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Abstract

Evidence is mounting that influenza virus interacts with other pathogens colonising or infect-

ing the human respiratory tract. Taking into account interactions with other pathogens may

be critical to determining the real influenza burden and the full impact of public health poli-

cies targeting influenza. This is particularly true for mathematical modelling studies, which

have become critical in public health decision-making. Yet models usually focus on influenza

virus acquisition and infection alone, thereby making broad oversimplifications of pathogen

ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses

and systematically review the modelling studies that have incorporated interactions.

Despite the many studies examining possible associations between influenza and

Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria

meningitidis, respiratory syncytial virus (RSV), human rhinoviruses, human parainfluenza

viruses, etc., very few mathematical models have integrated other pathogens alongside

influenza. The notable exception is the pneumococcus–influenza interaction, for which sev-

eral recent modelling studies demonstrate the power of dynamic modelling as an approach

to test biological hypotheses on interaction mechanisms and estimate the strength of those

interactions.

We explore how different interference mechanisms may lead to unexpected incidence

trends and possible misinterpretation, and we illustrate the impact of interactions on public

health surveillance using simple transmission models. We demonstrate that the develop-

ment of multipathogen models is essential to assessing the true public health burden of influ-

enza and that it is needed to help improve planning and evaluation of control measures.

Finally, we identify the public health, surveillance, modelling, and biological challenges and

propose avenues of research for the coming years.
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de-France (Domaine d’Intérêt Majeur Maladies

Infectieuses). RME and MB acknowledge funding

from the National Institute for Health Research

through the Health Protection Research Unit in

Immunisation at the London School of Hygiene &

Tropical Medicine in partnership with Public Health

England. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

https://doi.org/10.1371/journal.ppat.1006770
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006770&domain=pdf&date_stamp=2018-02-15
https://doi.org/10.1371/journal.ppat.1006770
https://doi.org/10.1371/journal.ppat.1006770
http://creativecommons.org/licenses/by/4.0/


Author summary

Influenza is responsible for major morbidity and mortality burdens worldwide. Mathe-

matical models of influenza virus transmission have been critical to understanding the

virus epidemiology and planning public health strategies for infection control. It is

increasingly clear that microbes do not act in isolation but potentially interact within the

host. Therefore, studying influenza alone may lead to misinterpretation of transmission

or severity patterns. Here, we review the literature on bacteria and viruses that interact

with influenza, proposed interaction mechanisms, and mathematical modelling studies

that include interactions. We report evidence that, beyond the classic secondary bacterial

infections, many pathogenic bacteria and viruses probably interact with influenza. Public

health relevance of these pathogen interactions is detailed, showing how possible mis-

reading or a narrow outlook could lead to mistaken public health decision-making. We

describe the role of mechanistic transmission models in investigating this complex system

and obtaining insight into interactions between influenza and other pathogens. Finally,

we highlight the benefits and challenges in modelling and speculate on new opportunities

made possible by taking a broader view, including basic science, clinically, and for public

health.

Introduction

Influenza virus is a major contributor to the global disease burden, and exploration of its path-

ogenesis, epidemiology, and evolution has occupied generations of scientists. Its complex sea-

sonality, antigenic drift of surface proteins, wide spectrum of severity, and capacity to cross

species and cause epidemics or pandemics are all characteristics that make the virus so difficult

to control [1].

The human respiratory tract is an important reservoir of bacteria, fungi, viruses, bacterio-

phages, archaea, and eukaryotes [2], harboring diverse communities of commensal, opportu-

nistic, and pathogenic microorganisms. It has been suggested that some exist in nonneutral

relationships [3], with competition for resources, synergism with the host immune system, or

physiological modifications that alter the normal colonization or infection processes. The con-

tribution of species-level interactions to the influenza burden is largely unknown.

In terms of public health, our current understanding of influenza transmission or severity

may therefore be incomplete or misguided due to ignorance of the effect of interacting patho-

gens. On one hand, large-scale influenza vaccination programs may unexpectedly impact

other infections due to an indirect rise or fall in the risk of contracting them [4]. For example,

if influenza outcompetes another virus and holds it at bay, an influenza vaccination program

could result in an upsurge in the competitor. On the other hand, the introduction of measures

to control bacterial infections (e.g., pneumococcal vaccines) may decrease the risk of second-

ary bacterial pneumonia often associated with severe outcomes of influenza.

