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Abstract

Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous

physiological functions, including the immune response. As pathogens elicit an acute phase

response with concerted activation of STAT3, they are confronted with two evolutionary

options: either curtail it or employ it. This has important consequences for the host, since

abnormal STAT3 function is associated with cancer development and other diseases. This

review provides a comprehensive outline of how human viruses cope with STAT3-mediated

inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target

for antiviral therapy.

Signal transduction through the STAT3 pathway

STAT3 is a transcription factor activated by tyrosine phosphorylation

Signal transducer and activator of transcription 3 (STAT3) was first described in 1994 as

a central transcription factor in acute inflammation [1]. Since then, STAT3 has been

shown to regulate a wide spectrum of biological programs, including inflammation, tissue

regeneration, cell proliferation, cell survival, cellular differentiation, angiogenesis, che-

motaxis, and cell adhesion. This functional pleiotropy can be partially explained by the

broad number of ligands that lead to STAT3 activation after binding to their respective

cytokine receptors [2]. Upon cytokine binding, there is typically recruitment and recipro-

cal trans-phosphorylation of tyrosine kinases of the Janus kinase (JAK) family comprising

JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2) [3,4,5]. They, in turn, recruit and phos-

phorylate STAT3 (p-STAT3) at the highly conserved tyrosine residue 705 (pY705) [6],

resulting in the formation of STAT3 homo- or heterodimers with signal transducer and

activator of transcription 1 (STAT1) or signal transducer and activator of transcription

5 (STAT5) [7]. Subsequently, the activated signal transducer and activator of transcrip-

tion (STAT) dimers translocate to the nucleus and facilitate gene transcription after bind-

ing to genomic DNA. Many pathways thus converge in STAT3-mediated gene-expression

(Fig 1).
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Regulation of STAT3 activation

STAT3 activity is additionally regulated by several post-translational modifications. First,

phosphorylation at serine 727 (pS727) by a variety of serine/threonine kinases, such as the

mitogen-activated protein (MAP) kinases, mechanistic target of rapamycin (mTOR), and

protein kinase C delta type (PKCδ), increases transcriptional activity even further [8]. In

mitochondria, pS727 promotes cellular respiration independently from pY705 [9]. Sec-

ond, STAT3 can be reversible acetylated on K685 by histone acetyltransferase CBP/p300,

prolonging transcriptional activity [10]. Contrarily, K140 methylation by histone methyl-

transferase SET9 impairs transcription [11].

Additional negative feedback regulators include the protein phosphatases receptor-type tyro-

sine-protein phosphatase C (PTPRC), receptor-type tyrosine-protein phosphatase D (PTPRD),

receptor-type tyrosine-protein phosphatase T (PTPRT), and dual specificity protein phosphatase

2 (DUSP2) that hydrolyze p-STAT3 or upstream pathway members [12, 13, 14, 15]. Suppressor

of cytokine signaling 3 (SOCS3) prevents STAT3 activation by shielding phospho-tyrosine resi-

dues of upstream kinases [16,17], while protein inhibitor of activated STAT protein 3 (PIAS3)

prevents binding of STAT3 dimers to DNA [18]. In the nucleus, the phosphorylation and tran-

scriptional activity of STAT3 pS727 is negatively regulated by tripartite motif-containing protein

28 (TRIM28), which binds directly to the central coiled-coil and DNA-binding domains of

STAT3 [19]. Furthermore, several microRNAs (miRNAs) directly target STAT3 mRNA, including

Let-7a [20], miR-17-5p [21], miR-29b [22], miR-124 [23], and miR-519a [24]. Let-7a also exerts

an indirect effect on STAT3 by promoting SOCS3 expression [25]. STAT3-activating miRNAs

include miR-24 and miR-629 that impair miR-124 expression via HNF4AmRNA silencing [26].

Similarly, miR-135a-5p and miR-19a enhance pY705 phosphorylation by respectively targeting

the mRNA of PTPRD and SOCS3 [27,28].

Although STAT3 phosphorylation is often considered a prerequisite for its transcriptional

activity, unphosphorylated STAT3 (u-STAT3) can promote the expression of genes related to

cell cycle progression [29,30]. Finally, cytoplasmic STAT3 promotes cell migration by interact-

ing with stathmin, a microtubule destabilizer [31].

Physiological role of STAT3 in inflammation

In mammalian organisms, tissue injuries inflicted by pathogens are met by the release of

inflammatory mediators and local infiltration of white blood cells. This eliminates foreign

material, removes damaged tissue components, and clears the way for repair. STAT3 plays an

essential role in these processes by enabling the expression of a variety of genes in response to

specific external signals sensed by cell-surface receptors [32]. Not all cell types and tissues have

the same expression patterns of these receptors and their signaling cascade mediators. There-

fore, the functional consequence of STAT3 activation is highly context-dependent, which can

often lead to conflicting information. As illustrated in the following examples, this is particu-

larly true for the role of STAT3 in inflammation, since it is either able to promote or suppress

this process.

IL-6/STAT3 pathway promotes inflammation

Interleukin 6 (IL-6) is a classic proinflammatory cytokine that signals through STAT3 as part

of the acute phase response (APR), a nonspecific reaction of the innate immune system to

pathogen infection. During acute inflammation, IL-6 is produced in the lesion site to attract

neutrophils and increase granulopoiesis [33]. Upon extravasation at the site of injury, neutro-

phils produce soluble interleukin 6 receptor alpha (sIL-6Rα), which in complex with IL-6

binds to glycoprotein 130 (gp130) at the membrane of resident tissue cells. This process is
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known as the trans-signaling pathway [34], which subsequently leads to a switch in chemokine

expression attracting monocytic and T cells [35,36]. Upon the arrival of monocytic cells in the

inflammation site, IL-6 signals govern their transformation into macrophages [37]. Pathogens

Fig 1. Regulatory circuits of the STAT3 signaling pathway. STAT3 can be activated by a wide range of ligands binding to cytokine, growth factor,

or G-protein-coupled receptors. With the exception of receptor tyrosine kinases, these receptors lack intrinsic kinase activity and thus act by

recruiting adaptor kinases (e.g., JAKs, SRC) to propagate downstream signals. As a result, STAT3 is phosphorylated at tyrosine 705 (pY705, pink),

forms homodimers or heterodimers, and translocates to the nucleus, where it transcribes regulators of various cellular processes. Additionally,

