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Genomic structure of the human pre-T cell receptor
> chain and expression of two mRNA isoforms

Claude Saint-Ruf, Oskar Lechner, Jacqueline Feinberg and Harald von Boehmer

Institut Necker, INSERM Unité 373, Paris, France

The pre-TCR, which is minimally composed of the TCR g chain, the pre-T § chain, and the
CD3 complex, regulates early T cell development. The pre-T § chain is a 33-kDa type I trans-
membrane glycoprotein with an extracellular part similar to the constant domain of the
immunoglobulin supergene family. We have sequenced (11 kb) the human pT § gene, which
like the murine pT § gene consists of four exons: exon 1 encodes the 5' untranslated region,
the leader peptide and the first three amino acids of the mature protein, exon 2 the extracel-
lular immunoglobulin (Ig)-like domain, exon 3 a 15-amino acid peptide including a cysteine
required for heterodimerization with TCR g , exon 4 the transmembrane region, the cytoplas-
mic tail and the 3' untranslated sequence. The human pT § gene is located on chromosome
6p21.3, close to the HLA-A locus. Reverse transcription-PCR studies with human thymus
and leukemic cells showed that alternative splicing produces a shorter pT § isoform, which
lacks the Ig-like domain but contains the transmembrane elements and the extracytoplas-
mic cystein and which could thus permit pairing with TCR g chain and association with CD3
molecules. The conserved splice sites suggest a yet ill-defined biological function of the
short pT § protein.
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1 Introduction

In the thymus T cells develop from precursor cells in dis-
crete steps that are controlled by the pre-TCR as well as
the § g TCR for antigen. The pre-TCR consists minimally
of the TCR g chain and the covalently bound pre-TCR §
chain associated with signal-transducing proteins of the
CD3 complex [1]. The pre-TCR rescues developing
T cells that harbor a productive TCR g rearrangement
from programmed cell death and induces extensive cell
division as well as differentiation. It is also essential for
allelic exclusion of the TCR g locus through feedback
inhibition of TCR g rearrangement (reviewed in [2]).
Finally, it appears to play an important role in directing
T cell development into the § g pathway [3].

Both murine [4] and human [5] pT § cDNA have been
cloned. The deduced amino acid (aa) sequences
revealed a type I transmembrane protein consisting of a
hydrophobic signal peptide, an extracellular domain with
a structure similar to the constant (C) domain of the

immunoglobulin (Ig) supergene family, hydrophobic
transmembrane region, and a cytoplasmic tail. In con-
trast to the short (3 aa) cytoplasmic domains of the
TCR § and TCR g chain, pT § has a prominent cytoplas-
mic tail (30 aa in mice and 114 aa in humans). Addition-
ally, the pT § is not subjected to the rearrangement pro-
cess and it is devoid of J-like sequences as well as V-like
Ig domains [4, 6]. With the exception of the cytoplasmic
domain, murine and human pT § cDNA are very homolo-
gous (70–80 %). Murine pT § is located in the D/E1 region
on chromosome 17. The human gene resides in the syn-
tenic region p21.2-p12 on chromosome 6 close to the
MHC.

In the present study we present data on the human pT §
gene cloned from a human chromosome 6 cosmid
library. To define some conserved regions potentially
important for gene regulation the complete human pT §
gene sequence was established and compared with the
murine sequence. Analysis of pT § expression in human
thymus and in leukemic human cell lines shows that a
splice variant pT § isoform is expressed. This isoform,
which lacks the Ig-like domain could also be found in
mice and therefore may have an important function in
T cell development.
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Figure 1. Restriction map of the human pT § gene

Figure 2. Genomic and protein organization of murine and
human pT §

2 Results and discussion

2.1 Isolation of genomic clones encoding the
pT § gene

A cosmid library of human chromosome 6 DNA was pur-
chased from the Reference Library Database (RFLB) of
the Max Planck Institute for Molecular Genetics (Berlin,
Germany). Nizetic et al. [7] constructed the library from
DNA digests of flow-sorted human chromosomes 6 of
the 4× cell line which were ligated into lawris 4. DH5
alpha MCR (BRL) was used as host. Subsequently, a
high-density colony filter ( ˚ 36 864 clones) correspond-
ing to this library, was hybridized with a human pT §
cDNA probe. Ten clones were found to be pT § positive.
One of them co-hybridizes with a probe designated Alu
yac 7 (RFLD data), which is ALU PCR-derived genomic.
This clone is HLA-A positive and located on 6p21-3 [8],
thereby indicating the localization of the pT § gene. Previ-
ous in situ hybridization data already mapped it to the
6p21-6p12 region of the human genome [5].

