450 sequences per physical cluster. Median and average values

are labeled with arrows. The clusters composed of a single P450 family are represented in blue

and those composed of 2 or 3 P450 families in orange.

(PDF)

S5 Fig. Dot matrix plots of the largest physical clusters. The dots and the black lines repre-

sent the sequence similarities in cluster 92 compared to itself. The red rectangles on the sides

of the graph represent cytochrome P450 sequences. Complete genes are labeled with their

name and pseudogenes are labeled with “p” and the P450 family.

(PDF)

S6 Fig. Heatmap of the differentially expressed cytochromes P450 between berries of four

grapevine varieties. Expression in berries at four developmental stages (75 = pea size;
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77 = prior to veraison; 85 = at the end of veraison; 89 = ripe) for four grapevine varieties (San-

giovese, Barbera, Negro amaro and Refosco) was studied. This heatmap shows the expression

profiles of the 245 differentially expressed cytochromes P450 for at least one variety. The

expression levels were averaged over the three replicates for each condition. The color scale for

the expression level represents RPKM values normalized by row ((RPKM value − row mini-

mum) / row maximum). The dendrogram on the left shows the clustering by gene. The raw

data were obtained from [69].
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