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Abstract 
 

Protein structures are highly dynamic macromolecules. This dynamics is often analysed 

through experimental and/or computational methods only for an isolated or a limited number 

of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of 

local protein conformations using different perspectives. We analysed molecular dynamics to 

investigate protein flexibility locally, using classical approaches such as RMSf, solvent 

accessibility, but also innovative approaches such as local entropy. 

Firstly, we focussed on classical secondary structures and analysed specifically how β-

strand, β−turns, and bends evolve during molecular simulations. We underlined interesting 

specific bias between β−turns and bends, which are considered as same category, while their 

dynamics show differences. 

Secondly, we used a structural alphabet that is able to approximate every part of the 

protein structures conformations, namely Protein Blocks (PBs) to analyse (i) how each initial 

local protein conformations evolve during dynamics and (ii) if some exchange can exist 

among these PBs. Interestingly, the results are largely complex than simple regular/rigid and 

coil/flexible exchange. 

 

Key words: local protein conformations, structural alphabet, molecular dynamics, disorder, 
flexibility, secondary structure, Protein DataBank, solvent accessibility. 

 
List of abbreviations: PB: Protein Blocks, RMSf: Root Mean Square fluctuations, PDB: 
Protein DataBank, Neq: Number of equivalent. 
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Introduction 

More than 65 years ago, Pauling and Corey presented a series of local protein 

conformations stabilized by intramolecular hydrogen bonds called, shortly after, secondary 

structures (Pauling & Corey 1951; Pauling, Corey & Branson 1951; Eisenberg 2003). The α-

helix and the β-sheet have since been extensively analysed (Richardson 1981; Richardson & 

Richardson 1988; Aurora & Rose 1998; Pal, Chakrabarti & Basu 2003; Craveur, Joseph, 

Rebehmed & de Brevern 2013). The secondary structure description of protein structures had 

led to the development of more than 20 assignment methodologies (Levitt & Greer 1977; 

Sklenar, Etchebest & Lavery 1989; Colloc'h, Etchebest, Thoreau, Henrissat & Mornon 1993; 

Frishman & Argos 1995; Labesse, Colloc'h, Pothier & Mornon 1997; Dupuis, Sadoc & 

Mornon 2004; Martin et al. 2005; Offmann, Tyagi & de Brevern 2007; Hosseini, Sadeghi, 

Pezeshk, Eslahchi & Habibi 2008; Tyagi, Bornot, Offmann & de Brevern 2009; Park, Yoo, 

Shin & Cho 2011), the most widely used being DSSP (Kabsch & Sander 1983). Analysis of 

local protein conformations had also been focussed on other types of secondary structures 

such as β-turns (Venkatachalam 1968; Hutchinson & Thornton 1996; Bornot & de Brevern 

2006; de Brevern 2016), PolyProline II (Adzhubei & Sternberg 1993; Creamer 1998; 

Mansiaux, Joseph, Gelly & de Brevern 2011; Chebrek, Leonard, de Brevern & Gelly 2014; 

Narwani et al. 2017) and loops categorization (Fernandez-Fuentes, Querol, Aviles, Sternberg 

& Oliva 2005; Hermoso et al. 2009).  Nonetheless, secondary structure analyses have also 

some limitations such as the non-definition of coil state, the characterization of some 

conformations or not, some known issues with short repetitive structures or the discrepancies 

between the different assignment algorithms (Colloc'h et al. 1993; Fourrier, Benros & de 

Brevern 2004; Martin et al. 2005; Tyagi et al. 2009; Tyagi, Bornot, Offmann & de Brevern 

2009).  
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Hence, alternative views have been proposed using systematic analysis of all local 

protein conformations. Several scientific teams have developed local protein structure 

libraries able to approximate all (or almost all) local protein structures and without relying on 

classical secondary structures. These libraries categorize 3D structures with no preconceptions 

into small prototypes that are specific to local conformations found in proteins. The complete 

set of local structure prototypes defines a structural alphabet (de Brevern 2001; Karchin, 

Cline, Mandel-Gutfreund & Karplus 2003; Offmann et al. 2007). After the precursor research 

of Unger and co-workers (Unger, Harel, Wherland & Sussman 1989), numerous applications 

of structural alphabets, from the analysis of sequence-structure relationship (Rooman, 

Rodriguez & Wodak 1990) to the prediction of short loops (Fourrier et al. 2004) have been 

conducted. Protein Blocks (PBs) is actually the most used structural alphabet (de Brevern, 

Etchebest & Hazout 2000; Joseph et al. 2010) including several studies such as 3D protein 

backbone description (de Brevern 2005), local structure prediction (de Brevern et al. 2000; de 

Brevern, Valadie, Hazout & Etchebest 2002; Etchebest, Benros, Hazout & de Brevern 2005; 

de Brevern, Etchebest, Benros & Hazout 2007), description and prediction of long fragments 

(de Brevern, Camproux, Hazout, Etchebest & Tuffery 2001; Benros, Hazout & de Brevern 

2002; de Brevern & Hazout 2003; Benros, de Brevern, Etchebest & Hazout 2006; de Brevern 

et al. 2007; Zimmermann & Hansmann 2008; Benros, de Brevern & Hazout 2009; Bornot, 

Etchebest & de Brevern 2009; Li, Zhou & Liu 2009; Rangwala, Kauffman & Karypis 2009) 

or short loops (Fourrier et al. 2004; Tyagi et al. 2009), analysis of protein contacts (Faure, 

Bornot & de Brevern 2008), building of transmembrane proteins (de Brevern et al. 2005; de 

Brevern, Autin, Colin, Bertrand & Etchebest 2009), definition of a reduced amino acid 

alphabet dedicated to mutation design (Etchebest, Benros, Bornot, Camproux & de Brevern 

2007; Zuo & Li 2009; Zuo & Li 2009), protein structure superimposition and comparison 
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(Tyagi, Gowri, Srinivasan, de Brevern & Offmann 2006; Tyagi et al. 2006; Tyagi, de 

Brevern, Srinivasan & Offmann 2008; Leonard, Joseph, Srinivasan, Gelly & de Brevern 

2014), reconstruction of globular protein structures (Dong, Wang & Lin 2007), design of 

peptides (Thomas et al. 2006), and definition of binding site signatures (Dudev & Lim 2007). 