Positive clones for pT § were mapped by restriction
digestion and Southern blotting. Three of them, contain-
ing the complete pT § gene, were extensively studied. No
difference was found regarding the organization of pT § in
these three recombinants. A pT § restriction map is
shown in Fig. 1. For two directional sequencing we sub-
cloned inserts of 34 kb, 44 kb, and 46 kb, respectively
into bluescript KS+ plasmids.

2.2 Sequence and organization of the human
pT > gene

Different subclones were sequenced using the “abi-
prism” system (PE Applied Biosystems, GB). We se-
quenced 11kb starting 1500bp upstream the ATG codon
and ending 250bp downstream the stop codon (se-

quence is available under accession number AF084941).
Comparing this genomic sequence with pT § cDNA
revealed the following exon/intron organization (Fig.2).

Human pT § is encoded by four exons, which corre-
spond, as in most other Ig superfamily genes, approxi-
mately to the different domains of the protein. The same
organization has been observed for murine pT § . The first
exon contains the 5' untranslated sequence, the leader
peptide and the first three aa of the mature protein. In
humans the following intron 1 is 6.5 kb long (5 kb in
mice). It is particularly rich in repetitive DNA: 16 SINE ele-
ments (16 ALU sequences) and 3 LINE elements (2 LINE-
2 and 1 LINE-1). Five simple repeats and 2 low complex-
ity sequences have also been noticed. Exon 2 encodes
105 aa of the extracellular Ig-like domain, including the
two cysteines that are thought to form the typical Ig
intrachain disulfide bridge. It is followed by intron 2
(887 bp) containing one SINE element (mir) Exon 3
encodes 16 aa, which form the connecting peptide con-
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taining the cysteine residues for dimerization with the
TCR g chain. Exon 2 and exon 3 have the same size in
humans and mice. The following intron contains 1057 bp
encompassing a SINE element (Alu Sg). Exon 4 encodes
139 aa, and contains the sequence for the approximately
20-aa long transmembrane region and the 3' untrans-
lated region of ˚ 160 nucleotides. This includes two
positively charged aa (arginine, lysine) which are located
at the same position in the murine pT § chain but also in
the TCR § and TCR ˇ chain. These arginine and lysine are
thought to be essential for the interaction of the TCR
chains with negatively charged residues in the trans-
membrane regions of the CD3 complex [9]. The last
114 aa form the cytoplasmic tail. While more than 80 %
aa identity can be observed between the murine and
human Ig-like and transmembrane region, no significant
homology could be found between the 114-aa human
cytoplasmic tail and the 30 residues of the murine pT §
cytoplasmic tail. We have suggested [5, 6] that the lack
of identity between the human and murine cytoplasmic
tails could reflect a divergence in gene structure. In fact,
the organization of the pT § genome is very similar to the
constant regions of TCR § and TCR ˇ genes. However,
two differences can be found. First, only pT § is endowed
with a leader sequence located far from the next coding
sequence. This could be explained by the fact that pT § is
expressed without a second, V region-like Ig domain.
Second, the pT § transmembrane region, the cytoplas-
mic tail, and the 3' untranslated region are encoded by a
single exon. In TCR § and TCR ˇ genes the 3' untrans-
lated region is encoded by a separate exon. In mice the
3' untranslated region contains a B2 repetitive element
which provides the polyadenylation site and thus can be
considered as an integral part of the pT § gene. We have
suggested that the specific structure of the murine pT §
gene could be due to the presence of this transposon-
like element in the 3' end of the gene [6]. Because human
pT § has the same organization but has lost the B2 repet-
itive elements, this assumption is no longer valid.

2.3 Regulatory elements of the pT > gene

We sequenced (1.5 kb) upstream of the ATG start codon
of the pT § gene. Usually promoter sequences are pres-
ent within 100 bp upstream of the ATG start codon.
While this region is well conserved between humans and
mice (70 % of nucleotide identity) no TATA or CCAAT like
regulatory elements, which are typical promoter motifs of
many non-housekeeping genes, could be found. Fur-
thermore, computer-based sequence analysis did not
permit to define a potential promoter. Further analyses of
this region by deletion and/or mutagenesis experiments
will be necessary to define the promoter site and further
regulatory elements.