STAT3 can be phosphorylated at serine 727 (pS727, purple) by serine/threonine kinases (e.g., MAPK, mTOR, PKCδ), which enhance STAT3

transcriptional activity in the nucleus or direct STAT3 to mitochondria. Acetylation at lysine 685 (K685, red) by histone acetyltransferases (e.g.,

CREB binding protein CBP/histone acetyltransferase p300) or methylation at lysine 140 (K140, blue) by histone methyltransferases (e.g., SET9)

favor or impair STAT3 transcriptional activity, respectively. Unphosphorylated STAT3 exhibits regulatory functions in the nucleus or can be

retained in the cytoplasm, where it associates with microtubules and focal adhesions. The activity of STAT3 is tightly regulated by phosphatases

(e.g., PTPRD), SOCS3, PIAS3, and miRNAs that fine-tune the temporal pattern of STAT3 activity and its other pathway components. All miRNAs

are degrading the mRNAs of the indicated proteins. A, acetylation; CBP, CREB-binding protein; CT-1R, cardiotrophin 1 receptor; CNTFR, ciliary

neurotrophic factor receptor; DUSP2, dual specificity protein phosphatase 2; EGFR, epidermal growth factor receptor; GHR, growth hormone

receptor; G-CSFR, granulocyte colony-stimulating factor receptor; GM-CSFR, granulocyte-macrophage colony-stimulating factor receptor; gp130,

glycoprotein 130; IFNAR, interferon alpha receptor; IFNGR, interferon gamma receptor; IL, interleukin; JAK, Janus kinase; K140, lysine 140; K685,

lysine 685; LIFR, leukemia inhibitory factor receptor; MAPK, mitogen-activated protein kinase; M, methylation; miRNA, microRNA; mTOR,

mechanistic target of rapamycin; OSMR, oncostatin-M-specific receptor; P, phosphorylation; p300, histone acetyltransferase p300; PDGFR,

platelet-derived growth factor receptor; PIAS3, protein inhibitor of activated STAT protein 3; PKCδ, protein kinase C delta type; pS727, phospho-

serine 727; PTPRC, receptor-type tyrosine-protein phosphatase C; PTPRD, receptor-type tyrosine-protein phosphatase D; PTPRT, receptor-type

tyrosine-protein phosphatase T; pY705, phospho-tyrosine 705; SET9, histone-lysine N-methyltransferase SET9; SOCS3, suppressor of cytokine

signaling 3; SRC, proto-oncogene tyrosine-protein kinase; STAT3, signal transducer and activator of transcription 3; TpoR, thrombopoietin

receptor; TRIM28, tripartite motif-containing protein 28.

https://doi.org/10.1371/journal.ppat.1006839.g001
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are thus initially confronted in their initial microenvironment with a potent IL-6 stimulus,

which is mounted by the host to combat their very presence.

Apart from the lesion site, the IL-6/STAT3 proinflammatory signaling axis functions in

many other cellular and tissue compartments. In secondary lymphoid tissues, where the adap-

tive immune response takes place, IL-6-mediated STAT3 activation promotes the proliferation

and survival of T and B cell populations [38,39]. In addition, together with transforming growth

factor beta (TGF-β), the IL-6/STAT3 axis is crucial for differentiating naive CD4+ T cells into

Th17 cells [40,41], limiting the generation of regulatory CD4+ T cells (Treg cells) [42]. Moreover,

IL-6 promotes the differentiation of follicular helper T cells (TFH cells) via STAT3 [43,44], effec-

tively linking together T and B cell responses [45].

IL-10/STAT3 pathway suppresses inflammation

Interleukin 10 (IL-10) also activates STAT3, but unlike IL-6 the IL-10/STAT3 axis has powerful

anti-inflammatory properties. Its function is essential to restrain unwanted immune responses

and prevent autoimmune pathologies [46]. IL-10 only exerts an effect on immune cells, as they

are the only cells to have the interleukin 10 receptor alpha (IL-10RA). This IL-10 receptor is

highly expressed in monocytic cells and macrophages but also to a lesser extent in NK cells,

CD4+ and CD8+ T cells, B cells, dendritic cells (DCs), and mast cells [47]. Until recently it was

unclear how, in cells responsive to both IL-6 and IL-10, STAT3 orchestrates such opposing

functions. In fact, SOCS3 is critical for selecting the transcriptional response. While IL-6 signal-

ing is selectively inhibited by SOCS3 binding to gp130, SOCS3 does not interfere with IL-10R-

mediated STAT3 activation [48]. As an effect, STAT3 activation is transient and proinflamma-

tory in response to IL-6, while long lasting and anti-inflammatory in IL-10 [49].

IL-10 exerts its anti-inflammatory effect by suppressing T helper 1 (TH1) cell responses [50]

and regulating apoptosis in B cells [51]. In addition, IL-10/STAT3 is necessary for generation

of tolerogenic DCs and of induced Tregs out of naïve CD4+ T cells [52].

Interferon activation of STAT3

Upon viral infection, type I and type II interferons (IFNs) initiate a canonical antiviral tran-

scriptional program through STAT1 and STAT2, which results in an inflammatory, proapop-

totic, and antiproliferative state [53]. At the same time, IFNs induce STAT3 activation [54,55],

which provides a negative feedback by favoring cell proliferation and survival and thus result-

ing in gene expression with anti-inflammatory properties [56]. In support of this model, sil-

encing of STAT1 or STAT3 expression by RNA interference confirmed the role of STATs as

important determinants of IFN-α receptor (IFNAR) function [57] and emphasizes the role of

STAT3 to restrain STAT1-mediated proinflammatory signaling [58].

In this context, an initial proinflammatory response to IFNs is mediated by STAT1, which

expression is far more abundant, while STAT3-mediated gene induction is prevented by the

SIN3 transcription regulator family member A complex (SIN3A). This multimolecular com-

plex, containing histone deacetylases 1 (HDAC1) and 2 (HDAC2), inactivates STAT3 by dea-

cetylation [59]. It has been suggested that only in a second phase is STAT3 activity increased,

leading to a sequential counterbalance to the initial flare of apoptosis and decrease in prolifera-

tion mediated by IFNs [60].