The most recent impressive developments concern the inclusion of PBs in threading 

approaches (Mahajan, de Brevern, Sanejouand, Srinivasan & Offmann 2015; Vetrivel et al. 

2017) and fold recognition especially with ORION (Ghouzam, Postic, de Brevern & Gelly 

2015; Ghouzam, Postic, Guerin, de Brevern & Gelly 2016). 

More specifically, PBs are also useful for analysis of protein flexibility (Craveur et al. 

2015), for instance, using molecular dynamics in the specific cases of integrins (Jallu, 

Poulain, Fuchs, Kaplan & de Brevern 2012; Jallu, Poulain, Fuchs, Kaplan & de Brevern 2014; 

Goguet, Narwani, Petermann, Jallu & de Brevern 2017), Duffy Antigen Chemokine Receptor 

(DARC) protein (de Brevern et al. 2005), KiSS1-derived peptide receptor (KISS1R) 

(Chevrier et al. 2013), HIV-1 capsid protein (Craveur et al. 2019), α-1,4-glycosidic hydrolase 

(Pandurangan et al. 2019), NMDA Receptor Channel Gate (Ladislav et al. 2018), and analysis 

of local dynamics of proteins and DNA estimated from crystallographic B-factors (Schneider 

et al. 2014; Schneider, Gelly, de Brevern & Cerny 2014). These researches motivated us to go 

further to design the analysis of large-scale molecular dynamics simulation from a large 

number of folds, in order to understand the structural evolution of the local conformation of 

each region (see Figure 1). One of our previous studies (Narwani et al. 2018), revealed that 

there is dynamical conversion between α-helices and, the less frequent 310- and π-helices 

(Donohue 1953; Pal & Basu 1999; Pal, Basu & Chakrabarti 2002; Pancsa, Raimondi, Cilia & 

Vranken 2016). More than three quarter of α-helix residues remain in this helical 

conformation while it drops to 40.5% for 310-helices. We also underline the fact that using the  
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Figure 1. A dachshund-analogy to illustrate the analysis of protein dynamics at the light 

of protein local backbone conformation. This example used a one-year wirehaired dachshund 

named Snoopy playing on the grass. In the centre, Snoopy is sleeping representing the protein 

structures as obtained from X-ray crystals. It seems that Snoopy is highly rigid, while when 

Snoopy is playing on the grass, a large spectra of local backbone dynamics is observed. The 

analysis here will focus precisely on local conformations, namely protein backbone as it can 

be seen with Snoopy. Please notice that Snoopy was not harmed to take these pictures and 

received an optimized dose of dry fishes that he likes a lot, but can also make him sick and 

they stink. 
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classical DSSP (namely CMBI 2000) version, the π–helices cannot be described as stable, but 

with the most recent DSSP version (namely v2.2.1), these results are totally scrambled, the π–

helices showed behaviours equivalent to 310-helix.  

The number of large-scale molecular dynamics simulation analyses is relatively limited. 

We can notice the Dynameomics project (Jonsson, Scott & Daggett 2009), a representative 

sample of all globular protein metafolds was used to perform simulations under both native 

and unfolding condition. A related database is available and provides visual results (van der 

Kamp et al. 2010), but no analyses of protein flexibility have been conducted. Dynasome 

(Hensen et al. 2012) from Grubmüller’s group, comes closest to our questioning. With the 

simulation of 112 proteins, they showed that collective Dynasome descriptors defined to 

characterize each simulation, describe most of the movements. These Dynasome descriptors 

are defined from only a few of the 34 different descriptors. They focus on global level, while 

the design of this study is to analyse local protein conformations. 

In this research, we continue the examination of large-scale protein dynamics simulation 

to see how β-strands, β-turns, and bends behave during dynamics. Following our previous 

work (Narwani et al. 2018), PBs are used to analyse (i) how each initial local protein 

conformation, i.e. PBs, evolves during dynamics and (ii) if transitions are possible between 

PBs. These analyses have been done using protein flexibility from X-ray data and from 

molecular dynamic simulations (MD), as well as solvent accessibility, and entropy computed 

from PB distributions. 

 

Materials and Methods 

Data sets. A databank of 169 X-ray structures, taken from Protein DataBank (PDB), 

(Berman et al. 2000) was extracted using ASTRAL 2.03 at 40% sequence identity (Chandonia 
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et al. 2004; Fox, Brenner & Chandonia 2014) (PDB ids and corresponding chain provided in 

Supplementary Data 1). The databank was filtered out based on structure resolution better 

than 1.5 Å, and without presence of heteroatoms (other than water), without alternate, without 

missing or modified residues in the chain. Only globular proteins, with chain length ranging 

between 50 and 250 residues, were selected. In-house parser was used to filter out and to fetch 

the information (Craveur, Rebehmed & de Brevern 2014). The 169 domains represent a rather 

equilibrated repartition among the different SCOP classes: all-α represents 18.9% of the 

chains, all-β 29.6%, α/β 24.8% and α+β 26.7%. 

