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Abstract

Statins exert pleiotropic and beneficial anti-inflammatory and antioxidant effects. We have

previously reported that macrophages treated with statins increased the expression of

heme oxygenase-1 (HO-1), an inducible anti-inflammatory and cytoprotective stress pro-

tein, responsible for the degradation of heme. In the present study, we investigated the

effects of atorvastatin on inflammation in mice and analyzed its mechanism of action in vivo.

Air pouches were established in 8 week-old female C57BL/6J mice. Atorvastatin (5 mg/kg, i.

p.) and/or tin protoporphyrin IX (SnPPIX), a heme oxygenase inhibitor (12 mg/kg, i.p.), were

administered for 10 days. Zymosan, a cell wall component of Saccharomyces cerevisiae,

was injected in the air pouch to trigger inflammation. Cell number and levels of inflammatory

markers were determined in exudates collected from the pouch 24 hours post zymosan

injection by flow cytometry, ELISA and quantitative PCR. Analysis of the mice treated with

atorvastatin alone displayed increased expression of HO-1, arginase-1, C-type lectin

domain containing 7A, and mannose receptor C-type 1 in the cells of the exudate of the

air pouch. Flow cytometry analysis revealed an increase in monocyte/macrophage cells

expressing HO-1 and in leukocytes expressing MRC-1 in response to atorvastatin. Mice

treated with atorvastatin showed a significant reduction in cell influx in response to zymosan,

and in the expression of proinflammatory cytokines and chemokines such as interleukin-1α,

monocyte chemoattractant protein-1 and prostaglandin E2. Co-treatment of mice with ator-

vastatin and tin protoporphyrin IX (SnPPIX), an inhibitor of heme oxygenase, reversed the

inhibitory effect of statin on cell influx and proinflammatory markers, suggesting a protective

role of HO-1. Flow cytometry analysis of air pouch cell contents revealed prevalence of neu-

trophils and to a lesser extent of monocytes/macrophages with no significant effect of ator-

vastatin treatment on the modification of their relative proportion. These findings identify
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HO-1 as a target for the therapeutic actions of atorvastatin and highlight its potential role as

an in vivo anti-inflammatory agent.

Introduction

Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)

reductase and inhibit cholesterol synthesis and low-density lipoprotein cholesterol (LDL-C).

Satins have been shown to have many beneficial pleiotropic effects beyond their ability to

lower LDL-cholesterol, that include anti-inflammatory, antioxidant, anti-proliferative, and

anti-thrombotic actions [1, 2].

Heme oxygenase (HO)-1 is the inducible isoform of heme oxygenase responsible for the

oxidative degradation of heme. Its products contribute to the antioxidant, anti-inflammatory

and anti-apoptotic actions of HO-1 [3]. HO-1 is induced by pro and anti-inflammatory cyto-

kines [4], lipopolysaccharide (LPS) [5] and nitric oxide (NO) [6, 7]. HO-1 has been described

in vivo as a downstream effector of interleukin (IL)-10 [8] and to play a role in the resolution

of inflammation [9].

As part of the feedback mechanisms, macrophages with anti-inflammatory activities are

activated. Subsets of anti-inflammatory macrophages are characterized with the expression

of arginase-1, mannose receptor-1 or the lectin C-type lectin domain family 7 member A

(CLEC7A) and are referred to as Th2 –driven macrophage or M2 macrophages [10–13] impor-

tant in the tissue repair and the resolution of inflammation. Multiple studies suggested a role

of HO-1 induction in the polarization of macrophages into an anti-inflammatory M2 pheno-

type [14, 15]. Zhang et al have shown that deletion of HO-1 in the myeloid lineage exacerbates

the pro-inflammatory phenotype of bone marrow-derived macrophages in response to lipo-

polysaccharide and limits the anti-inflammatory phenotype in response to interleukin-4 [15].