A potential regulatory layer that remains poorly understood is the role of STAT1 and STAT3

heterodimers induced by IFNs. On one hand, STAT1 and STAT3 heterodimers have been

described to bind regulatory elements present in promoters of interferon-stimulated genes

(ISGs) such as γ-activated sequence (GAS), supporting a potential antiviral role of STAT1 and

STAT3 heterodimers [61]. On the other hand, it has been proposed that STAT1 and STAT3
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heterodimers can effectively quench STAT1 and thus provide negative feedback in a later phase

of the IFN response [57]. Whatever the effect of STAT1 and STAT3 heterodimers on viral infec-

tion, either proviral or antiviral, it provides another layer of potential manipulation for viral

gene products that warrants further research.

The suggested temporal dynamics of STAT biology may explain the serious consequences

of persistent viral infections, as in the case of hepatitis C virus (HCV) [60]. Here, sustained type

I and II IFN signaling may drastically alter the initial STAT dimerization balance, enabling a

more pronounced proliferative role of STAT3 and hence increasing oncogenic pressure on

hepatocytes.

Role of STAT3 in regeneration and disease

Upon infection, inflammatory cytokines trigger cell signaling in local stem cells or differenti-

ated cells. Among other transcription factors, this eventually leads to the activation of STAT3

that mediates regenerative gene-expression programs. These genes include growth factors,

cell-cycle stimulators, cell death inhibitors, and genes promoting dedifferentiation and cell

motility and migration [62]. The task of STAT3 in regenerative inflammation is well studied in

the liver, a model for organ regeneration as it can easily restore functional capacity after partial

resection through compensatory hyperplasia [63,64]. In the liver, the inflammatory response

following injury instigates the regenerative process [65]. As part of the APR, liver-residing

macrophages (Kupffer cells) release proinflammatory cytokines such as IL-6 and tumor necro-

sis factor alpha (TNF-α) [66]. These inflammatory cytokines are important components of

priming pathways that help sensitize hepatocytes to proliferative signals, such as hepatocyte

growth factor (HGF) and epidermal growth factor (EGF) [67]. However, when liver injury per-

sists, as in the case of chronic viral hepatitis, liver inflammation paired with constant STAT3

activity fosters the development of hepatocellular carcinoma (HCC) [27]. A similar oncogenic

role of STAT3 has been observed in a wide variety of other malignancies such as colorectal,

lung, prostate, gastric, and breast cancers [68].

Given the extensive role of STAT3 in many physiological processes, it is only logical that its

perturbation entails a wide variety of pathological consequences. This is exemplified by loss-

of-function mutations in the STAT3 gene that lead to the autosomal dominant hyper-immu-

noglobulin E (IgE) syndrome (AD-HIES) [69]. These patients exhibit an immunodeficiency

complex that presents with recurrent episodes of pneumonia and other lung abnormalities,

abnormally high levels of IgE, eosinophilia, eczema, and skeletal and connective tissue abnor-

malities. Inadequate inflammatory capacity due to a broken IL-6/STAT3 axis curtails the APR

and leads to "cold" skin abscesses (i.e., without inflammatory signs). As STAT3 is necessary for

generating Th17 cells, a defective Th17 response and increased susceptibility for microbial

infections are hallmarks of AD-HIES. On the other hand, the defects in the anti-inflammatory

IL-10/STAT3 pathway lead to reduced peripheral tolerance, which is clinically translated in

atopic dermatitis. Finally, AD-HIES patients exhibit a marked reduction in memory T cells

and increased latency of herpesviruses such as varicella-zoster virus (VZV) and Epstein–Barr

virus (EBV) [70].

Molecular mechanisms of viral STAT3 manipulation

Viral stimulation of STAT3 function

As STAT3 activation is a pivotal event in the APR elicited by pathogen invasion, many viruses

have evolved to thrive in a STAT3-driven microenvironment and have developed strategies to

stimulate STAT3 signaling (Fig 2A, Table 1). For example, hepatitis B virus (HBV) promotes

the formation of p-STAT3 dimers that bind specifically to an androgen-responsive element
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Fig 2. Viral manipulation of the STAT3 signaling pathway. (A) Viruses activating STAT3 function and the mechanisms involved. Viral proteins such

as HBx, NS5A, core, NSs, EBNA2, LMP1, US28, and IE1 induce STAT3 activation either directly or by favoring the action of upstream positive

regulators. Viruses like HCMV and KSHV code for homologues of human interleukins such as IL-10 and IL-6. Alternatively, virus-induced activation of

STAT3 can be achieved by the inhibition of negative regulators such as SOCS3, PTPRD, TRIM28, and Let-7a. In the case of some viruses, STAT3

activation (VZV and ZIKV) or STAT3-mediated effects (IAV) have been described, but the mechanisms involved have not been fully elucidated. All

miRNAs are degrading the mRNAs of the indicated proteins. (B) Viruses suppressing STAT3 function and the mechanisms involved. Virus-mediated

inactivation of STAT3 can be attained by decreasing its phosphorylation (KSHV, IAV, and hMPV), inducing STAT3 protein degradation (MuV),

hampering its transcriptional activity (MeV), or altering its subcellular localization (HCMV, RABV, HEV, and hMPV). EBNA2, Epstein–Barr virus

nuclear antigen 2; EBV, Epstein–Barr virus; HBV, hepatitis B virus; HBx, hepatitis B virus X protein; HCMV, human cytomegalovirus; HCV, hepatitis C

virus; HEV, hepatitis E virus; hMPV, human metapneumovirus; IAV, influenza A virus; IE1, intermediate-early protein 1; IL-6, interleukin 6; IL-10,

interleukin 10; IRAK1, interleukin 1 receptor-associated kinase 1; JAK1, Janus kinase 1; KSHV, Kaposi’s sarcoma-associated herpesvirus; LMP1, latent

membrane protein 1; miRNA, microRNA; MeV, measles virus; MK2, mitogen-activated protein kinase 2; MuV, mumps virus; NS5A, non-structural

protein 5A; NSs, non-structural proteins; P, phosphorylation; PKCδ, protein kinase C delta type; PTPRD, receptor-type tyrosine-protein phosphatase D;

RABV, rabies virus; ROS, reactive oxygen species; RVFV, Rift Valley fever virus; SOCS3, suppressor of cytokine signaling 3; STAT3, signal transducer

and activator of transcription 3; TRIM28, tripartite motif-containing protein 28; u-STAT3, unphosphorylated STAT3; vIL-10, viral IL-10; vIL-6, viral IL-

6; VZV, varicella-zoster virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.ppat.1006839.g002
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Table 1. Virus/STAT3 interactions: Summary of observations and employed methods.