 

Molecular dynamics simulations. Three molecular dynamic (MD) simulations were 

performed for each protein structure with GROMACS 4.5.7 software (Pronk et al. 2013), 

using AMBER99sb force field (van Gunsteren et al. 1996). Each protein structure was put in 

a periodic dodecahedron box, using TIP3P water molecules (Jorgensen & Madura 1983), and 

neutralised with Na+ or Cl- counter ions. The system was then energetically minimised with a 

steepest-descent algorithm for 2000 steps. The MD simulations were performed in isotherm-

isobar thermodynamics ensemble (NPT), with temperature fixed at 300 K and pressure at 1 

bar. A short run of 1ns was performed to equilibrate the system, using Berendsen algorithm 

for temperature and pressure control (Berendsen, Postma, van Gunsteren, DiNola & Haak 

1984). The coupling time constants were equal to 0.1 ps for each physical parameter. Then, a 

production step of 50 ns was done using Parrinello-Rahman algorithm (Parrinello & Rahman 

1981) for temperature and pressure control, with coupling constants of T=0.1 ps and P=4 ps. 

All bond lengths were constrained with LINCS algorithm (Hess, Bekker, Berendsen & Fraaije 

1997), which allowed an integration step of 2 fs. The PME algorithm (Darden, Perera, Li & 

Pedersen 1999) was used for long-range electrostatic interactions using a cut-off of 1 nm for 
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non-bonded interactions.  

This protocol was applied on each of the 169 protein chains. Conformations were saved 

every ps. For each MD simulation, the secondary structures were analysed and the structural 

deviation of each snapshot from the initial structure was measured. Trajectory analyses were 

done with the GROMACS software, in-house Python and R scripts. Root mean square 

deviations (RMSD) and root mean square fluctuations (RMSf) were computed on Cα atoms. 

Normalized RMSfs and normalized B-factors were computed as in Bornot et al. study 

(Bornot, Etchebest & de Brevern 2011). 

 

Local protein conformation analyses. Secondary structure assignment was performed 

using DSSP (Kabsch & Sander 1983) (with classic CMBI version 2000 and with a recent 

DSSP 2015 version 2.2.1) with default parameters (Touw et al. 2015), the latest DSSP 

distribution is available at GitHub (https://github.com/cmbi/xssp). Protein Blocks (PBs), 

which are a structural alphabet composed of 16 local prototypes (de Brevern et al. 2000), 

were also employed to analyse local conformations. Each specific PB is characterized by the 

φ, ψ dihedral angles of five consecutive residues. The PBs m and d can be roughly described 

as prototypes for central α-helix and central β-strand, respectively. PBs a through c primarily 

represent the N-cap region of β-strand while PBs e and f correspond to the C-caps; PBs g 

through j are specific to coils, k and l correspond to the N cap region of α-helix, and PBs n 

through p to that of C-caps (de Brevern 2005; Joseph et al. 2010; Joseph, Bornot & de 

Brevern 2010). PB assignment was carried out for every residue from every snapshot 

extracted from MD simulations using our PBxplore tool (Barnoud et al. 2017) available at 

GitHub (https://github.com/pierrepo/PBxplore). We also developed a useful measure to 

quantify the flexibility of each amino acid, the so-called Neq (for equivalent number of PBs) 
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(de Brevern et al. 2000). Neq is a statistical measurement similar to entropy; it represents the 

average number of PBs a residue may adopt at a given position. Neq is calculated as follows 

(de Brevern et al. 2000): 

Neq = exp(− f x
x=1

16

∑ ln f x )         (1) 

Where, fx is the frequency of PB x in the position of interest. An Neq value of 1 indicates 

that only one type of PB is observed, while a value of 16 is equivalent to an equal probability 

for each of the 16 states, i.e. random distribution. We have also computed average Neq values. 

Finally, to analyse the difference between two series of PBs, a distance named ΔPB was 

used. It corresponds to: 

ΔPB =
x=1

16

∑ (f 1
x − f 2

x )          (2) 

Where, f1 and f2 are two distributions of PB and x is the frequency of PB x for these two 

distributions. 

To trace the evolution of a local protein conformation represented by a given PB in 

regard to its original assignment, we compute a simple PB ratio, named CPB. It is calculated as 

the fraction of PBs staying in the initial conformations to that of altered conformations 

expressed as a percentage of time. 

For analyses purpose, we define 8 different classes: 100%, 99-90%, 89-75%, 74-50%, 

49-25%, 24-10%, 9-1% and finally less than 1%. For instance, the 100% class is defined by 

the position that stayed 100% of time in their initial PB assignment during simulations. 

Relative solvent accessibility (rASA) was obtained using DSSP output that provides 

accessible area. The accessible area was then normalized using the maximum surface area of 

each amino acid type to obtain the rASA. 

 



Protein flexibility 

11 
 

Clustering approach. A k-means clustering approach was then used (Hartigan & Wong 

1979) to analyse protein local conformation behaviours during simulations. The general 

principle is (i) to fix k as the number of clusters, they have the same dimension S that the data. 

(ii) The clusters are randomly initialized by taking some examples in the dataset D. Then, (iii) 

one by one all the observations of the dataset D is presented to each cluster with a proper 

distance, for instance Euclidean distance. (iv) Each observation is so associated to the cluster 

that has the smallest distance. (v) After the first presentation of the dataset, each cluster is 

readjusted as the average value of all the observations associated to it. And then, step (iii) is 

done again and the cluster values evolve. Often a large number of learning of the dataset is 

done, here 50. 