Seasonal influenza generates a large burden each year during the wintertime in temperate

regions and with more complex seasonal patterns in tropical regions [5]. Influenza pandemics

frequently occur outside of the usual season and generate an unpredictable and often large

burden in morbidity, mortality, and cost [6,7]. This burden has historically been the result of

secondary bacterial infections [8,9]. Lung specimens from 1918 to 1919 influenza fatalities

were found to be, in more than 90% of cases, positive for at least one bacterium [10]. Bacterio-

logic and histopathologic results from published autopsy series also suggest that deaths from
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the 1918 influenza pandemic mostly resulted from pneumonia with Streptococcus pneumoniae,
Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes, multiple infections

being common [10]. Deaths during the 1957 and 1968 pandemics were less closely related to

bacterial pneumonia [10]. Because emergence and circulation of pandemic influenza take

place out of season, and therefore in different climatic and ecological milieus than seasonal

strains, pandemic strains may encounter different coinfecting pathogens. It is therefore

critically important to pandemic preparedness to understand competitive and synergistic

relationships with other species, both at the individual level from a clinical perspective or at a

population level from an epidemiological perspective. It is vital to improve our understanding

and control of transmission and the risk of developing disease on infection.

Mathematical modelling has been a key tool in infectious diseases for many years, allowing

researchers to probe the complex intricacies of transmission and play forward the effects on an

individual to see the impact on population-level infection dynamics [11]. Counterfactuals, or

‘what if’ scenarios, can easily be tested and compared, where vaccination rates, contact pat-

terns, health behaviours, or any number of other factors are varied, to assess impact.

Models of influenza virus transmission have proved very useful in expanding knowledge of

influenza biology, evolution, and epidemiology. For example, models of evolutionary change

and immunity aim to predict the dominant strain of influenza in the coming season [12]. Spa-

tially explicit models have convincingly linked commuting movements to the spread of influ-

enza in the United States [13]. Models have also been crucial to public health, contributing to

the optimization of control strategies, including the use of vaccines and antivirals [14–20]. As

the modelling field has developed, there has been an effort to improve realism by incorporating

heterogeneity in human contact patterns, age-related susceptibility, cross immunity after pre-

vious infections [19,21–24], and the potential effect of environmental variables on transmis-

sion [13,25]. Notably, the vast majority of modelling work has neglected the microbial

environment: most mathematical and computational models of influenza are focused on single

or sequential influenza infections and have broadly simplified pathogen ecology. For example,

despite secondary bacterial infections being recognized as an important cause of mortality,

models have not been exploited to estimate the indirect effect of seasonal influenza vaccination

on the incidence of severe bacterial infections in the elderly. Furthermore, modelling used to

plan vaccine interventions during the 2009 pandemic in the United Kingdom considered

influenza transmission alone [26].

The authors of relatively recent literature reviews gathered biological and epidemiological

evidence for interactions between influenza virus and respiratory bacteria or viruses [3,27,28]

but did not consider mechanistic transmission models. Mathematical models make it possible

to investigate mechanisms of interaction and visualize the pathological and epidemiological

patterns that result from them. Comparison of model outputs to data enables estimation of

both the probability of such interactions and the strength of the interaction. Estimation can be

made across geographic regions (e.g., winter seasonal vs year-round transmission), for differ-

ent virus subtypes (e.g., seasonal vs pandemic), and in different age groups (e.g., infants vs

elderly). Computational and mathematical models to study influenza with other respiratory

pathogens are currently underutilized.

In this article, we report evidence of interaction of influenza with other pathogens and sys-

tematically review modelling studies on influenza coinfection. Our aim is to build a case for a

more expansive use of mathematical models including influenza with other pathogens. For

this, we address how different interference mechanisms might lead to unexpected epidemio-

logical patterns and misinterpretations, identify public health needs, identify modelling and

biological challenges, and propose avenues of research for the future.
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Mechanisms of interaction

Here, ‘interaction’ refers to any process by which infection caused by one pathogen affects the

probability, timing, or natural history of infection by another. This process includes a wide

range of mechanisms that can involve direct connections between the two pathogens, e.g., at

the cellular level, or indirect interactions through an intermediate factor that influences the

other. The indirect consequences of these interactions are described later. For influenza virus,

interactions with bacterial or viral species can occur at several scales (Fig 1). Interacting patho-

gens may have two distinct profiles: natural human commensals—usually bacteria—which

cause mainly asymptomatic carriage or mild symptoms often for long durations of weeks to

months, or epidemic pathogens causing infection for shorter durations, from a few days to a

few weeks. These two distinct epidemic profiles potentially involve different modes of interac-

tion and lead to different levels of consequences. Here, we detail proven and potential interac-

tion mechanisms (Fig 1).