Intron 1 is very large compared to other Ig-family genes
(6.5 kb for the human and 5 kb for the murine gene). In
the middle of this intron a single, 80-bp long sequence is
highly conserved between humans and mice (80 %
homology). Since intronic sequences are usually not
conserved between species, except if they contain some
regulatory elements, this sequence could play a role in
the regulation of pT § . A detailed analysis using the TESS
program (BCM Search Launcher) revealed potential
binding sites for transcription factors AP1 and ? -EBP-
C2. AP1 family members are known to play a critical role
in regulating T cell gene expression in combination with
other transcription factors [10]. Binding sites for ? -EBP-
C2 have been found in intragenic enhancers of TCR g
and IgH [11, 12]. Like in mice, the human pT § intron 1 is
heavily loaded with short interspersed repetitive ele-
ments. About 4.5 kb of the 6.6 kb of human intron 1 are
repeat sequences. The conservation of these sequences
among humans and mice additionally suggests a role of
intron 1 in the regulation of pT § expression. Since LINE
elements carry an internal split promoter for RNA poly-
merase III, they are actively transcribed by this polymer-
ase. They participate in host gene activity regulation by
inserting into regulatory elements or by providing regula-
tory elements themselves [13, 14]. Therefore, it would be
interesting to analyze whether this region plays an impor-
tant role in the regulation of pT § expression. This could
be helpful to understand the commitment of T cells to
either the § g or the + ˇ lineage since it appears that + ˇ
precursors but not + ˇ T cells express the pT § gene [3].

2.4 Expression of human pT > and evidence for a
splice-variant

We have used RT-PCR to analyze expression of human
pT § in human thymus and in the human HPB-ALL,
MOLT-4 and Jurkat cell line. Primers have been chosen
in exon 1 and exon 4 in order to amplify the entire cDNA.
Specific transcripts were found in the human thymus, in
HPB-ALL and MOLT-4 cells, respectively. The Jurkat cell
line was pT § negative. In all positive samples we
observed two different bands (Fig. 3). One of the
expected size of ˚ 640 bp, and a smaller one of
˚ 320 bp. Sequencing of these bands revealed that the

larger one corresponds to the originally described form
of pT § (as described in [5]), designated pT § 1. The
smaller band represents a splice-variant of pT § , desig-
nated pT § 2.

The splice variant sequence, pT § 2, shows an open read-
ing frame. The deduced primary sequence contains
231 aa. Comparison with pT § 1 revealed that pT § 2 lacks
the major part of the Ig-like domain. During pT § 2 splic-
ing, which uses at the same splice sites as pT § 1, the
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Figure 3. Expression of two different pT § splice variants.
pT § expression was analyzed by RT-PCR in human thymus
and three different human acute lymphoblastic cell lines:
HBL-all, MOLT4, and Jurkat. Specific transcripts were not
found in Jurkat cells. Two different bands could be
observed: one of the expected size of ˚ 640 bp, and a
smaller one of ˚ 320 bp. The control RT-PCR for g -actin is
also shown below.

Figure 4. Immunoprecipitation of pT § 1 in the human acute
lymphoblastic cell lines HBL-all and Jurkat.

entire exon 2 is eliminated. The donor splice site of exon
1 and the acceptor splice site of exon 3 are used to yield
pT § 2. Therefore, the protein encoded by this cDNA iso-
form is predicted to consist of the signal peptide fol-
lowed by the first three aa of the extracellular domain
and finally, just following the connecting peptide which is
necessary for the binding to the TCR g chain, the trans-
membrane domain and the cytoplasmic tail. All these
deduced domains are equal to those of pT § 1. The
expected molecular mass of pT § 2 is of 18.4 kDa. In con-
trast to pT § 1, which contains one N-glycosylation site in
humans and two in mice, pT § 2 has no potential N-
glycosylation site. Both pT § 1 N-glycosylation sites are
encoded by exon 2. Nevertheless numerous serines and
threonines, which are potential targets for O-
glycosylation, are present in pT § 1 and pT § 2. Therefore,
it is possible that the two pT § splice forms are O-
glycosylated, like many cell membrane glycoproteins (for
instance CD8 or IL-2 are O-glycosylated or O-glycan si-
alylated, respectively [15]). As no consensus sequence(s)
for O-glycosylation sites could be defined up to now, fur-
ther analyses are needed to establish possible glycosyl-
ations.