Recent studies have shown that statin induces HO-1 in murine macrophage cell lines RAW

264.7 and J774A.1, in NIH 3T3 fibroblasts and in primary murine peritoneal macrophages

[16–20]. On the other hand, statins reduced the LPS-induced prostaglandin E2 synthesis, and

cyclooxygenase-2 (COX-2) expression in monocytes [21]. However, little is known about the

effect of statins in vivo and the mechanisms underlying its beneficial effects in inflammation

[22, 23]. Statin administration to mice was shown to increase the expression of HO-1 in heart

and lung tissue [24]. Few studies investigated the mechanisms involved in the role of statins

in inflammation in vivo but did not assess the role of HO-1 [22–24]. HO-1 has been shown to

play a role in the anti-inflammatory effects of some drugs including the cannabinoid receptor

2 agonist JWH-133 [25].

In the present study, we employed the air pouch model in C57BL/6 mice to assess the

effect of atorvastatin on inflammation. We first determined the expression of the anti-inflam-

matory genes in response to atorvastatin alone and characterized the subtypes of immune cells

recruited in response to zymosan and /or atorvastatin. We next demonstrated that the effect of

atorvastatin on zymosan-induced leukocytes recruitment and inflammation involves HO-1 as

a potential anti-inflammatory player.

Materials and methods

Materials

BSA, DMSO and zymosan A from Saccharomyces cerevisiae (Z4250) were from Sigma-

Aldrich (St Louis, MO, USA). Tin protoporphyrin IX (SnPPIX) (Sn749-9) was obtained from
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Frontier Scientific (Logan, UT, USA). Atorvastatin (10493) and prostaglandin (PG) E2 EIA

measurement reagents were from Cayman Chemicals Company (Ann Arbor, MI, USA). Kits

for ELISA for mouse IL-1α (88-5019-77) and monocyte chemoattractant protein-1 (MCP-1)

(88-7391-86) were purchased from Thermo Fisher Scientific (Waltham, MA USA). Antibodies

for flow cytometry were from BioLegend (San Francisco, CA, USA).

Methods

Subcutaneous dorsal air pouch model. C57BL/6J female mice (20–25 g, 8 week-old)

were obtained from Charles River (Ecully, France) and the animal facility of the American

University of Beirut. They were housed 5 per cage with cotton cocoon as enrichment environ-

ment in temperature- and humidity-controlled rooms, kept on a 12-hr light-dark cycle, and

provided with food and water ad lib in the animal facility of the American University of Beirut.

Body weight and food intake were monitored three times a week throughout the study period.

Approval for use of animals was obtained from the Institutional Animal Care and Use Com-

mittee of the American University of Beirut (IACUC # 16-11-393).

Atorvastatin (5 mg/kg, i.p.) was diluted in DMSO: saline, 1:49 (v:v), and SnPPIX (12 mg/kg,

i.p.) in saline [26, 27] and mice were injected every day for 10 days (Figs 1A and 2A). Air

pouches were established in mice as described previously [28]. Briefly, mice were anesthetized

using isoflurane inhalation and air pouches were produced on day 5 by subcutaneously inject-

ing 5 ml of sterile air into the back of the mice. On day 8, pouches were maintained by re-

inflation with 2.5 ml of sterile air. On day 10, 0.5 ml of sterile saline solution or 0.5 ml of 1%

zymosan in saline (w:v) was injected in the air pouch. 24 hours after the injection of zymosan,

mice were sacrificed by CO2 inhalation and the exudates were collected in 1 ml of Hanks buffer

containing 0.32% trisodium citrate to prevent cell aggregation. The number of cells in exudates

was counted using improved Neubauer hemocytometer. Supernatants were kept at -80˚C for

the measurement of PGE2, mouse IL-1α and MCP-1. Total RNA was extracted from cell pellets

for real time RT-PCR. For vehicle and atorvastatin–treated alone, twelve mice were injected

and cells were pooled from 3 different mice. For zymosan, zymosan + atorvastatin and zymo-

san + atorvastatin + SnPPIX, eight mice were used in each experimental group.

