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ABSTRACT: The 2014 CSAR Benchmark Exercise was
focused on three protein targets: coagulation factor Xa, spleen
tyrosine kinase, and bacterial tRNA methyltransferase. Our
protocol involved a preliminary analysis of the structural
information available in the Protein Data Bank for the protein
targets, which allowed the identification of the most
appropriate docking software and scoring functions to be
used for the rescoring of several docking conformations datasets,
as well as for pose prediction and affinity ranking. The two key
points of this study were (i) the prior evaluation of molecular
modeling tools that are most adapted for each target and (ii) the increased search efficiency during the docking process to better
explore the conformational space of big and flexible ligands.

■ INTRODUCTION
The Community Structure−Activity Resource (CSAR) Bench-
mark Exercises are unique opportunities for the molecular
modeling community to evaluate, in “blind” conditions, the per-
formance of the computational chemistry tools and methods
that are currently available, in a continuous quest for improving
the existing computational methods, with a special emphasis
on docking and scoring.
Previous CSAR challenges took place in 2010 (343 diverse

protein−ligand complexes with binding data in Binding MOAD
or PDB bind),1,2 2011−2012 (six protein targets: CDK2, CDK2-
cyclinA, urokinase, Chk1, ERK2, and LpxC; 647 compounds
with biological affinities; and 82 crystal structures),3,4 and 2013
(proteins designed to bind a steroid).
In 2014, the CSAR Benchmark Exercise was focused on three

protein targets (Figure 1): coagulation factor Xa (FXA),5−12

spleen tyrosine kinase (SYK),13−23 and bacterial tRNA methyl-
transferase (TRMD).24−29 In Phase 1, the participants were
asked to score several datasets containing 200 pre-generated
decoys, whereas in Phase 2 they had to dock five datasets con-
taining small molecules in the corresponding target protein and
provide the coordinates and the scores for each docked small
molecule.

■ METHODS
Protein Structures. All ligands, ions, and solvent molecules

that were present in the original structures downloaded from the
Protein Data Bank (PDB)30 were manually removed, and
hydrogen atoms were added using Hermes, the graphical inter-
face of Gold31 software. The binding sites for docking were
defined as follows: (i) for FXA, a sphere with a radius of 15 Å
centered on the center of mass of the native ligand of structure

FXA_gtc000401_2.07; (ii) for SYK, a sphere with a radius of
15 Å centered on the CE atom of residue Met448; (iii) for
TRMD, a sphere with a radius of 15 Å centered on the backbone
O atom of residue Tyr136. More generally, these binding sites
were defined to cover all interactions with the ligands from
existing X-ray crystal structures (see Supporting Information for
a complete list).

Ligands. The structures used for Phase 2 were provided in
SMILES format, and they were converted into three-dimensional
MOL2 files using CORINA (Molecular Networks, http://www.
molecular-networks.com/). The protonation state for all
compounds was adjusted at physiological pH using LigPrep
(Schrödinger, http://www.schrodinger.com/). Some ligands
were provided as salts, and the counterion was removed during
the LigPrep’s ligand preparation protocol.

Docking. In the preliminary analysis step, several docking
programs and scoring functions were evaluated for their ability to
reproduce the existing protein−ligand complexes of FXA, SYK,
and TRMD (see Supporting Information for a complete list
of PDB structures that were used for this purpose): Glide
(Schrödinger, http://www.schrodinger.com/), with the stand-
ard precision (SP) scoring function; Gold,31 with the GoldScore,
ChemScore, ChemPLP, and ASP scoring functions; Autodock;32

and Autodock Vina.33 For the pose prediction step, Gold with the
GoldScore scoring function gave globally the best results,
whereas for the rescoring step different scoring functions were
found to be more suitable for each of the three targets. In most
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cases the selected docking conformations were ranked in the first
position. However, in a few instances, the expected binding
modes, according to the representative interactions identified in
the preliminary analysis step, were found ranked in the second
position. Thus, these ones were considered as correct answers
and selected for the final submission. Default parameters were
used in all cases for docking, except with Gold, where a search
efficiency of 200% was used. Prior calculations showed that a
search efficiency of 100% is not high enough to completely
explore the large conformational space of ligands proposed for
the CSAR 2014 challenge (data not shown).
Graphics.Chemical structures were depicted using CACTVS

Chemoinformatics Toolkit (Xemistry, http://www.xemistry.com/),
and images for protein structures were generated using PyMol
(Schrödinger, http://www.pymol.org/).