Virus Observation Method Virus strain Experimental system Reference

HBV

Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression (HBx)

adr4-derived sequence

(genotype C)

Mouse hepatoma

cell line (Hepa 1–6)
[72]

Increased STAT3 protein and mRNA

expression

In vitro viral protein

expression (HBx)

adw-derived sequence

(genotype A)

Human hepatoma cell lines (HepG2,

SNU-182)
[20]

Increased STAT3 (?) phosphorylation
HBV-expressing cells and

patient-derived samples
ayw (genotype D)

Human hepatoma cell line

(HepG2.2.15), HBV-positive HCC

samples

[73]

HCV

Increased STAT3 (pY705)

phosphorylation

In vitro HCV genomic

replicon and virus infection
JFH-1 (genotype 2a)

Human hepatoma cell lines (Huh-7,

NNeoC-5B)
[74]

Increased STAT3 (pY705)

phosphorylation

In vitro and in vivo viral

protein expression (core)

Patient-derived sequence

(genotype 1b)

Human hepatoma cell line (HepG2), Tg

mice (C57BL/6)
[75]

Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression (NS5A)

Patient-derived sequence

(genotype 1b)
Human hepatoma cell line (Huh-7) [76]

Up-regulation STAT3 responsive

genes

In vitro HCV infection and

patient-derived samples
Jc1 (genotype 2a chimera)

Human hepatoma cell line (Huh7.5.1)

and HCV-positive HCC samples
[27]

Increased STAT3 (?) phosphorylation
In vitro exposition to HCV-

derived exosomes
JFH-1 (genotype 2a) Primary HSCs [28]

RVFV
Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression (NSs) and RVFV

infection

Recombinant MP12 Vero cells, HSAECs, and MEFs [77]

HCMV

Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression (US28) and HCMV

infection

Titan
HEK293 and astrocytoma cell line

(U373 MG)
[78]

Increased STAT3 (?) phosphorylation In vitro HCMV infection HCMV-AD169, HCMV-DB
Human hepatoma cell line (HepG2) and

PHHs
[79]

Increased STAT3 (?) phosphorylation In vitro vIL-10 stimulation DCs [81]

Increased STAT3 (pY705/pS727)

phosphorylation
In vitro vIL-10 stimulation Primary human monocytic cells [82]

Increased u-STAT3 nuclear

localization

In vitro viral protein

expression (IE2) and HCMV

infection

HCMV-AD169

Human embryonic lung fibroblasts

(MRC-5) and astrocytoma cell line

(U373)

[101]

EBV

Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression (LMP1) and EBV

infection

Recombinant EBV (Bx1) HeLa cells, NPC cell line (CNE2) [83]

Increased STAT3 (pY705/pS727)

phosphorylation

In vitro viral protein

expression (LMP1)
Cervical carcinoma cell line (C33A) [84]

Increased STAT3 DNA-binding and

transcriptional activity

In vitro viral protein

expression (EBNA2)

HeLa, HEK293, and human Burkitt’s

lymphoma B cell line (DG75)
[85]

KSHV

Increased STAT3 (pY705)

phosphorylation

In vitro viral protein

expression or stimulation

(vIL-6)

Human hepatoma cell line (Hep3B) [88]

Increased STAT3 (pY705/pS727)

phosphorylation
In vitro KSHV infection BCBL-1-cell line-derived HUVECs [19]

Increased STAT3 (pY705)

phosphorylation
In vitro KSHV infection BC3-cell line-derived DCs [89]

Decreased STAT3 (pY705)

phosphorylation

In vitro viral miRNAs

expression
BCBL-1-cell line-derived HUVECs [102]

VZV
Increased STAT3 (pY705)

phosphorylation

In vitro and in vivo VZV

infection

Recombinant VZV

(ORF10-GFP)

HELFs, primary tonsil

T cells and human skin xenografts

(mouse)

[90]

ZIKV

Increased STAT3 (pY705)

phosphorylation
In vitro ZIKV infection FSS13025 Primary Müller cells (mouse) [92]

Increased STAT3 pathway activity In vivo ZIKV infection
Brazil-ZKV2015,

PRVABC59
PBMCs (rhesus monkeys) [93]

(Continued)
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site present in the HBV enhancer 1 region and hence stimulates viral gene expression [71]. This is

in part mediated by hepatitis B virus X protein (HBx), which induces pY705 phosphorylation via

JAK1 [72] and down-regulates miRNA let-7a, a negative regulator of STAT3 mRNA [20]. Addi-

tionally, HBV favors STAT3 activation by inducing reactive oxygen species (ROS), which results

in epigenetic silencing of SOCS3mRNA via up-regulation of snail family transcriptional repressor

1 (SNAIL1) [73]. HCV requires STAT3 and therefore promotes STAT3 signaling to maintain

infection [74]. HCV stimulates STAT3 directly by interaction with the HCV core protein [75]

and indirectly through non-structural protein 5A (NS5A), which activates STAT3 via ROS induc-

tion [76]. Furthermore, miR-135a-5p is a negative regulator of STAT3 phosphatase PTPRD and

is up-regulated in HCV-infected hepatocytes, leading to an enhanced STAT3 transcriptional

activity [27]. Furthermore, HCV-infected hepatocytes secrete miR-19a within exosomes, down-

regulating the expression of SOCS3 in hepatic stellate cells (HSCs) and promoting STAT3 phos-

phorylation [28]. Similarly, Rift Valley fever virus (RVFV) infection induces STAT3 (pY705)

phosphorylation by the viral non-structural protein s (NSs) [77]. STAT3 activation is also a fre-

quent feature of the Herpesviridae family. Human cytomegalovirus (HCMV) activates STAT3

through various mechanisms, depending on virus strain and cell type. In U373 MG astrocytes,

viral protein US28 of the Titan strain induces IL-6 production, which in turn activates STAT3 in

an auto- and paracrine fashion [78]. In hepatoma cells and primary human hepatocytes (PHHs),

strains AD169 and HCMV-DB also activate STAT3 via IL-6 in an autocrine and/or paracrine

manner, which is independent of US28 [79]. Additionally, HCMV codes for a homologue of the

human IL-10, viral interleukin 10 (vIL-10), [80] that induces STAT3 (pY705/pS727) phosphoryla-

tion [81,82]. EBV infection in HeLa cells creates a positive feedback loop where the viral protein