RT-PCR analysis. Cell pellets were suspended in QIAzol (QIAGEN, 79306) and extracted

as previously described [19]. 1 μg of total RNA was reversed transcribed using High-Capacity

cDNA Reverse Transcription Kit (Thermo Fisher Scientific, 4368813). RT-PCR was carried

out on CFX384 cycler using ABsolute Blue QPCR Mix, SYBR Green (Thermo Fisher Scientific,

AB4166B) and the primers obtained from TIB Molbiol (Berlin, Germany). Oligonucleotide

sequences were according to the references [29] and [30], except for Hmox1, Ptgs2, Pges and

Nos2, which were as follow: Hmox1 (F): GGCTAAGACCGCCTTCCTGCTC; Hmox1 (R):

GCAGGGGCAGTATCTTGCACCAG; Ptgs2 (F): AGACAGATTGCTGGCCGGGTTGCT; Ptgs2 (R):

TCAATGGAGGCCTTTGCCACTGCT; Pges (F): GATGGAGAGCGGCCAGGTGC; Pges (R):

GGCAAAAGCCTTCTTCCGCAGC; Nos2 (F): CCCTTGTGCTGTTCTCAGCCCAAC; Nos2 (R):

GGACGGGTCGATGTCACAT GCA. Gene expression was normalized to the housekeeping gene

18S rRNA.

Flow cytometry analysis. Flow cytometry analysis of cells collected from the air pouch

was performed. To characterize the inflammatory subsets in the pouch, multi-color fluores-

cence cell staining was conducted using the combination of the following antibodies as indi-

cated in S1 Table: CD45 (PerCP-Cy5.5), TCR β (FITC), CD11b (BV450/50), and Ly-6G (PE).

Dead cells were excluded using zombie yellow viability kit (BioLegend 423104) or Live/Dead

Fixable Blue dead stain kit (Thermo Fisher Scientific, L23105). For HO-1 and CD206 detec-

tion, air pouch cells were fixed with the Fixation Buffer (BioLegend 420801) and treated with
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Fig 1. Atorvastatin induces the expression of anti-inflammatory genes in air pouch of C57BL/6J mice. A) Outline of the air pouch

model. Atorvastatin (5 mg/kg, i.p.) or vehicle was injected every day for 10 days in C57BL/6J mice and cell were harvested as described in

the method section, B) Gene expression of Hmox1, Arg1, Clec7a, and Mrc1. C) Representative gating strategy for the quantification of

the proportion of cells expressing HO-1 cells in air pouches of vehicle- or atorvastatin-treated mice. Viable CD45+ cells were gated in the

total exudate cells. Neutrophils were identified as viable CD45+CD11b+Ly-6G+ cells and were excluded from subsequent monocyte/

macrophage gating. Monocyte/macrophage were selected as viable CD45+CD11b+Ly-6G- cells, D) Representative flow cytometry dot

plots of HO-1 expression and summary data. Mean ± SEM (n = 6). �P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pone.0216405.g001
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Fig 2. Atorvastatin inhibition of zymosan-induced cell recruitment to the air pouch is HO-1 dependent and does not involve

modification of leukocyte subsets. A) Outline of the air pouch model of inflammation induced by zymosan. Atorvastatin (5 mg/kg, i.p.) and/

or SnPPIX (12 mg/kg, i.p.) were injected daily for 10 days. On day 10, air pouches of mice were injected with 0.5 ml of saline and/or 1% (w/v)

zymosan in saline. The exudates were collected after 24 hours. B) Number of cells the air pouches. C) Representative gating strategy for the

characterization of the exudate of air pouches injected with zymosan in mice treated with vehicle or atorvastatin. Viable CD45+ cells were

gated in the total exudate cells. T-cells were identified as viable CD45+TCRβ+ cells and were excluded form subsequent gating. Neutrophils

Anti-inflammatory effects of atorvastatin in vivo
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the intracellular staining permeabilization Wash Buffer (BioLegend 421002) according the

manufacturer’s instructions. Rabbit polyclonal anti-HO-1 1/200 [31, 32], rat anti-rabbit IgG–

FITC (Thermo Fisher Scientific F-2765), and anti-CD206 (for MRC1, BioLegend 141705)

were used. Isotype controls and a control without the primary anti-HO-1 antibody were run.