■ RESULTS AND DISCUSSION

The protocol that we followed for the CSAR 2014 benchmark is
globally similar to the approach that we used for the SAMPL3
(2011)34 and SAMPL4 (2013)35 virtual screening challenges,
which proved to be highly successful. It involves the preliminary
analysis of the existing structural data for all protein targets
and identification of the most appropriate combination of
docking software and scoring function for each target, which
is then used for the prediction. Another key point was the use
of normal docking (not virtual screening) parameters, as our
previous studies34,35 showed that these parameters provided
better results, due to improved conformational sampling within
the binding site. In this work, given the size and conforma-
tional flexibility of ligands, a search efficiency of 200% was used
to further improve the conformational sampling of docking
conformations.
Preliminary Analysis. We started by identifying the

structural data available for the three targetsFXA, SYK, and

TRMDin the PDB,30 which was used to evaluate several
different docking software and scoring functions. In this way, we
found those that are the most adapted for the given targets in
positioning the ligand in the binding site (useful for Phase 2) and
scoring (or rescoring) the docking poses (useful for Phase 1).
From the analysis of the existing protein−ligand complexes from
the PDB we could also identify the representative interactions
(mainly hydrogen bonds) and key residues of the protein
responsible for the stability of the complexes, which could be
used as additional criteria to evaluate the pertinence of pose
predictions. The structures of co-crystallized ligands were also
compared to the sets of ligands provided for the CSAR challenge
in order to identify possible common structural patterns that
should get a special attention in the analysis of the docking
results.

FXA. PDB contains 125 structures of human coagulation factor
Xa and one structure of the corresponding bovine protein. All of

Figure 1.The three protein targets included in the CSAR 2014 challenge: FXA (a), SYK (b), and TRMD (c). In (a) and (b) the surface of the protein is
colored in gray, and the binding site, as defined for our docking studies, is colored in orange. In (c) the structure is a homodimer, with the monomers
colored in gray and dark gray, and their respective contributions to the binding site colored in light orange and orange.

Table 1. Overview of Docking Programs and Scoring Functions That Gave the Best Results in the Preliminary Analysis, with Each
of the Three Proteinsa

aThe scoring functions that were effectively used in Phases 1 and 2 are colored in red.

Chart 1. Chemical Structures of the Three FXA Ligands
Included in Phase 1
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them are obtained by X-ray diffraction. The analysis of the
protein−ligand interactions in these complexes evidenced a
number of residues that are important for binding, especially
Gly126 which is involved in hydrogen bonds with heteroatoms
from the ligands. All four scoring functions implemented in Gold
(GoldScore, ChemScore, ChemPLP, and ASP) performed
equally well for the rescoring step, whereas GoldScore scoring
function was selected for docking (Table 1).
SYK.Thirty-one structures were identified in the PDB for SYK,

24 of them presenting a ligand in the binding site (see Supporting
Information for more details). Gold with the GoldScore scoring
function was found to be the most appropriate to perform the
docking, whereas ChemPLP and ChemScore were the best for
the rescoring, with a slight advantage for the latter, which was
therefore used to evaluate the SYK series in Phase 1 (Table 1).
TRMD. Two groups of protein-ligand complexes, with different

bindingmotifs, were identified from theTRMDstructures available
in the PDB (see Supporting Information for the complete list of
structures): (i) in the first group, the ligands are adenosine
derivatives that interact with the binding site through 4 hydrogen
bonds with a consensus motif IGxYxL; (ii) in the second group,
the ligands feature a 4-oxo-3,4-dihydrothieno[2,3‑d]pyrimidine-
5-carboxamide fragment, whose interaction with the binding site
takes place through four hydrogen bonds with a consensus motif
SIxxYxL. The calculations involving this protein were carried out
with Gold, using ChemScore and GoldScore for the rescoring and
docking steps, respectively (Table 1).