Here, a residue is initially associated to a local protein conformation state, namely (i) 

one of the 8 defined secondary states assigned by DSSP (Kabsch & Sander 1983) (i.e. α-, 310- 

and π-helices, β-strand, turns, bends, β-bridges and coil) and (ii) one of the 16 PBs (de 

Brevern et al. 2000). During MDs, DSSP and PBxplore are used to assign the protein chain 

local protein structure conformations. Hence, each residue is associated to a vector of size S = 

8, representing the 8 defined secondary states and more specifically the occurrence of each 

observed state, and S’ = 16 when PBs are analysed. 

A first series of analyses look at the evolution of each local protein conformation 

(secondary structure or PB). For a specific state, a subset is created. It represents all the 

residues that were associated to this state before MD, e.g. PB d. Then a fixed number of 

clusters k is determined. The k clusters have length of size S for secondary structures and S’ 

for PBs. All the data of the subset is compared to each of the k cluster, and the one with the 

minimal Euclidean distance is considered as the winner. After one cycle (all the subset had 

been used), the values of the k clusters are modified to correspond the associated 
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observations, i.e. each cluster is the barycentre of the associated observations. After few 

cycles, the k clusters are stable and can be analysed, e.g. how the residues associated to PB d 

assignment have evolved. 

The final analysis is slightly different as the whole dataset encoded in terms of PBs is 

used. The number of cluster k was higher (k = 30) and showed less stability than before, the 

approach had begun with a quite larger number of clusters (k = 100), then a hierarchical 

clustering was performed to select a lower number of k clusters and repeated until k = 30. The 

hierarchical clustering allows finding clusters that have some similarity and so can be 

associated. We so reduce the number accordingly, but also used these results to initialize the 

next k-means clustering (with a more limited number of clusters). 

 

Results & Discussions 

Analyses of protein structures and simulations. As presented in (Narwani et al. 2018), 

the percentage of helical structures is impacted by the version of DSSP (Kabsch & Sander 

1983) used. With DSSP CMBI 2000, the α-helix represents 31.5%, the 310-helix 3.99% and 

0.02% for the π-helix; similar to the distribution observed by (Tyagi et al. 2009). Protein 

Blocks frequencies is strictly comparable to previous study (de Brevern 2005) (see 

Supplementary Data 2). With the new DSSP (version 2.2.1) (Touw et al. 2015), no change is 

observed at all for 310-helices (still 3.5%) and near no impact on α-helix, but the frequencies 

of π–helices increase by 16 times going from 0.02 to 0.32%, i.e. 2/3 of previously assigned α-

helices and 1/3 of turns (Narwani et al. 2018).  

Distributions of normalized B-factor, normalized RMSf, and relative solvent 

accessibility are also following distributions close to previous study (see Figures 2A to 2C). 

The correlation between normalized B-factor and normalized RMSf is of 0.43, while it is 
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quite low with the Neq, i.e. 0.24 and 0.14. This last result was expected since Neq does a local 

conformation analyses (see Supplementary Data 3) with more than 60% of residues having a 

Neq of 1.0, i.e. does not change during all simulations, while only 0.8% having a Neq higher 

than 4 (see Figure 2D). 

As we have already analysed the helical structures (Narwani et al. 2018), we have 

analysed β-sheets and turns (β-turns and bends) evolution during dynamics in the next 

sections. Figure 3A summarizes the dynamical evolution of all non-helical states. Near 95% 

of the residues assigned, as β-sheet remains unchanged during the dynamics, while 4.2% goes 

to coil state, very rarely to bends (0.7%), turns (0.1%) and β-bridge (0.6%). Interestingly the 

rare β-bridge exchanges to coil state in 12.8% and β-sheet in 10.3%. 
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Figure 2. Analyses of the complete dataset. Are shown the A) Normalized B-factor, B) 

normalized RMSf, C) relative solvent accessibility (%) and D) Neq with all Neq higher than 4.0 

being grouped in ‘4.0’ and representing 0.82% of the residues (0.26 have Neq > 5 and 0.08 

higher than 6). 

 

The β-sheets. As presented in M&M section, clusters were generated using k-means 

algorithm with k=5 clusters. Clusters were named with the most frequent state observed 

during simulations (see Figure 3B and Supplementary Data 4A).  
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Figure 3. Secondary structure analyses. A) Occurrences of non-helical states (see (Narwani 

et al. 2018) for the analysis of helical states), followed by the results of k-means clustering 

(with 5 clusters) for B) β-sheets, C) (hydrogen bond) turns and D) (non-hydrogen bond) 

bends. Colour gradient goes from red (1.0) to dark blue (0.0), as described previously 

(Narwani et al. 2018). Secondary structures are abbreviated in 1-letter thus: α-helix (H), 310-

helix (G), π-helix (I) β-sheet (E), turn (T), bend (S), β-bridge (B) and coil (C). 

 

The first cluster can be considered as the cluster β, as it remains in β–sheet 

conformations (> 99%) during all the dynamics. It represents 92.2% of the occurrences with 

extremely low normalized B-factor (-0.48) and normalized RMSf (-0.53). It corresponds to 

the most buried part of the dataset (mean relative accessibility of 14.4).  