2.5 Immunoprecipitation of the human pT >
protein

The human cell lines HPB-ALL and Jurkat, which
express and do not express the two pT § isoforms,
respectively, were labeled with [3H]leucine. Lysates were
immunoprecipitated with R225 antibodies. These poly-
clonal rabbit antibodies were generated against the
complete extracellular domain of murine pT § including
the connecting peptide. The antibodies recognize the
protein generated in vitro from human pT § 1 cDNA by an
eukaryote-coupled transcription/translation system sup-

plemented with dog pancreas microsomes (data not
shown). Precipitates were analyzed by SDS-PAGE. A
33–34-kDa protein could be detected in precipitates
from HPB-ALL but not from Jurkat cells (Fig. 4). This pro-
tein is likely to correspond to pT § 1. The same results
were obtained under reducing and nonreducing condi-
tions and suggest that in HPB-ALL cells pT § 1 is not
linked to another protein. The human pT § 2 isoform could
not be detected in these experiments. It is possible,
however, that the R225 antibodies do not recognize this
form. In contrast to the Ig-like domain, which shows
85 % homology between mice and humans and is only
present in pT § 1, only 55 % homology exists between the
murine and human 20 aa extracellular part which is
shared by the two pT § isoforms. Thus, the R225 anti-
bodies may not bind to the connecting peptide (com-
pared to the Ig-like domain) of human pT § .

We were unable to precipitate pT § in biotinylated surface
HPB-ALL cell extracts. In this cell line, which expresses
the TCR § g , pT § should not be expressed within a pre-
TCR complex on the cell surface.

2.6 An additional pT > heterodimer in mice

Previous RT-PCR studies on pT § expression revealed
two pT § forms in the murine thymus [16]. Since a corre-
sponding smaller size mRNA could not be detected by
Northern blotting we concluded that it was a PCR arti-
fact. However, recently Barder et al. [17] reported the
expression of mRNA corresponding to the two pT § iso-
forms. Prior sequence analysis had revealed that the
murine splicing variant had exactly the same organiza-
tion as human pT § [16].

To analyze whether pT § 2 protein could be detected cell
surface biotinylation was performed with the SCB29 cell
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Figure 5. F23.1 (anti-V g 8 monoclonal antibody) immuno-
precipitates of SCB29 cell lysates analyzed by nonreducing/
reducing SDS-PAGE. (A) Blots from surface biotinylated
cells. 1: pT § 1, 2: TCR g (pT § 1 associated); 3: a 20-kDa cova-
lently TCR g -linked protein, which may represent pT § 2; 4:
TCR g (associated with the 20-kDa, TCR g -linked protein). No
other covalently TCR g -linked protein could be detected. (B)
The blot shown in (A) was destained and probed with the
polyclonal rabbit anti-murine pT § antiserum R225. Spots 1
and 3 correspond to spots 1 and 3 seen in blot A, represent-
ing pT § 1 and the putative pT § 2, respectively. An additional
spot could be detected by the pT § -specific antibody. As this
protein (spot number 5) could not be detected by cell sur-
face protein biotinylation, it probably represents an interme-
diate, intracellular pT § protein with incomplete posttran-
scriptional modifications.

line [18]. After cell lysis, pre-TCR complexes were immu-
noprecipitated with an anti-TCR g antibody (F23.1) and
analyzed by two-dimensional, reducing and nonreduc-
ing, diagonal gel electrophoresis. Gels were blotted and
membranes labeled with streptavidin-horseradish perox-
idase (HRP) to detect all precipitated proteins. Subse-
quently, the membrane was reprobed with a pT § -
specific polyclonal antiserum (R225). Using the anti-
TCR g antibody two complexes could be precipitated
(Fig. 5A): the first, representing the major complex, con-
sisted of the TCR g chain and the originally described,
full-length pT § (pT § 1). The second, weakly detectable
complex consisted of a protein with the same size as
TCR g , linked to a second protein of 20 kDa (Fig. 5B).
This latter protein was recognized by the polyclonal pT §
antiserum R225. Since without glycosylation pT § could
have an apparent molecular weight of 9 kDa we cannot
be certain that a pT § 2 protein is indeed associated with
the TCR g chain as has been claimed by Barder et al. [17].
The second heterodimer could also represent a degrada-
tion product of the pT § /TCR g heterodimer.