Phase 1. The Phase 1 dataset of the 2014 CSAR Benchmark
Exercise consisted of 22 crystal structures of the three target
proteins (3 for FXA, 5 for SYK, and 14 for TRMD), each
structure being associated with a set of 200 docking poses of
different ligands. Among the docking poses, one had an RMSD≈
1 Å compared to the experimentally determined conformation of
the ligand. The participants were asked to identify this
conformation, by providing an ordered list of the 200 docking
poses, including the rank and score.
We rescored the docking poses that were provided using the

most efficient docking software and scoring function identified in
the previous step, and then we used the knowledge gathered from
the analysis of the PDB complexes to check the pertinence of the
rescoring result (in all cases we found a good agreement). The
score submitted in the answer in addition to the rank comes
directly from the rescoring, with the exception of FXA, for which
we found in the PDB ligands very similar to those from the Phase
1 dataset. In this case the score submitted is the difference
between an arbitrary value (50 in our case) and the RMSD
compared with the ligands found in the PDB (the rankings based
on rescoring and on RMSD were very similar). This approach
allowed us to submit homogeneous answers, with the higher
value for the best-ranked pose.

FXA. The chemical structures of the three FXA ligands
included in Phase 1 are shown in Chart 1.
Compound gtc101 is very similar to ligand 461 from the PDB

structure 2WYG, which makes a unique hydrogen bond between

Figure 2. Predicted binding modes of the three FXA ligands (gtc101, gtc398, and gtc401) in Phase 1. The ligands are colored in cyan (a), orange (b),
and purple (c), respectively. The reference compounds, ligands 461 (a) and GSK (b,c) from the PDB structures 2WYG and 2CJI, respectively, are
colored in gray.

Chart 2. Chemical Structures of the Five SYK Ligands Included in Phase 1
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Gly216 and the oxygen atom bound to the pyrrole ring. Among
the 200 docking poses of gtc101, only two of them
(conformations 76 and 146) have an oxygen atom at the same
position. Conformation 146 is the closest compared to the one
from the crystal structure 2WYG, and therefore it was used as
reference to calculate the RMSD for the remaining 199 con-
formers. Compounds gtc398 and gtc401 are very similar to
ligand GSK from the PDB structure 2CJI, which makes a
hydrogen bond between Gly216 and the oxygen atom bound to
the pyrrole ring. The closest conformations compared to the
crystal structure are 190 and 37, respectively, which were also
used as reference structures for RMSD calculations. It is worthy
to note that for all ligands rescoring of the 200 poses with any of
the four scoring functions implemented in Gold (GoldScore,
ChemScore, ChemPLP, and ASP) provided the selected poses
(146, 190, and 37) always ranked at the first position (Figure 2).
SYK. The chemical structures of the five SYK ligands included

in Phase 1 are shown in Chart 2. Each set of 200 conformations
corresponding to individual ligands was rescored using the
ChemScore scoring function implemented in Gold, and the

top-ranking conformations presented the conserved interactions
with the binding site that were identified in the preliminary
analysis.

TRMD. The chemical structures of the 14 TRMD ligands
included in Phase 1 are shown in Chart 3. Rescoring of the
corresponding datasets, containing each one 200 conformers,
with the four scoring functions implemented in Gold (Gold-
Score, ChemScore, ChemPLP, and ASP) confirmed the
superiority of ChemScore, and to a lesser extent ChemPLP, in
providing top-ranking conformations containing the conserved
interactions with the binding site that were identified in the
preliminary analysis step.
The subsequent release of experimental data related to Phase 1

showed that we have correctly predicted the top conformation for all
of the 22 protein−ligand complexes (100% success rate). This result
emphasizes the importance of the preliminary analysis step, in
order to choose the most suitable tool that is able to provide the
correct answer for a given problem.