The last four clusters have all higher relative accessibility ranging between 21.6 and 

28.9. They are named βC1, βbridge, βTurn, and βC2, according to the state they transition into. As 

expected, clusters βC1 and βC2 (transition to coil state) are the most occurring with 3.9% and 



Protein flexibility 

16 
 

2.4% respectively. The first one is the most rigid (nBfact of -0.20 and nRMSf of -0.22 vs -

0.10 and -0.03 for the second one) and also has the most β-sheet content (near 2/3rd vs only 

14%). A βTurn cluster representing 0.84% also appeared; it is quite flexible in regards to the 

other clusters and had a higher accessibility (with highest Neq when looking at PB contents). 

The surprising cluster with only 0.6% of occurrence is the βbridge cluster; it is the most rigid 

one after cluster β. It is composed of 56% of β-bridge, 6% of coil and 39% of β-sheet. 

 

The Turns. Venkatachalam described and classified the first β-turns as hydrogen bond 

turns (Venkatachalam 1968). Later, the definition of turns evolved from an energetic to a 

distance criterion between Cα (Richardson 1981). DSSP differentiates between hydrogen 

bond turns (namely turns, ‘T’) and non-hydrogen bond turns (namely bends, ‘b’) (Kabsch & 

Sander 1983). We have so analysed them separately.  

A turn stays as a turn with a frequency of 75.7% (see Figure 3A) and changes to bends 

in 12.1%, then to the α-helix (4.7%), coil (4.0%), 310-helix (3.0%) and extremely rarely to 

extended state. The percentage of bends and helical state is expected, it must not be forgotten 

that 310-helix was often confused with β-turn type III (erased since) and α-helix can be 

considered as a succession of specific turns (de Brevern 2016).  

The clustering (see Figure 3C and Supplementary Data 4B) reflects these results with a 

cluster Turn representing 63.8% of the initial turns. The following four clusters are Turnbend1, 

Turnα, Turnbend2, and Turnc, with 18.7%, 6.3%, 7.6% and 3.5%, respectively. They are 

characterized by higher normalized B-factor (0.42 to 0.88) and normalized RMSf (0.32 to 

0.74). All clusters have high relative solvent accessibility (52%) with the exception of Turnα, 

with only 36.9% which is the counterpart of a helical cluster previously described (Narwani et 

al. 2018) also with low accessibility state and with exchange between α-helix (52%) and turns 
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(38%). In conclusion, (hydrogen bond) turns are not so rigid, the extreme being the Turnc, 

with nBfact of 0.88 and nRMSf of 0.74. 

 

The bends. Slightly less frequent than turns, they change less to helical states than 

turns. Indeed, 71% stays as bends, 14.8% goes to coils, 7.2% to turns and 1.6% to β-sheet. 

These obtained clusters reflected this result. The canonical bend cluster represents 63.8% of 

the occurrences, followed by bendC1, bendturn, bendβ and bendC2 with 16.1, 9.2, 1.7 and 10.3%, 

respectively (see Figure 3D and Supplementary Data 4C). The bend cluster, as bendC1 and 

bendC2, is more rigid than Turns clusters with lower nBfact, nRMSf and rASA. The bendturn is 

an equivalent of the two Turnbend. The unexpected one is the cluster bendβ that is 63% β-sheet, 

25% bends and 11% coil with a lower rASA of 30.1% and nBfact of 0.21 (lowest of 5 bend 

clusters) but nRMSF of 0.98 (the highest).  

Hence, even if turns and bends are highly comparable, they have unexpected 

specificities. The lack of hydrogen bonds at short range allows for a limited number of them 

to participate dynamically in β-sheet and forms a specific recurrent cluster. For the turns, a 

specific cluster exchanges with α-helix state, but no cluster reflects an exchange with 310-

helix, that may have been expected. 

 

PB analysis: I. General analysis of PBs. As seen in Figure 2D, more than 60% of the 

residues have a Neq equal to 1.0, i.e. they did not change of PB assignment during the whole 

simulation. This rigid-constituency is highly dependent of the type of PBs. Indeed, PB 

geometrically related to core of repetitive structures namely PB m (for α-helix) and PB d (for 

β-sheet) stick to their original assignment with respective frequency of 86.2% and 75.4%. It 

decreases very rapidly with a strong gradient with PBs n (66.6%), l (63.2%), i (60.7%), a 



Protein flexibility 

18 
 

(60.0%), f (59.9%), k (56.5%), h (53.7%), o (51.2%), c (50.1%), b (46.5%), e (43.1%), and p 

(39.9%); it became extremely low for PBs j (19.1%) and g (16.2%).  

This gradient is not only the reflection of an ultra-stable assignment, but truly of the 

dynamics behaviours. Hence, by analysing PBs that stay less than 50% of the times associated 

to their initial assignment, i.e. the CPB less than 50%, the highest CPB values are associated to 

PBs g (40.3%) then j (23.4%) while PBs d (4.8%) and m (3.9%, see Supplementary Data 5). 

Hence a strong correlation exists between the original assignment and the conservation of the 

local protein conformations. 

A simple question arise, can it be not simply due to the accessibility of the residues? 

Indeed, if a local protein conformation is accessible, will it not simply enhance its probability 

to be changed more easily? In fact, the tendency exists but is not a simple binary case for 

every PBs (see Supplementary Data 6). For PBs m and d, the percentage of rigid position 

(CPB> 75%) is largely higher than the deformable one (CPB <25%) and is directly linked to the 

solvent accessibility. However, PB n does not show this simple (and expected) tendency, the 

difference between rigid and deformable position is not significant. Depending on the type of 

PBs, it goes from a slight tendency to no tendency at all. A surprising result is the PB j that is 

one of the two less constraint PBs, it is more exposed than the others but have same 

distribution of relative accessibility. Hence, no specific rules can be observed here. 