3 Concluding remarks

Recently, Irving et al. [19] have shown that thymocytes
expressing a pre-TCR lacking the extracellular Ig-like
domains of both pT § as well as TCR g develop normally.
They generated RAG−/− transgenic mice expressing a
truncated form of the TCR g and the pT § chain, which

had their (normal) extracellular domain replaced by a
“flag” or “myc” epitope, but still had the cysteine residue
necessary for heterodimerization. Thymocyte develop-
ment could be restored in these transgenic mice. The
truncated pT § construct used to generate these trans-
genic mice is very similar to the variant pT § isoform
found in mice and humans but these mice obviously
contained also endogenous pT § . Nevertheless, these
results were interpreted to indicate that pre-TCR com-
plex without extracellular Ig-like domains could be suffi-
cient to drive the transition from the double-negative to
the double-positive stage without binding to an extracel-
lular ligand. Irving et al. [19] observed that in transgenic
RAG−/− mice, that expressed only the truncated TCR g
Myc transgene, the modified pre-TCR (composed by the
truncated g chain and the endogenous pre TCR § chain)
was inefficiently expressed on the cell surface. Based on
these results they proposed that only a symmetrical pre-
TCR complex can be stable or properly assembled. Fol-
lowing this idea, a pre-TCR complex with pT § 2 should
not be stable. For the moment we can only speculate
about the possible role of this differential splicing form. It
is possible that pT § 2 could compete with pT § 1 for CD3
and TCR g binding, forming an inactive or differentially
signaling complex, thus providing a regulatory element in
pre-TCR assembly.

4 Materials and methods

4.1 Cell lines and tissues

Three human acute lymphoblastic leukemia cell lines,
kindly provided by Dr. MacIntyre (Hôpital Necker, Paris,
France), were used for our experiments: the mature,
TCR+ and CD3+ T cell lines HBL-all and Jurkat, and the
+ ˇ T cell line MOLT4 [20, 21]. These cell lines were cul-
tured in RPMI 1640/10 % FCS (Gibco-BRL, Gaithers-
berg, MD). The immature, pre-TCR-positive T cell line
SCB29 [1] was cultured in IMDM/10 % FCS (Gibco). A
thymus from a 3-month-old child was purchased from
Hôpital Saint-Louis (Paris, France).

4.2 Isolation, mapping and sequencing of
genomic DNA

High-density colony filters corresponding to a cosmid
library of human chromosome 6 (no. 109 L4/FS6; Refer-
ence Library Database, Max Planck Institute for Molecu-
lar Genetics, Berlin; [7]) were prehybridized overnight at
42 °C in 50 % formamide, 4 × SSC, 50 mM sodium
phosphate (pH 6.8–7.2), 1 mM EDTA (pH 8.0), 10 % dex-
tran sulfate, 1 % SDS, 50 ? g/ml denatured salmon sperm
DNA and 10× Denhart’s solution [22]. Hybridization was
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performed in the same solution and under the same con-
ditions with an [ § -32P]dCTP random priming labeled
(High-Prime, Boehringer Mannheim), human pT § cDNA
probe [5]. For detection of positive clones, filters were
washed three times in 0.1 % SSC at 65 °C and exposed
to an X-ray film (Kodak). The pT § cosmids-containing
bacterial clones DHR-5 § -MCR were supplied by the Max
Planck Institute for Molecular Genetics. Cosmid DNA
was purified according to Birnboim and Doly [23].

DNA inserts were mapped by Southern blotting:
endonuclease-digested cosmid DNA samples were sub-
jected to electrophoresis and transferred with 0.4 M
NaOH to Hybond N+ membranes (Amersham). Filters
were prehybridized and hybridized in 5 × SSC, 5× Den-
hart 1 % SDS at 65 °C. Sequences of the human cDNA
corresponding to the different pT § domains (leader pep-
tide, Ig-like domain, and cytoplasmic tail) were used as
probes for subsequent 32P labeling. For rehybridizations
probes were removed by incubating membranes for
10 min at 95 °C in 0.5 % SDS. DNA inserts were cut by
enzyme restriction and subcloned into a Bluescript-KS+

vector (Stratagene, La Jolla, CA). DNA subclones were
sequenced with an ABI PRISM dRhodamine Terminator
Cycle Sequencing Ready Reaction Kit (PE Applied Bio-
systems, Warrington, GB) and by automated sequencing
ABI PRISM 310 Genetic Analyzer (PE Applied Biosys-
tems).