Three mice were pooled for the treatment with vehicle or atorvastatin alone. Analysis was per-

formed at the faculty of medicine core facility at the AUB using FACS Aria SORP (BD Biosci-

ences). Data were analyzed using FlowJo (TreeStar, Ashland, Or). Neutrophils were defined as

living (live/dead cell stain negative) CD45+TCRβ-CD11b+Ly-6G+. T cells were defined as liv-

ing CD45+TCRβ-. Infiltrating monocytes/macrophages are defined as viable CD45+TCRβ-Ly-

6G-CD11b+.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5 (La Jolla,

CA 92037 USA). Results are presented as the mean ± SEM. The level of statistical significance

was determined by Mann-Whitney and p<0.05 was considered statistically significant.

Results

Atorvastatin induces the expression of anti-inflammatory markers in cells

isolated from the sterile dorsal air pouch

We first investigated the effect of atorvastatin alone in mice. We assessed the levels of gene

expression in cells isolated from the sterile cavity of the air pouch after 10 days treatment with

atorvastatin (5 mg/kg, i.p.) (Fig 1A). HO-1 was significantly increased in atorvastatin-treated

mice compared to untreated mice (p<0.05) (Fig 1B). We also checked the expression of some

anti-inflammatory genes. Atorvastatin significantly increased the expression of arginase-1

(Arg-1) (p<0.01), C-type lectin domain family 7 member A (CLEC7A), and Mannose receptor

C-type 1 (MRC1) (p<0.05). To determine the cell types that express HO-1 following atorva-

statin treatment, we analyzed their phenotype in the air pouch of mice injected with atorva-

statin alone (Fig 1C and S1 Fig). Leukocyte expressing HO-1 and the anti-inflammatory

marker, MRC1, (also as CD206) were increased in mice treated with atorvastatin compared to

vehicle. Moreover, monocyte/macrophage gated on leukocytes (CD45+) and expressing HO-1

were increased compared to mice treated with vehicle alone (Fig 1D).

Thus, atorvastatin significantly induced the expression of HO-1 and other anti-inflamma-

tory markers in resident cells of the air pouch.

HO-1 mediates the inhibitory effect of atorvastatin on zymosan-dependent

cell migration

We next investigated whether HO-1 is involved in the inhibitory effect of atorvastatin on the

recruitment of cells in the air pouch. Mice were treated with atorvastatin and/or SnPPIX, an

inhibitor of heme oxygenase, daily for 10 days prior to inducing inflammation in the air pouch

with zymosan (Fig 2A). Fig 2B shows that zymosan injection in the air pouch increased signifi-

cantly the number of recruited cells compared to vehicle. Atorvastatin administration signifi-

cantly reduced zymosan-induced cell recruitment by 61% (p<0.001, atorvastatin+zymosan vs
zymosan) in response to zymosan alone. Co-treatment with SnPPIX abolished the inhibitory

effect of atorvastatin on cell recruitment (p<0.01, atorvastatin+zymosan+SnPPIX vs atorva-

statin+zymosan) indicating a role for HO-1 in the anti-chemotactic effect of atorvastatin

(Fig 2B).

were identified as viable CD45+TCRβ-CD11b+Ly-6G+ cells and monocyte/macrophage as viable CD45+TCRβ-CD11b+Ly-6G- cells. D)

Summary data. Mean ± SEM (n = 8–9). ��p<0.01, ��� p<0.001.

https://doi.org/10.1371/journal.pone.0216405.g002
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We further characterized the inflammatory subsets in the pouch using flow cytometry anal-

ysis (Fig 2C). Zymosan-recruited leukocytes (CD45+) were 96% of total viable cells in the air

pouch, and consisted mainly of neutrophils (75% of CD45+), monocytes/macrophages (11% of

CD45), and T cells (2.9% of CD45+). The proportions of zymosan-recruited leukocytes sub-

populations were not modified by atorvastatin (Fig 2D).