Table 1. (Continued)

Virus Observation Method Virus strain Experimental system Reference

MuV STAT3 protein degradation

In vitro viral protein

expression (MuV V) and MuV

infection

Enders strain
Human fibrosarcoma-derived cell line

(2fTGH)
[94]

MeV
Reduced STAT3 transcriptional

activity

In vitro viral protein

expression (MeV V)

Edmonston strain-derived

sequence

Human fibrosarcoma-derived cell line

(2fTGH)
[95]

IAV

Decreased STAT3 (pY705)

phosphorylation
In vitro IAV infection H1N1/54, H5N1/483 Alveolar epithelial cells [96]

Increased STAT3-dependent

transcription (ANGPTL4)
In vivo IAV infection H1N1 A/PR/8/34 BALB/c mice [103]

HEV
p-STAT3 impaired nuclear

translocation

In vitro viral protein

expression (ORF3)

Hyderabad strain-derived

sequence (genotype 1)
Human hepatoma cell line (Huh7) [98]

RABV
p-STAT3 impaired nuclear

translocation

In vitro viral protein

expression (RABV P)
CVS strain-derived sequence Fibroblast-derived cell line (COS-7) [99]

hMPV

Decreased STAT3 (pY705)

phosphorylation and nuclear

translocation

In vitro hMPV infection CAN97-83 Lung adenocarcinoma cell line (A549) [100]

Abbreviations: ANGPTL4, angiopoietin-like protein 4; CVS, challenge virus standard; DCs, dendritic cells; EBNA2, Epstein–Barr virus nuclear antigen 2; EBV,

Epstein–Barr virus; HBV, hepatitis B virus; HBx, hepatitis B virus X protein; HCC, hepatocellular carcinoma; HCMV, human cytomegalovirus; HCV, hepatitis C virus;

HELFs, human embryonic lung fibroblasts; HEV, hepatitis E virus; hMPV, human metapneumovirus; HSAECs, human small airway epithelial cells; HSCs, hepatic

stellate cells; HUVECs, human umbilical vein endothelial cells; IAV, influenza A virus; IE1, intermediate-early protein 1; IE2, intermediate-early protein 2; JFH-1,

Japanese fulminant hepatitis; KSHV, Kaposi’s sarcoma-associated herpesvirus; LMP1, latent membrane protein 1; MEFs, mouse embryonic fibroblasts; MeV, measles

virus; MeV V, measles virus viral protein V; miRNA, microRNA; MuV, mumps virus; MuV V, mumps virus viral protein V; NPC, nasopharyngeal carcinoma; NS5A,

non-structural protein 5A; NSs, non-structural proteins; PBMCs, peripheral blood mononuclear cells; PHHs, primary human hepatocytes; RABV, rabies virus; RVFV,

Rift Valley fever virus; STAT3, signal transducer and activator of transcription 3; Tg, transgenic; u-STAT3, unphosphorylated STAT3; vIL-10, viral IL-10; vIL-6, viral IL-

6; VZV, varicella-zoster virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.ppat.1006839.t001
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latent membrane protein 1 (LMP1) induces IL-6 expression and STAT3 phosphorylation, which

in turn reinforces LMP1 expression [83]. In addition, LMP1 promotes pS727 phosphorylation

through the kinase PKCδ [84], while the viral protein Epstein–Barr virus nuclear antigen 2

(EBNA2) fosters STAT3 DNA binding, enhancing its transcription [85]. EBV also codes for a

viral IL-10 homologue [86], but unlike its cellular counterpart it is not able to mount a strong

STAT3 response [81] due to a point mutation at I87A [87]. Kaposi’s sarcoma-associated herpesvi-

rus (KSHV) encodes a viral homologue of IL-6 (vIL-6) that signals through the same receptors as

cellular IL-6 (IL-6Rα/gp130) but can also activate STAT3 in an IL-6Rα-independent manner

in Hep3B liver cells [88]. In human endothelial cells, KSHV increases both pY705 and pS727

phosphorylation [19]. Though pY705 phosphorylation is transient, pS727 persists because the

viral protein kaposin B activates the p38/MK2 pathway to suppress TRIM28, which is a negative

regulator of pS727 phosphorylation [19]. STAT3 activation in DCs is believed to stem from viri-

ons interacting with dendritic cell-specific ICAM-3-grabbing nonintegrin 1 (DC-SIGN) at the

cell’s surface, as antibody blockage of DC-SIGN reduces pY705 levels [89]. VZV induces pY705

phosphorylation in epidermal cells and T cells in vivo as well as in fibroblasts in vitro through

unknown mechanisms [90]. Resveratrol, an inhibitor of kinases phosphorylating STAT3, ham-

pers VZV infection, suggesting the involvement of host kinases [91]. Similarly, ZIKA virus

(ZIKV) infection induces pY705 in primary retinal glial cells [92] and favors the activity of the

IL-6/STAT3 pathway in blood mononuclear cells from infected rhesus monkeys, albeit without

any known molecular mechanism [93].