4.3 RT-PCR

Total RNA was isolated using the RNeasy Mini kit (Qia-
gen, Hilden, Germany). Reverse transcription was car-
ried out using Superscript II reverse transcriptase kit
(Gibco). Subsequent PCR was carried out in a total vol-
ume of 50 ? l, containing 1 mM deoxynucleoside triphos-
phates (dNTP), 0.5 ? M of each primer, 5 ? l 10× buffer
(500 mM KCl, 100 mM Tris-HCl, pH 8.3, 15 mM MgCl2
and 0.01 % (w/v) gelatin, in a volume of 1.5 ml), 2 ? l
cDNA from the RT step, and 2 U AmpliTaq® DNA poly-
merase, LD (PE Applied Biosystems).

After a 3-min denaturation step at 94 °C, 40 cycles con-
sisting of 45 s at 94 °C, 1 min at a primer-specific anneal-
ing temperature (TA), and 1 min at 72 °C were performed
in a Gene Amp PCR System 9700 thermal cycler (PE
Applied Biosystems). Amplified DNA fragments were
analyzed on a 2 % agarose gel in 1× TAE buffer. The PCR
primers used for human pT § (TA j 60 °C) were
CTGCAGCTGGGTCCTGCCTC and AGTCTCCGTGG-
CCGGGTGCA. Primers for human g -actin (TA j 55 °C)
were ACACTGTGCCCATCTACGAGGG and ATCATG-
GAGTTGAAGGTAGTTTCG.

4.4 Protein analysis

L-[4,5-3H]-leucine metabolic and cell surface biotinyla-
tion were performed as described previously [24]. Sub-
sequently, cells were lysed for 1 h in Triton lysis buffer
(20 mM Tris/HCl, 150 mM NaCl, 2 % Triton X-100, 1 mM
MgCl2, pH 8) or digitonin lysis buffer (10 mM triethanol-
amine, 150 mM NaCl, 1 % digitonin, 1 mM EDTA) sup-
plemented with 5 mg/ml aprotinin, 5 mg leupeptin,
100 mM PMSF and 10 mM iodoacetamide. Nuclei were
removed by a 10 min centrifugation at 12 000 × g at 4 °C.
The remaining supernatant was precleared four times by
a 2–6-h incubation with normal rabbit or mouse serum
and protein G-Sepharose CL-4B (pG; Pharmacia,
Uppsala, Sweden) in Triton or digitonin lysis buffer.

Proteins were immunoprecipitated by a 3-h incubation at
4°C with pG-coupled R225 polyclonal antiserum (rabbit
anti-murine pT § extracellular domain; [25]) or F23.1 mono-
clonal antibody (mouse anti-murine TCR g -V g 8). Unbound
proteins were removed by washing four times with NET-TON
buffer (650 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, 0.5%
Triton X-100, 0.05% NaN3, 1 mg/ml ovalbumin) and twice
with NET-T (NET-TON with 0.15 M NaCl and without ovalbu-
min). Proteins were eluted from beads with reducing or non-
reducing sample buffer (10% glycerol, 2.3% SDS, 62.5 mM
Tris-HCl, pH 6.8, 0.05% w/v bromophenol blue ± 10 mM
mercaptoethanol) by boiling for 5 min and subsequent addi-
tion of iodoacetamide (60 mM final concentration).

Proteins were run in a one-dimensional 12 % polyacryl-
amide gel or in two-dimensional diagonal SDS-
polyacrylamide gels (nonreducing 8 % polyacrylamide
gel in the first and reducing 12 % polyacrylamide gel in
the second dimension) as described previously [1]. For
visualization of radioactive proteins gels were fixed,
incubated in Amplify solution (Amersham), dried and
analyzed by autoradiography.

After electrophoresis, samples were transferred onto
polyvinylidene difluoride membranes by semi-dry blot-
ting. Membranes were blocked in the following solution:
PBS, 4% Tween 20, 2% fetal calf serum 10% non-fatty
milk powder. Blots were incubated with streptavidin-
HRP conjugate (Southern Biotechnology, Birmingham,
AL) for 30 min, at room temperature in PBS 4% Tween 20.
HRP was detected by incubation with ECL detection solu-
tion (Amersham) and exposure to an X-ray film (Kodak).
Blots were destained by incubation in PBS/0.1% sodium
azide for reprobing. Subsequently, blots were incubated in
PBS 4% Tween 20 with the pT § -specific R225 rabbit anti-
serum (1/1000), washed three times in PBS/4% Tween 20
and incubated for 1 h with HRP goat anti rabbit IgG
(1:20000 dilution; Southern Biotechnology). HRP detec-
tion was performed as described above.
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