HO-1 is involved in the effect of atorvastatin on zymosan-induced

expression of proinflammatory genes

Next, we analyzed the expression of some proinflammatory cytokines and chemokines. Zymo-

san-injected air pouches showed a significant increase in gene expression of Il1a, Il1b, Il6, and

Tnfa. Atorvastatin significantly decreased the gene expression of Il1a by 82% (p<0.001), 73%

for Il1b by 73% (p<0.05), Il6 by 81% (p<0.001), and Tnfa by 67% (p<0.05). Mice co-treated

with SnPPIX reversed the effect of atorvastatin (Fig 3A). Fig 3B illustrates the gene expression

of chemokines under the same experimental conditions. Atorvastatin also reduced the expres-

sion of Ccl3 by 68% (p<0.05), Ccl4 by 68% (p<0.05) and chemoattractant chemokine Cxcl1 by

78% (p<0.01).

This inhibitory effect of atorvastatin on zymosan was reduced by SnPPIX treatment. Since

both COX-2/mPGES-1 and NOS-II are responsible for the synthesis of proinflammatory

mediators such as PGE2 and nitric oxide, respectively, and are important players in the inflam-

matory response and cytokine synthesis, and in agreement with in vitro statin-mediated mod-

ulation of their expression in leukocytes, we analyzed their expression in response to zymosan

in vivo. Fig 4A shows a strong increase in gene expression of Ptgs2, Pges and Nos2 by zymosan.

Atorvastatin significantly inhibited Ptgs2 by 64% (p<0.01), Pges by 83% (p<0.05) and Nos2 by

75% (p<0.01). SnPPIX reversed this inhibitory effect of atorvastatin.

We finally assessed the effect of atorvastatin and SnPPIX on the protein synthesis of some

inflammatory mediators. Zymosan-injected air pouches showed an increased secretion of

cytokine IL-1α and MCP-1 (Fig 4B). In atorvastatin-treated group, IL-1α was inhibited by

44% (p = 0.06) and MCP-1 by 71% (p<0.05) (zymosan+atorvastatin vs zymosan). Similarly to

gene expression, SnPPIX attenuated atorvastatin inhibitory effect on IL-1α and MCP-1. PGE2

formation was also significantly decreased by 53% in the atorvastatin-treated group compared

to zymosan (p<0.001). However, SnPPIX did not show any significant reversal effect on PGE2

inhibition by atorvastatin, suggesting either a HO-1-independent mechanism or a direct inhi-

bition of the cyclooxygenase by SnPPIX since cyclooxygenase is a heme binding protein and

that different protoporphyrin can compete with its heme [33].

Discussion

It has been reported that statins have many beneficial protective effects including improve-

ment of endothelial dysfunction, antioxidant, and anti-inflammatory effects. Statins were first

shown to enhance NO production in aortic endothelial cells by activating endothelial nitric

oxide synthase [34] (NOS-III) and to possess an antioxidant activity by scavenging hydroxyl

and peroxyl radicals in vitro [35]. Moreover, statins inhibited IL-6 and IL-8 mRNA and pro-

tein expressions in LPS-stimulated human bronchoepithelial cells [36]. We have previously

shown that statins inhibits COX-2, a proinflammatory enzyme in monocytes in a Rac and

NF-κB–dependent manner [21]. In addition statins have been shown to induce HO-1 expres-

sion and to inhibit the production of IL-6 and TNF-α in macrophages stimulated with LPS

[16, 18, 37].

Few studies have attempted to address the mechanisms of the beneficial effects of statins in
vivo. Studies have shown an improvement of endothelial dysfunction by enhancing NOS-III

Anti-inflammatory effects of atorvastatin in vivo
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expression in a rat model of pulmonary hypertension and in apolipoprotein E (ApoE)–defi-

cient mice [38, 39]. Treatment of mice with atorvastatin or rosuvastatin had an antioxidant

effect in the heart through the induction of HO-1 and the production of its products, carbon

monoxide (CO) and bilirubin [40]. In the present study, we provide the in vivo evidence

for the protective anti-inflammatory effects of atorvastatin. Our findings demonstrate that

daily administration of atorvastatin for 10 days increased the gene expression of anti-inflam-

matory markers such as CLEC7A, Arg-1, MRC1, and HO-1 in the cells isolated from the exu-

date of air pouch. A significant population of the leukocyte CD45+cells of the cell exudate was

CD45+CD11b+Ly-6G, representing mainly monocyte/macrophage/dendritic populations and

expressed HO-1 in mice treated with atorvastatin.