Viral suppression of STAT3 function

In the acute phase, viral suppression of STAT3 reduces the host cell’s ability to respond to

inflammatory cytokines. On the other hand, inhibiting STAT3 also removes negative feedback

on the antiviral response. To understand the beneficial effect of blocking STAT3 for viruses, it

thus requires a temporal dissection of each individual virus/STAT3 interaction. Most viruses

that suppress STAT3, however, do this to avoid the antiviral pressure exerted by STAT3 respon-

sive genes in the acute phase of infection (Fig 2B, Table 1). Mumps virus (MuV) viral protein

V (MuV V) induces STAT3 degradation by promoting STAT3-directed ubiquitin E3 ligase

complexes [94]. Similarly, measles virus (MeV) viral protein V (MeV V) reduces STAT3-me-

diated transcription but through an unknown mechanism that is, however, independent of ubi-

quitin ligase subunits [95]. Influenza A virus (IAV) infection induces STAT3 activation in the

early phase of the inflammatory response. As the infection progresses, STAT3 activity is sup-

pressed to a degree that inversely correlates with the pathogenicity of each IAV strain. For

instance, the highly pathogenic avian influenza strain H5N1 impairs pY705 phosphorylation,

but in the case of the low pathogenic seasonal H1N1 strain this decrease is even more pro-

nounced [96]. This inhibition could be partly mediated by viral protein NS1, which increases

SOCS3 expression [97]. Other viruses have developed alternative strategies to impair STAT3

function, such as manipulating its subcellular localization during infection. Hepatitis E virus

(HEV) ORF3 protein blocks the nuclear translocation of p-STAT3 [98]. Likewise, in rabies

virus (RABV) infections, viral protein P associates with p-STAT3 in the cytoplasm, impeding its

nuclear translocation. In addition, P protein interferes with gp130 receptor signaling [99].

Human metapneumovirus (hMPV) infection prevents the nuclear translocation of STAT3 in a

cytokine-specific manner, as this was only observed following stimulation with IL-6 and not in

case of interleukin 22 (IL-22) [100]. Contrary to the occasions where HCMV induces STAT3

phosphorylation [78,79], HCMV can also rapidly disrupt IL-6/STAT3 signaling in U-373 cells

by sequestering u-STAT3 to the nucleus via viral protein IE1 [101]. Apart from inducing

STAT3 activation, KSHV can also target and inhibit STAT3 or its activators in vitro through a
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panel of virally encoded miRNAs. KSHV miR-K6-5, miR-K8, and miR-K9� reduce STAT3 lev-

els, while upon IL-6 treatment, miR-K6-5 and miR-K9 decrease PKCδ and interleukin 1 recep-

tor-associated kinase 1 (IRAK1) expression, respectively, which is accompanied by reduced p-

STAT3 levels [102]. Whether in the end KSHV-induced STAT3 activation or the negative regu-

lation of STAT3 by viral miRNAs act predominantly in endothelial cells remains unclear. But it

is conceivable that both opposing mechanisms are required in a time-dependent manner to reg-

ulate the transition from the latent to the lytic stage of the viral life cycle.

Consequences of viral perturbations in STAT3 activity

Recalibration of apoptosis dynamics

Apoptosis is perhaps the most primordial response of a host cell to infection, designed to thwart

the virus spread. Generally, viruses need to prevent host cell apoptosis to maintain a compart-

ment of infected cells [104]. However, there are also examples where viruses induce apoptosis

to spark the release of virions and galvanize viral spread [105]. STAT3 is mainly considered a

negative regulator of apoptosis by up-regulating the expression of several antiapoptotic factors

[106] (Fig 3A). IAV H5N1 causes higher pY705 levels than seasonal H1N1. Therefore, apoptosis

is delayed during H5N1 infection, allocating additional time to infected cells for progeny virus

production. Ultimately, this leads to an accumulation of apoptotic cells at later stages [96]. Simi-

larly, VZV prevents apoptosis by increasing STAT3 phosphorylation, which up-regulates bacu-

loviral IAP repeat-containing protein 5 (BIRC5) expression, a VZV host factor belonging to the

family of inhibitors of apoptosis (IAP) [90]. During EBV infection, virus-induced STAT3 activa-

tion up-regulates poly(rC)-binding protein 2 (PCBP2) expression, limiting susceptibility of

latently infected cells to lytic signals and fostering persistence [107]. This goes as well for KSHV,

in which STAT3 restrains the exit from latency into the lytic cycle by repressing the expression

of the viral protein R transactivator (RTA) [108]. MuV is yet another example in which the cyto-

pathic effects of infection are associated with the induction of apoptosis, partly via V protein-

mediated STAT3 degradation [94]. Finally, RVFV reins in apoptosis by enhancing the nuclear

translocation of phosphorylated STAT3 and impairs the expression of proapoptotic genes such

as proto-oncogene c-Fos (FOS), proto-oncogene c-Jun (JUN), and nuclear receptor subfamily

4 group A member 2 (NR4A2) [77].

Perturbing the immune response

The benefit for a virus to dampen STAT3 signaling lies in controlling antiviral innate immu-

nity responses such as the APR (Fig 3B). Many of the APR genes are modulators of inflamma-

tion. C-reactive protein (CRP) for example is a target gene of STAT3 and has several biological

functions related to nonspecific host defense [109]. Increased plasma levels of metal-binding

APRs (e.g., haptoglobin and hemopexin) help protect host cells from iron loss during infection

and the associated injury. Moreover, they act as scavengers for potentially damaging free oxy-

gen radicals. Protease inhibitors among APR genes (e.g., alpha-1-antitrypsin) neutralize lyso-

somal proteases. These inhibiting factors are released in response to tissue infiltration of

activated neutrophils and macrophages, modulating the activity of proinflammatory enzyme

cascades. HEV impairs the expression of these APR genes by inhibiting STAT3, attenuating

inflammatory responses and creating a favorable environment for viral replication and survival

[98].

In contrast to HEV, the KSHV-mediated activation of STAT3 is associated with increased

expression of C-C motif chemokine ligand 5 (CCL5) [19], a potent chemoattractant for mono-

cytic cells, eosinophils, NKs, and DCs [110]. Many of these cell types have been shown to

be present in Kaposi’s sarcoma lesions, suggesting that STAT3 contributes to the chronic
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Fig 3. Viral replicative advantages and pathological consequences related to STAT3-altered function. (A) Virus-induced perturbation of STAT3 as

regulator of apoptosis. In the context of viral infections, apoptosis can be restrained via STAT3, since it favors the expression of antiapoptotic factors

(e.g., PCBP2 and BIRC5) or prevents proapoptotic ones (e.g., RTA, FOS, JUN, and NR4A2). In contrast, inhibition of STAT3 by viruses such as IAV and
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inflammatory state observed in this pathology [19]. Moreover, KSHV-induced STAT3 activa-

tion correlates with up-regulated induced myeloid leukemia cell differentiation protein Mcl-1

(MCL1) expression levels, which can be reverted by inhibiting STAT3 [89]. MCL1 inhibits