Figure 4 shows the distribution of PBs accordingly to the initial assigned PB. It reflects 

the previous results underlying the high frequencies of PBs m and d (96% and 94%), and the 

low of PBs g and j (59% and 72%). It shows also were the PBs go to another local 

conformation. Hence 7 PBs go to PB m with a frequency higher than 2% (a threshold used in 

all representations) and 8 to PB d. In fact, 22% of these transitions are observed, the highest 

one being PB g to PB p (9%), to PB c (8%) and to PB e (6%), and from PB p to PB m (6%). 
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While most of the transitions are logical as geometrically they stay in similar neighbourhood, 

i.e. between PBs a, b, c and d, these most frequent ones are not (de Brevern 2005). Another 

way to look at the evolution of PBs is the computation of Neq. Figure 4 shows the Neq 

computed from the PB distribution (named here PB Neq), it is also possible to compute an 

average Neq on all the observations associated to each PBs (named here average Neq, see 

Supplementary Data 7). These last is quite smaller as expected but show an impressive 

Pearson correlation coefficient of 0.94 with PB Neq underlying the possibility to use both for 

the analyses. 

 
Figure 4. Dynamical evolution of PBs. The initial PBs are shown on the y-axis; the 

frequencies of each PB observed during dynamics are provided following color gradients 

(frequencies under 0.02 are not written for clarity); The Neq observed for each PB are on the 

right. 

 

PB analysis: II. PB analysis. Using k-means approach, we clustered the behaviour of 
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each PB. Hence, 5 clusters were generated for each of the 16 PBs and analysed (see a 

complete analysis of all clusters in Supplementary Data 8 and for detailed values 

Supplementary Data 9). Figure 5 shows a summary of recurrent behaviour which highlight 

PBs a, b, g and f.  

 

Figure 5. Example of PB clusters. The clusters for PBs a, b, f and g are shown on the x-axis 

(see Sup data 8 for all the different PBs) with the distribution of associated PBs on the y-axis. 

 

An important point is that in a previous study, we have analysed the geometrical 

compatibilities between PBs by looking at the second best PB for every local conformation, 

i.e. defining major geometrical transition for a PB to another (de Brevern 2005). For instance, 

for PB a, the major geometrical transitions were PB c (51%), PB f (17%) and PB d (9.4%).  

The five clusters of PB a give interesting results (see Figure 5A). Cluster a1 is the PB a 

cluster (with >98% of PB a) and represents 4th/5 of positions initially associated to PB a. 
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Unexpectedly, it has not the lowest normalized B-factor values, but the fourth (0.10 vs. -0.03 

and -0.02 for clusters a3 and a4). It is associated to the lowest normalized RMSf and one of the 

lowest relative solvent accessibility values. It so represents a first typical case, the more stable 

cluster (i.e. PB x that stay PB x) which is not always associated to lowest nBf and rSA. 

Clusters a3 and a5 followed this idea of geometrical resemblance, i.e. the major 

geometrical transitions, as they have respectively high frequency of PB c (65%) and PB d 

(76%). No clusters with strong evolution to PB f can be seen. 

Cluster a2 represents another behaviour; it is still high content by the original PB, but 

also goes to a large number of other local conformations. In cluster a2, PB a still represents 

67% of the occurrences, but with 6 PBs at more than 2%.  

Finally, cluster a4 represented the fuzzy cluster, represents 5.3% of initial PB and is the 

more deformable, i.e. average Neq of 2.36, and cluster Neq of 8.43. It is also associated to 

highest accessibility, highest nBf and highest nRMSf. 

Figure 5B shows the PB b. The cluster b1 (>97% of PB b) represents 79% of original 

PB b positions had lowest rSA and lowest nRMSf but the second lowest nBf (0.00 vs. -0.06 

for cluster b3). Interestingly none of the three following clusters has adopted the expected 

major geometrical transitions (i.e., PBs d, c and f), except PB l for cluster b2 (22%), PB k for 

cluster b3 (64%) and PB a for cluster b4 (65%). Only cluster b3 can be considered as 

comparable with cluster b1 in terms of nRMSf and nBf and the closest rSA.  

Figure 5C shows the PB f. As often seen the majority cluster, namely cluster f1 (>98% 

of PB f) represents 83% of original PB b positions had lowest nBf, nRMSf and rSA. The 

expected geometrical transitions (PBs b and k) have not been adopted during dynamics to 

substitute PB f. They have been replaced by PB e for cluster f3 (65%) and PB d for cluster f5 

(66%). Interestingly, this last is associated to high nBf, high nRMSf and high rSA that is quite 
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uncommon for PB d. Cluster f2 is less stable than cluster b1 with a lower PB content of PB f 

(69%). 

Finally Figure 5D shows the PB g. Cluster g1, the canonical cluster g comprised more 

than 89% of PB g; it represents 55% of original PB g positions and had lowest rSA and lowest 

nRMSf, the second lowest nBf but with a slight difference (0.04 vs. 0.03 for cluster g2). As 

seen in the previous section, PB g does not stay as PB g as often that other PBs. It is seen 

again here, the following clusters are only composed of 33%, 24%, 20% and 16% of PB g. 