Phase 2. In Phase 2 of the 2014 CSAR Benchmark Exercise,
the participants were asked to dock five ligand datasets (three for

Chart 3. Chemical Structures of the 14 TRMD Ligands Included in Phase 1
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FXA, one for SYK, and one for TRMD) using one or several
crystal structures of the target proteins that were used in Phase 1
and to provide a ranked list of ligands from each dataset, as well as
the coordinates of the best pose for each ligand.
We used the docking software and scoring function identified

previously, and a number of preliminary calculations were carried
out, as described below, to find which protein conformer from
those provided is the most appropriate for docking the datasets,
which size of the binding site should be considered for docking,
etc. An important point was the use of a search efficiency of 200%
in Gold in order to improve the sampling of the ligands, which
generally were big and rather flexible. Again, the knowledge
gathered from the PDB complexes was used to evaluate the
pertinence of the docking results, in addition to the score.

FXA. Three protein structures (FXA_gtc000101_1.61,
FXA_gtc000398_1.86, and FXA_gtc000401_2.07) were pro-
vided, as well as three ligand datasets (set1, set2, and set3),
containing 45, 67, and 51 molecules, respectively (see
Supporting Information for the chemical structures of all these
ligands). A careful analysis evidenced two main differences

Figure 4. Representative interactions between the proteins FXA (a), SYK (b), and TRMD (c) and the ligands GTC000010A, GTC000111A, and
GTC000444A, respectively. Protein surfaces are colored in gray, and the ligands are colored in magenta. Hydrogen atoms were omitted for clarity.

Figure 3. Superposition of the crystal structures FXA_gtc000401_2.07
(cyan) and FXA_gtc000101_1.61 (green) with their native ligands,
gtc401 and gtc101, respectively.

Figure 5.Mean RMSD of our prediction for FXA (1.728 Å) compared to the other predictions from CSAR 2014 Phase 2 (values calculated from one
structure).
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among the protein structures: (i) the structure FXA_gtc000-
401_2.07 had a missing loop, but this loop was not located in the
vicinity of the binding site, and its absence would not affect the
interaction with the ligands; (ii) the residue Gln192 shows two
different conformations in all these structures. Analysis of the
corresponding complexes with their native ligands showed
similar interactions except a hydrogen bond between Gln192 and
an oxygen atom from the ligand that is present only in the
structure FXA_gtc000401_2.07, which was therefore used for
docking the three ligand datasets (Figure 3).

The analysis of docking results showed in many cases two
conserved hydrogen bond interactions, (i) between the back-
bone N of Gly216 and an amide carbonyl from the ligand and (ii)
between the NE2 atom of Gln192 and a sulfonamide oxygen
from the ligand (Figure 4a).

SYK. Five protein structures were provided (gtc000224_SYK,
gtc000225_SYK, gtc000233_SYK, gtc000249_SYK, and gtc-
000250_SYK) and a single ligand dataset containing 275 mole-
cules (see Supporting Information for the chemical structures of
these ligands). In order to choose the most appropriate protein

Figure 6.Mean RMSD of our prediction for SYK (1.826 Å) compared to the other predictions from CSAR 2014 Phase 2 (values calculated from five
structures).

Figure 7. Mean RMSD of our prediction for TRMD (1.027 Å) compared to the other predictions from CSAR 2014 Phase 2 (values calculated from
14 structures).
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structure for docking, those presenting atoms with occupancies
lower than 0.5 in the vicinity of the binding site were discarded,
and the remaining were compared (RMSD) with the structures
containing 24 ligands that were identified in the preliminary
analysis step. Both SYK_233 and SYK_250 correspond to these
criteria (see Figure 4b for a representative example). Redocking
of the native ligands with Glide (SP scoring function) and Gold
(GoldScore, ChemScore, ChemPLP, and ASP scoring functions)
showed that generally all scoring functions behaved well on
SYK_233, but the GoldScore scoring functions provided the best
results: less than 1 Å RMSD for SYK_233 and about 4 Å RMSD
for SYK_250. Therefore, the docking calculations were carried
out with SYK_233 and the 275 ligands from the dataset, using
Gold and GoldScore scoring function.
TRMD. Fourteen protein structures were provided, together