Within-host interactions

At the cellular level, interactions involve both direct and indirect mechanisms. First, influenza

genes or gene products can enhance or inhibit the replication of other viruses or potential infec-

tion by bacteria by direct interaction with pathogen proteins or nucleic acids [29]. Furthermore,

indirect competition for host resources can occur, when pathogens compete for target cells,

receptors, or cellular products required for replication. Influenza-infected cells may also release

cell signalling molecules that could increase or decrease the probability of coinfection.

During infection, influenza virus impairs innate and adaptive host defences [30,31]. Mecha-

nisms include altered neutrophil recruitment and function, leading to defective bacterial clear-

ance, diminished production of alveolar macrophages [32], and inhibition of T cell–mediated

Fig 1. Influenza interactions with other pathogens occur within host or at the population level. Each interaction could either inhibit or enhance coinfection,

depending on the combination of pathogens. (A) Cellular-level interactions: (1) direct interactions between viral products; (2) altered receptor presentation; (3) cell

damage, e.g., its surface receptors; (4) modification of release of immune system mediators; (5) competition for host resources among influenza and other pathogens.

(B) Host-level interactions: (1) change of transmissibility due to symptoms; (2) individual variation in commensal microbiota; (3) effect of symptomatic responses to

infection; (4) tissue damage, e.g., in the nasopharynx or lung; (5) competition for host resources, e.g., target cells for infection; (6) immune cell–mediated interaction;

(7) immune signalling–mediated interaction; (8) antibody-mediated interaction. (C) Population-level interaction: (1) behavioural responses to disease; (2) medication

use; (3) vaccination behaviour. Bacterial interaction mechanisms include A1–5, B1–4 and 7, C1–3. Viral interaction mechanisms include A1–2 and 4–5, B1–3 and 4–8,

C1–3.

https://doi.org/10.1371/journal.ppat.1006770.g001
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immunity [31]. Infection with a second virus could be modulated similarly, e.g., by the produc-

tion of cross-reactive antibodies or cell-mediated immunity that prevents or facilitates this

infection. Physiological changes induced by the host response to infection have consequences

on other pathogens. For instance, lung tissue damage [32] and the induction of type-1 inter-

feron signalling were shown to promote bacterial colonization [31] and broadly inhibit viral

replication [33]. Damage to lung cells caused by influenza infection, such as influenza neur-

aminidase stripping sialic acids from the cell surface, amplifies bacterial adherence and

invasion [27] and could potentially change the likelihood of infection by another virus. Symp-

tomatic responses to infection, like fever, have also been shown to act as ‘danger signals’ for

bacteria, e.g., meningococci, which react by enhancing bacterial defences against human

immune cells [34]. In contrast, fever may diminish viral replication rate, thereby lowering the

probability of coinfection. From the other side, the ‘influenza preinfection’ respiratory flora of

individuals may also partially account for the variability of severity and outcome [28]. For

example, Staphylococcus aureus colonization was shown to trigger viral load rebounds and

reduce influenza virus clearance in animal studies [35–37].

Population-level interactions

Human behavioural responses to influenza infection can also indirectly impact transmission

of bacteria or other viruses. For example, people with severe influenza symptoms are likely to

stay home, modifying their contact patterns and making acquisition of second infections

unlikely [38,39]. On the other hand, individuals with milder symptoms may maintain their

regular activities, which could increase bacterial transmission to other individuals (as observed

for tuberculosis [40]) or increase the chance of acquiring a second infection. Person-to-person

variation in care seeking and medication use, such as antivirals, antibiotics, antipyretics, or

vaccine(s) uptake, also influences the risk of coinfection. For example, use of the pneumococ-

cal conjugate vaccine has decreased carriage of the pneumococcal vaccine strains in some

contexts [41,42], and vaccination against H. influenzae type b has decreased carriage of the

bacteria [43,44]. These vaccination campaigns may therefore decrease the chance of observing

influenza–bacteria coinfections.

Evidence of interaction

Several literature reviews have described evidence of interactions between influenza and other

respiratory bacterial or viral pathogens [3,27]. In this section, we briefly summarize the viral

and bacterial species with evidence for interaction with influenza in recent laboratory and epi-

demiological studies (details on the search strategies are provided in S1 Appendix, section A).