Fig 3. HO-1 -dependent suppression of proinflammatory cytokines and chemokines by atorvastatin. Mice were treated as described in the legend for Fig 2.

Gene expression of A) Cytokines, B) Chemokines. Mean ± SEM (n = 8); � p<0.05; �� p<0.01; ��� p<0.001.

https://doi.org/10.1371/journal.pone.0216405.g003
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We also demonstrated that the anti-inflammatory effect of atorvastatin involves the reduction

in cell influx in the air pouch in response to zymosan injection, and this effect was abolished

by treatment with the selective HO inhibitor SnPPIX. HO-1 was expressed in the leukocytes

migrating into the exudates of zymosan-induced mouse air pouch in a time-dependent increase,

reaching maximal expression at 24–48 h [41]. Analysis of the composition of the cells in the air

pouch by flow cytometry showed a high percentage of CD45+ leukocytes with a predominance

of neutrophils CD11b+Ly6G+ and monocytes/macrophages CD11b+Ly6G- in response to zymo-

san. However, pre-treatment of air pouch with atorvastatin did not result in the modification of

the percentage of any leukocyte subsets.

Interleukins and chemokines have an important role in cellular trafficking of leukocytes,

and in enhancing and maintaining inflammation [42]. IL-6 production in air pouch model in

mice is strongly associated with inflammation, where cellular infiltration was strongly reduced

Fig 4. Atorvastatin- mediated inhibition of Ptgs2, Pges and Nos2 gene expression is HO-1 dependent. Mice were treated as described in the legend for Fig 2. A)

Gene expression of Ptgs2, Pges, and Nos2, B) IL-1α, MCP-1 and PGE2 concentration. Mean ± SEM (n = 8).

https://doi.org/10.1371/journal.pone.0216405.g004
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in IL-6 knockout mice [43]. In our experimental model, inhibition of the expression of these

proinflammatory markers by atorvastatin was mediated via HO-1. The decrease in the inflam-

matory cell recruitment observed in response to atorvastatin was accompanied by a reduction

in the levels of mediators measured in the air pouch. At the same time, our data showed that

the modulation of the expression of the proinflammatory cytokines, chemokines and enzymes,

performed on the remaining inflammatory cells in the air pouch was also significantly attenu-

ated. These findings support an inhibitory role of atorvastatin on both the recruitment of cells

in the air pouch and the regulation of gene expression. It was demonstrated that HO-1 induc-

tion resulted in reducing COX-2 and NOS-II expression and PGE2, nitrite, LTB4, IL-1β and

TNF-α synthesis [41]. The role of HO-1 was further reinforced using myeloid-restricted dele-

tion of HO-1 that revealed an increase in neutrophil infiltration and enhancement of the

inflammatory mediators IL-1β, TNF-α, MMP-3, and PGE2, highlighting an important anti-

inflammatory role of HO-1 in the zymosan-induced air pouch model [44]. Importantly, CO

and biliverdin/bilirubin, the products of HO reaction, exhibit anti-inflammatory effects with a

reduction of proinflammatory cytokine expression [45–49] and leukocyte–endothelial interac-

tions, supporting a role in cell recruitments [50]. Moreover, CORM-3 and CORM-A-1, com-

pounds that deliver CO and mimic the effect of HO-1-derived CO, have been reported to exert

significant anti-inflammatory effects in addition to their cardioprotective and anti-atherogenic

properties [49–51].

In line with our finding on isolated macrophages, we showed that statins inhibited the gene

expression of inflammatory enzymes COX-2, NOS-II and mPGES-1 in a HO-1 dependent

manner. The statin-dependent inhibition of PGE2 in the air pouch in mice confirmed our pre-

vious results in cultured human monocytes [21]. SnPPIX has been widely used as an HO-1

inhibitor with success [52–54] despite few HO-1 independent reports [55, 56].

Conclusion

Our study unravels in vivo HO-1 as an anti-inflammatory player important in the protective

effects of statins and supports both statins and HO-1 induction as promising and useful anti-

inflammatory strategy in vivo.
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