The first surprising cluster is cluster g2 dominated by PB e (57%) that is quite comparable to 

cluster g1 in terms of protein flexibility characteristics (similar nBf and nRMSf). Cluster g3 

was more expected as PB c is an expected geometrical transition; it represents 64% of the 

cluster. The second surprise cluster is cluster g4 controlled by PB p (52%), which is not a 

major geometrical transition. Cluster g5 is the second most occurring cluster (15.1% of 

original PB), it encompass the more deformable regions with high average Neq (2.61) and 

highest cluster Neq (11.69) associated to high accessibility, highest nBf and highest nRMSf. 

To summarize this PB clustering, we have each time: 

• One cluster represents the initial PB with high frequency with more than 95% of initial 

PB, except for PB g with only 89.2%. This ‘stable’ PB is not always associated to lowest 

normalized B-factor (not for 11 PBs a, b, e, g, h, i, j, l, n, o, and p) and lowest mean relative 

solvent accessibility (not for 6 PBs a, e, h, l, n and p). Even for PB e, the cluster e1 (>95% of 

PB e) represents 80% of original PB e positions, and is not associated with the lowest values 

of nBf, nRMSf and rSA, in this case it is the cluster e4. This last cluster is mainly directed by 

PB d (63%) the second best geometrically compatible PB.  

• One cluster is a fuzzy cluster with the highest average Neq and especially highest 

cluster Neq with only three bellow 8.0, 4 between 8 and 9, 3 between 9 and 10 and 6 higher 
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than 10. They often represent 5 to 12% of the occurrences with exception of PBs m with 

cluster m2 (2.7%) and PB d with cluster d5 (2.2%). They are often associated with highest 

nBf, highest nRMSf and highest rSA, but not always. There are 6 cases for the B-factor (PBs 

b, e, f, k, o and p), 4 with nRMSf  (PBs f, i, k and p) and 9 cases with relative solvent 

accessibility (PBs e, f, g, i, j, m, n, o and p). 

• The three remaining clusters are divided into (a) a cluster that is a degenerated 

version of the PB cluster, often with more than 60% of initial PB and a lot of others (12 on 

16), i.e. clusters a2, b2, c2, d2, f2, h2, i2, j2, k2, n2, o2, and p2. They are not always with structural 

features close to the majority clusters, e.g. cluster o2 has a very high nBf (0.58 vs. 0.34), 

higher nRMSf (0.81 vs. 0.25), and higher rSA (44.6 vs 32.0) than cluster o1. (b) Clusters that 

are directed by unexpected PB, i.e. not from the major geometrical transitions, namely 21 

clusters b2, b3, b4, c3, e2, f3, f5, g2, g4, i3, i4, j3, j4, k3, l3, l5, m3, n3, n4, o3, and p3. (c) The 

remaining clusters were in fact expected, as they followed major geometrical transitions, 

namely 13 clusters a3, a4, c4, d3, d4, e4, g3, k4, l2, m4, m5, o4, and p4. Interestingly, no simple 

correlation between one or another category can be found to predict simply the behaviours of 

a local conformation. 

Hence, some common behaviour can be found as the conservation of local protein 

conformation with one cluster, a slightly degenerated one after, and a largely the fuzzy ones. 

This is also entirely unexpected type of change that is 1.5 times more frequent than the 

expected ones. Comparison of obtained clusters showed that most of the fuzzy clusters are 

highly similar and most of the others do not cluster with their associated PB clusters (see 

Supplementary Data 10) highlighting that the initial local conformations can go to very 

different local confirmations behaviours. Interestingly near no cluster coming from a given 

PB is associated to one of its related generated cluster, i.e. cluster f1 is closest to cluster e3, 
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cluster f2 is closest to cluster d4, cluster f3 is closest to cluster e1, cluster f4 is a fuzzy cluster, 

and cluster f5 is closest to cluster a5. The dynamics had so a strong local protein conformation 

impact that can be clustered and properly described and it is not a simple task. 

 
Figure 6. Clustering of the protein dynamics observed at the light of PBs, namely PB(r)evolution. A) Is 

represented with the same rules the 30 ordered clusters obtained through k-means approach (y-axis the clusters, 

x-axis the PB), on the right is provided the occurrence of each cluster. B) Difference between the obtained 

clusters (A) and the distribution of initial PB (see Sup Data 12), white being no significant differences, positive 

difference are in blue, negative in red, only difference higher than 0.02 are written. On the left is provided the 

ΔPB. 
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PB analysis: III. PB(r)evolution. In a last step, we have clustered directly all the 

observations without any a priori in regards to the initial PBs. The main question here is to 

see if some similar dynamical behaviour can be observed coming potentially from different 

initial PB conformation. We have chosen at first a large number of clusters (i.e. 100 clusters), 

this number was gradually reduced to 30. The final choice is based mainly to assure a 

minimal number of occurrences associated to each cluster. It must be noticed that the clusters 

have been rearrange for clarity using the majority PB (see Figure 6A), i.e. the first clusters are 

associated to PB a, while the last ones are mainly with PB p. 

The 30 clusters can be considered as associated to a majority PB in 29 of 30 cases (see 

Figure 6A and Supplementary Data 11C). In complete agreement with previous results PB g 

and PB j are associated to only one cluster with the lowest major frequency (cluster 16 at 82% 

and cluster 20 at 84%, resp.) while all other PBs have a major cluster at more than 93%. The 

most directed one is cluster 23 with cluster Neq of 1.04 and so near exclusively PB m, the 

second one is the PB d core, namely cluster 10 with a cluster Neq of 1.07. Only cluster 27 with 

a cluster Neq of 7.5 is highly fuzzy. Three others have high Neq higher than 5, i.e. cluster 7 (PB 

c frequency of 58% and 9 other PBs with frequency higher than 2%), cluster 17 (PB h 

frequency of 56% and 9 other PBs with frequency higher than 2%), and cluster 30 (PB i 

frequency of 56% and 9 other PBs with frequency higher than 2%). 