Beclin-1, a positive regulator of autophagosome formation, to interfere with antigen process-

ing and presentation by DCs to avoid recognition and clearance [89]. KSHV also inhibits

STAT3 via the action of viral miRNAs, and by doing so it hinders the expression of ISGs such

as CXCL10, ISG15, IFITM1, IRF1, OAS2, and MX1 [102]. The vIL-10 coded by HCMV up-reg-

ulates expression of its receptor DC-SIGN in DCs, their target cells [81,111]. vIL-10 stimula-

tion of DCs also prevents the expression of costimulatory molecules (i.e., CD40, CD80, and

CD86), inhibiting maturation of DCs, enhancing their susceptibility to infection, and hamper-

ing the immune response [81]. Chronic HCV infection has been associated with the presence

of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells

that suppress the function of NK, CD4+, and CD8+ T cells [112]. Analysis of myeloid and lym-

phoid cells from chronically HCV-infected patients has shown that activation of STAT3 up-

regulates the expression of suppressive genes (i.e., IL-10, programmed cell death 1 ligand 1

[PD-L1], indoleamine 2,3-dioxygenase 1 [IDO1]) in monocytic cells. They acquire MDSC-like

characteristics and favor the expansion of Treg cells [113,114]. MDSCs have been linked to an

increased tumor burden and a higher metastasis rate in patients with HCC and in liver cancer

mouse models [115]. Thus, by the STAT3-mediated induction of MDSCs, HCV can establish a

microenvironment that supports viral immune evasion and accelerates HCC development.

Altering cell architecture and tissue organization

STAT3 also plays a role in cell morphology, which viruses exploit to promote viral persistence,

with grave consequences for host cell physiology (Fig 3C). HCV-induced p-STAT3 directly

controls microtubule (MT) dynamics through contact inhibition with stathmin [74]. Both

HCV core and NS5A are transported along MTs [116]. Moreover, HCV core integrates into

the MT lattice by a direct binding to tubulin [117]. Viral attenuation of stathmin enhances

intracellular trafficking of the virus and increases replication [74]. In addition, regenerative

STAT3 activation in HSCs precipitates fibrotic gene expression (i.e., TGF-β1, TIMP-1) [28],

eventually leading to cirrhosis, which constitutes the procarcinogenic field on which most

HCCs grow [118]. IAV triggers a STAT3-mediated up-regulation of angiopoietin-like protein

4 (ANGPTL4), a protein that compromises the integrity of endothelial vascular junctions. This

leads to enhanced tissue leakiness and exacerbation of inflammatory lung damage in infected

mice [103]. EBV is the most distinct etiological agent for the development of nasopharyngeal

MuV has been associated with the induction of the apoptotic process. (B) Viral manipulation of STAT3 and its effect on immune responses. Viral

inhibition of STAT3 can induce a decrease of ISG and APR gene expression and favor immune evasion, as in the case of KSHV and HEV. Virus-

mediated STAT3 activation can also have immunosuppressive actions such as impairing DC function (KSHV and HCMV) and favoring the expansion

of MDSCs (HCV). In other cases, the proinflammatory actions of STAT3 have been associated with the development of host pathologies such as cancer

(KSHV). (C) Virus-induced alteration of STAT3 and its impact on cell and tissue organization. STAT3 activation during HCV infection has been

associated with alterations of the MT network. This represents a potential advantage for HCV by favoring virus trafficking along MTs. At the tissue and

organ level, STAT3 activation has been associated with the development of fibrosis (HCV), the disruption of endothelial vascular junctions (IAV), and

enhanced cell invasion, which favors cancer development (EBV). ANGPTL4, angiopoietin-like protein 4; APR, acute phase response; BIRC5, baculoviral

IAP repeat-containing protein 5; CCL5, C-C motif chemokine ligand 5; DCs, dendritic cells; DC-SIGN, dendritic cell-specific ICAM-3-grabbing non-

integrin 1; EBV, Epstein–Barr virus; FOS, proto-oncogene c-Fos; HCC, hepatocellular carcinoma; HCMV, human cytomegalovirus; HCV, hepatitis C

virus; HEV, hepatitis E virus; HSCs, hepatic stellate cells; IAV, influenza A virus; IDO1, indoleamine 2,3-dioxygenase 1; IL-10, interleukin 10; ISG,

interferon-stimulated gene; JUN, proto-oncogene c-Jun; KSHV, Kaposi’s sarcoma-associated herpesvirus; MCL1, induced myeloid leukemia cell

differentiation protein Mcl-1; MDSCs, myeloid-derived suppressor cells; MT, microtubule; MUC1, mucin 1 cell surface associated; MuV, mumps virus;

NPC, nasopharyngeal carcinoma; NR4A2, nuclear receptor subfamily 4 group A member 2; PCBP2, poly(rC)-binding protein 2; PD-L1, programmed

cell death 1 ligand 1; RTA, R transactivator; RVFV, Rift Valley fever virus; STAT3, signal transducer and activator of transcription 3; TGF-β,

transforming growth factor beta; Treg, regulatory CD4+ T cell; VZV, varicella-zoster virus.

https://doi.org/10.1371/journal.ppat.1006839.g003
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carcinoma (NPC), a type of cancer in which STAT3 activation or overexpression is associated

with more than 75% of tumors in regions where EBV is endemic [119]. EBV-mediated activa-

tion of STAT3 spurs cell invasiveness in vitro, and constitutive expression of STAT3 in NPC

cell lines results in an increase of mesenchymal markers such as fibronectin and N-cadherin

[120]. In accordance, STAT3 activation via LMP1 induces the expression of mucin 1 cell sur-

face-associated (MUC1), a glycoprotein involved in the early steps of cancer cell detachment

[121].