with a ligand dataset containing 30 molecules. Preliminary
docking studies showed that only the structure TRMD_447_
dimer, which has a more open binding site conformation, was
able to accommodate the rather bulky molecules from this
dataset (Figure 4c).
Overall, our approach afforded docking pose predictions with

average RMSD values less than 2 Å for FXA (Figure 5) and SYK
(Figure 6), and about 1 Å for TRMD (Figure 7), which

corresponds to a position in the first third of the predictions
submitted for the Phase 2 of the 2014 CSAR Benchmark
Exercise. The detailed information corresponding to each
individual structure is provided in Table 2.
However, the ranking of ligands from the five datasets

(Table 3) was more problematic. Only the TRMD dataset
showed acceptable values (0.35 and 0.47, respectively) for the
squared Pearson linear-regression correlation coefficient (R2)
and for the Spearman-rho rank-order correlation coefficient (ρ).
The factors that would explain this important discrepancy
between scoring, pose prediction, and affinity ranking are
currently under investigation.

■ CONCLUSIONS

The protocol that we used for the 2014 CSAR Benchmark
Exercise involved a preliminary analysis of the structural
information available in the PDB for the protein targets of
interest and the rescoring of several docking conformations
datasets, as well as pose prediction and affinity ranking. The two
key points for this study were (i) the prior evaluation of docking
software that are most adapted for each target and (ii) the
increased search efficiency during the docking process to better
explore the conformational space of big and flexible ligands, at
the cost of extra computational time.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.5b00337.

PDB structures that were used for the preliminary analysis,
as well as the chemical structures of all compounds
included in the five data sets from Phase 2 (PDF)

Table 2. Number of Contacts and RMSD for our CSAR 2014 Phase 2 Pose Prediction

no. of contacts submitted no. of reference contacts

protein ligand RMSD hetero−hetero carbon−carbon total hetero−hetero carbon−carbon total

FXA GTC000101A 1.728 12 42 54 12 31 43

SYK GTC000224A 3.502 10 38 48 12 37 49
GTC000225A 1.724 8 33 41 9 35 44
GTC000233A 2.169 8 32 40 16 22 38
GTC000249A 0.676 6 32 38 9 27 36
GTC000250A 1.062 8 44 52 9 32 41

TRMD GTC000445A 0.394 7 16 23 6 15 21
GTC000446A 0.749 3 23 26 2 20 22
GTC000447A 0.548 3 22 25 2 22 24
GTC000448A 0.936 13 25 38 12 21 33
GTC000451A 1.686 8 52 60 4 37 41
GTC000452A 1.652 7 29 36 6 25 31
GTC000453A 1.681 8 38 46 6 25 31
GTC000456A 0.797 8 16 24 8 10 18
GTC000457A 0.893 5 24 29 6 26 32
GTC000458A 1.111 8 27 35 6 27 33
GTC000459A 0.968 9 25 34 8 20 28
GTC000460A 0.866 8 19 27 7 25 32
GTC000464A 1.339 7 17 24 8 21 29
GTC000465A 0.758 7 11 18 6 12 18

Table 3. Performance of the CSAR 2014 Phase 2 Affinity
Ranking Prediction

dataset N R2 a ρb

FXA_1 45 0.001487 0.0954
FXA_2 67 0.005863 −0.1382
FXA_3 51 0.015903 −0.0734
FXA_all 163 0.003506 −0.1647
SYK 276 0.070026 0.3153
TRMD 31 0.349394 0.4698

aR2 is the squared Pearson linear-regression correlation coefficient.
bρ is the Spearman-rho rank-order correlation coefficient.
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