Hence, with 30 clusters, only 6 PBs have only 1 cluster (PBs g, j, k, l, n, o and p) while 

PBs b, c, and f have 3 clusters. There is a direct correlation between mean normalized B-

factor and mean normalized RMSf of the clusters (see Supplementary Data 11A and 11B), 

and it is also linked to mean rSA and Neq values (no effect to analyse average or cluster Neq). 

These analyses differ from the previous ones, as the initial PB is not associated with 
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any a priori. It underlines that some local protein conformations remain highly constant (and 

it is expected), but also that some have tendencies to oscillate between two local protein 

conformations. For instance, cluster 5 is PB a (44%) and PB b (47%) with cluster Neq of 3.1, 

cluster 15 is PB f (52%) and PB c (33%) with cluster Neq of 3.3. Others have the tendencies to 

stay with a majority PB, but goes to many different others, i.e. cluster 1 that is PB a (64%) 

and goes to 6, other PBs for a cluster Neq of 4.3.  

 
Figure 7. Comparison of the clustering of the protein dynamics. On the left is represented the 

repartition of the 5 clusters obtained for each PB accordingly to the 30 clusters (see Figure 6). 

On the left is the occurrence of these PB clusters in regards to the 30 clusters, i.e. the number 

of times a PB cluster is found associated to one of the 30 clusters. 

The analysis of the initial distribution of PB and their evolution during dynamics 

underline other features. Of course the high frequency PB cluster are associated to very 

similar initial PB distribution (see Figure 7 and Supplementary Data 12), i.e. low ΔPB. 

Highest ΔPB is found with cluster 27 (ΔPB of 0.41, see Figure 6B), so this cluster is highly 

fuzzy and can be associated to the most flexible or deformable and without constraints 
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regions. Nonetheless, it is not associated to the highest rSA observed (cluster 27 has a rSA of 

55.3, while cluster 27 has a rSA of 71.5). A surprising observation is cluster 4 (PB b 61% and 

PB l 15% for a cluster Neq of 4.3), it has the second highest ΔPB of 0.32. It is displaced from 

PB l at the beginning to PB d during the dynamics. Eight of the 30 clusters have a ΔPB higher 

than 0.15 showing interesting changes in regards to original PB distribution. 

Figure 7 shows the confusion between the 5 clusters associated to each PB and the 

(unsupervised) 30 clusters. These last ones have shown some unexpected tendencies such as 

the entirely fuzzy cluster 27, or the clusters that do not like to conserve a major PB but also 

sample a large number of conformations. The final analysis shows that 10 clusters obtained 

with the 5-clusters (clusters a4, f4, g5, h5, i5, k5, l4, n5, o3 and o5) approach are in fact the cluster 

number 27. Similarly 8 clusters (clusters b3, e5, h3, i4, j3, k1, k2, and m5) are in fact the cluster 

number 21 directed by PB k (94% and a cluster Neq of 1.40). Then the fuzzy cluster 7 

corresponds to 5 different clusters. 

 

Conclusion 

Protein structures are often viewed as rigid macromolecules merely composed of 

helices, sheets and coils. In our study, MDs simulations were performed on a large set of 169 

representative protein domains. Previously, we have shown that only 76.4% of the residues 

associated to α-helices retain the conformation, while this tendency drops to 40.5% for 310-

helices and is never seen for π-helices. In fact, we mainly noticed that the view on π-helices 

drastically changes with the change in DSSP assignment approach, leading to behaviour 

similar to 310-helices underlining the importance of secondary structure assignment methods 

(Narwani et al. 2017; Narwani et al. 2018). 

Here, we have gone further. Firstly, it confirms the rigidity of β-sheet, but also 
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underline its capacity to transform into turns. Secondly, while the dynamics between turns 

(with hydrogen bond) and bends (without hydrogen bond) have some strong similarities, they 

also showed that turns convert easily to helical structures while bends prefer the extended 

conformations.  

Then, for the first time, we perform an entire analysis of a large set of protein dynamics 

simulations using a structural alphabet. It was done on three levels: (i) a global view in terms 

of PBs, (ii) performing clustering for each types of PBs and (iii) analysing without any a 

priori. 

As expected a large part of the buried positions remain highly stable, but it is not a 

fixed rule. In fact, for at least half of the PBs, the fact to be buried or exposed does not change 

at all its dynamics. The majority of PBs remain as their original PB, or at least with a high 

frequency. Some PBs have a higher tendency to be not as rigid as others and it is particularly 

true for PB g and PB i. The intriguing fact is that the change from a PB to another one is not 

an obvious geometrical change. It is more frequent to go to an unexpected PB than an 

expected one (based on its geometrical compatibility). Analysis without any a priori, i.e. the 

classification of the 30 clusters, underlined some similar dynamics coming from initial 

distinct PBs. The choice of K-means clustering, an unsupervised approach, seemed 

appropriate as the clustering needed was very close from Sequence Families approach we 

developed few years ago (de Brevern et al. 2000; Etchebest et al. 2005). 

The use of these two types of classification shows the difficulty to cluster properly 

these dynamical properties but indeed it is a first step able to improve (i) our knowledge of 

protein dynamics and (ii) the relationship between sequence – structure and dynamics. In this 

field the use of Protein Blocks tends to be an interesting asset. 
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