Disruption of STAT3 function as antiviral therapy

In the cases where STAT3 activity has a proviral or pathogenic effect, blocking STAT3 repre-

sents an interesting therapeutic strategy. Unfortunately, no molecule directly targeting STAT3

has received Food and Drug Administration (FDA) approval for any pathology so far [122],

and candidate compounds targeting viral disease have not advanced beyond preclinical evalua-

tion (Table 2). Small-molecule inhibitors targeting STAT3 phosphorylation (e.g., Cpd188,

IB-32, Stattic) or dimerization (e.g., STA-21, S3I-201) have been evaluated as antivirals in vitro

or in animal models. For instance, HCV replication but not entry is inhibited by STA-21,

S3I-201, Cpd188, and IB-32 in Huh7 hepatoma cells or derivatives thereof [58,74,123]. Simi-

larly, S3I-201 and Stattic reduce HCMV replication in cell culture [101], while S3I-201 limits

VZV infection both in vitro and in animal models [90]. Oligodeoxynucleotide decoys (ODNs)

are DNA-binding domain inhibitors that compete for binding of transcription factors with

endogenous promoter sequences in their target genes. STAT3-targeting ODNs significantly

decrease HBV RNA expression and DNA replication in hepatoma cell lines [124].

In addition, several natural products such as resveratrol or curcumin have been described

to exhibit STAT3 inhibitory properties [125]. Resveratrol impairs EBV and VZV infection. For

Table 2. STAT3 signaling inhibitors, their mechanisms and in vitro antiviral applications.

Molecule Targets Molecule class Mechanism of action Antiviral effect Refs

Cpd188 STAT3 Non-peptide small molecule Inhibition of STAT3 phosphorylation HCV [58]

IB-32 STAT3 Non-peptide small molecule Inhibition of STAT3 phosphorylation HCV [123]

STA-21 STAT3 Non-peptide small molecule Inhibition of STAT3 dimerization HCV [74]

S3I-201 STAT3 Non-peptide small molecule Inhibition of STAT3 dimerization

HCV

VZV

HCMV

[74]

[90]

[101]

Stattic STAT3 Non-peptide small molecule Inhibition of STAT3 phosphorylation HCMV [101]

Sorafenib

VEGFR

PDFGR

BRAF

JAK2

STAT3

Tyrosine kinase inhibitor Inhibition of STAT3 phosphorylation HCMV� [130]

Resveratrol
JAK1

STAT3
Natural product Inhibition of STAT3 phosphorylation

VZV�

EBV

[91]

[126,127]

Curcumin

JAK1

JAK2

JAK3

STAT3

Natural product Inhibition of STAT3 nuclear localization HCMV [101]

Oligodeoxynucleotide decoy STAT3 DNA-binding modifier Inhibition of STAT3 transcriptional activity HBV [124]

�Antiviral effect via STAT3 not determined.

Abbreviations: BRAF, serine/threonine-protein kinase B-raf; EBV, Epstein–Barr virus; HBV, hepatitis B virus; HCMV, human cytomegalovirus; HCV, hepatitis C virus;

JAK1, Janus kinase 1; JAK2, Janus kinase 2; JAK3, Janus kinase 3; PDFGR, platelet-derived growth factor receptor; STAT3, signal transducer and activator of

transcription 3; VEGFR, vascular endothelial growth factor receptor; VZV, varicella-zoster virus.

https://doi.org/10.1371/journal.ppat.1006839.t002
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EBV, at least, it has been demonstrated that resveratrol suppresses STAT3 phosphorylation

[126,127], while the antiviral mechanism by which resveratrol inhibits VZV is not yet under-

stood [91]. Curcumin hinders HCMV replication in U373 cells by reducing nuclear accumula-

tion of STAT3 [101], and while it exerts antiviral properties for IAV [128] and HCV [129], a

mechanistic link to STAT3 has not been demonstrated yet.

The multikinase inhibitor sorafenib exhibits an antiviral effect against various HCMV

strains by inhibiting the expression of immediate early genes of HCMV at clinically relevant

concentrations [130]. However, sorafenib is not selective for STAT3; therefore, it is likely that

a combination of unspecific effects may account for the observed antiviral effect of sorafenib

on HCMV.

Outlook

STAT3 is a key regulator in inflammation and tissue regeneration triggered by almost

every pathogenic infection. Therefore, viruses must deal with STAT3 activity by either

curtailing it or employing it. STAT3 dependencies of viruses put a spotlight on the diverse

role of signal transduction during viral infections and represent a target for potential anti-

viral strategies. Deregulated STAT3 signaling is an oncogenic driver and is associated with

virus-induced complications, including cancers. However, targeting STAT3 during viral

infection and cancer is currently an untapped reservoir, and the question still remains as

to why it has not yet resulted in a broad range of clinical applications.

Currently, unspecific tyrosine kinase inhibitors (e.g., sorafenib) and monoclonal antibodies

(e.g., tocilizumab) that block upstream components in the STAT3 pathway are readily adminis-

tered to patients as cancer chemotherapeutics [131,132]. Similarly, other indirect STAT3-target-

ing strategies, including the modulation of STAT3 regulators, are promising. These include the

use of histone deacetylase or proteasome inhibitors that promote expression of the endogenous

STAT3 inhibitors SOCS3 and PIAS3, respectively [133]. While the use of approved indirect

STAT3 modulators in clinical practice allows an indirect safety evaluation for STAT3-targeting

strategies, their use does not allow conclusions on the specific clinical tolerance and efficacy of a

STAT3-based antiviral approach.

Several natural products targeting STAT3 are currently being explored and seem promis-

ing; however, many (including curcumin and resveratrol) have been described as pan-assay

interference compounds (PAINs). In other words, it currently cannot be ruled out that the

observed effects of these natural compounds are due to an interference with the experimental

readout rather than an interaction with their specific targets [134].

Due to multiple and redundant pathways that converge in STAT3 activation, direct STAT3-tar-

geting agents would be a gold standard to assess the potential benefit of this approach. One reason

why we have not observed a breakthrough in STAT3-targeting drugs so far may be that transcrip-

tion factors are notoriously difficult to target and that many of the STAT3 inhibitors evaluated to

date have shown to be problematic regarding their potency, bioavailability, and specificity [122].

Nevertheless, as we have explored in this review, there is strong scientific rationale to continue the

development of novel STAT3-targeting therapies. Recently emerged agents that appear encourag-

ing include AZD9150, an antisense oligonucleotide targeting STAT3 mRNA that is in early phase

I and II studies for advanced solid and hematological cancers [135–137], and napabucasin, a

small-molecule inhibitor that has advanced to phase III clinical trials [138]. The evaluation of these

and similar compounds for the treatment of cancers is expected to result in a broad range of clini-

cal applications and holds great promise for future antiviral strategies as well.
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