Influenza–bacteria interactions

Experimental results suggest that most of the pathogenic and commensal bacteria in the naso-

pharynx may directly or indirectly interfere with influenza infection during host colonization

or infection (Table 1). The best-studied influenza–bacteria interaction is with Streptococcus
pneumoniae [3]. Influenza is thought to increase bacterial adherence and facilitate the progres-

sion from carriage to severe disease [28,45], although evidence from population studies is not

so clear-cut [46–49]. Influenza was also shown to impair methicillin-resistant Staphylococcus
aureus (MRSA) clearance in coinfected mice, thereby increasing their susceptibility to MRSA

infection [50]. Similarly, in mice, increased severity of H. influenzae induced by influenza was

suggested, based on experiments of sequential infection with sublethal influenza then H. influ-
enzae doses [51]. Notably, ecological studies revealed a positive association between influenza

and Neisseria meningitidis incidence [52] and in vitro studies suggested that direct interaction
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between influenza A neuraminidase and the N.meningitidis capsule enhanced bacterial adhe-

sion to cultured epithelial cells [53]. Lastly, in patients with pulmonary tuberculosis, there is

evidence of increased risk of severe outcomes on influenza infection [54]. This finding was

supported by experiments in mice [55] that demonstrated that Mycobacterium tuberculosis and

influenza coinfected mice mounted weaker immune responses specific to M. bovis Bacillus

Calmette–Guerin (BCG) in the lungs compared with mice infected with BCG alone.

Virus–virus interactions

Within its family, influenza interacts between types (A and B), subtypes (e.g., H3N2, H1N1),

and strains. Competitive exclusion due to homologous immunity is widely accepted [56,57]

and has been applied extensively in models of influenza strain coexistence [58,59]. Antigenic

change (measured through antigenic distance) occurs constantly in influenza, strongly indicat-

ing that the virus escapes from immunity resulting from prior infection by genetic change

[60]. Interestingly, there is mounting evidence that the first influenza infection is important

and may affect severity of future infections [61–63]. Some evidence also supports the finding

that influenza can interact with other influenza viruses and noninfluenza respiratory viruses

via nonspecific immunity following infection [64,65].

Table 1. Bacteria whose colonization or infection course may be affected by interaction with influenza.

Bacterial

species

Study system Effect Illustrative publications

S. pneumoniae Animal Synergistic/

Facilitating

Smith 2013 [97]; Wolf 2014 [137]; Siegel 2014 [138]; McCullers 2010 [139]; Ghoneim 2013 [32]; Peltola 2006

[140]; Walters 2016 [141]; Nakamura 2011 [142];

Human Synergistic/

Facilitating

Walter 2010 [143]; Nelson 2012 [144]; Opatowski 2013 [102]; Shrestha 2013 [107]; Weinberger 2013 [89];

Jansen 2008 [145]; Kuster 2011 [146]; Nicoli 2013 [88]; Ampofo 2008 [147]; Grabowska 2006 [148]; Murdoch

2008 [149]; Edwards 2011 [150]; Weinberger 2014 [151]; Grijalva 2014 [152];

Neutral/Unclear Kim et al. 1996 [47]; Watson 2006 [48]; Toschke 2008 [49]; Zhou 2012 [153]; Damasio 2015 [154]; Hendricks

2017 [91]

S. aureus In vitro and

Animal

Synergistic/

Facilitating

Niemann 2012 [155]; Davison 1982 [156]; Tashiro 1987 [37]; Zhang 1996 [157]; Chertow 2016 [158]; Sun 2014

[50]; Braun 2007 [35]; Iverson 2011 [159]; Robinson 2013 [160]

Human Synergistic/

Facilitating

Sherertz 1996 [161]; Hageman 2006 [162]; Finelli 2008 [163]; Reed 2009 [164]

Neutral Kobayashi 2013 [165]

H. influenzae Animal Synergistic/

Facilitating

Lee 2010 [51]; Michaels 1977 [166]; Bakaletz 1988 [167]; Francis 1945 [168]

Human Synergistic/

Facilitating

Morens 2008 [10]

N. meningitidis In vitro and

Animal

Synergistic/

Facilitating

Rameix-Welti 2009 [53]; Loh 2013 [34]

Neutral Read 1999 [169]

Human Synergistic/

Facilitating

Cartwright 1991 [170]; Hubert 1992 [52]; Jacobs 2014 [171]; Brundage 2006 [172]; Jansen 2008 [145]; Jacobs

2014 [171]; Makras 2001 [173]

M. tuberculosis Animal Synergistic/

Facilitating

Florido 2015 [174]; Florido 2013[55]; Volkert 1947 [175]; Redford 2014 [176]

Human Synergistic/

Facilitating

Walaza 2015 [177]; Oei 2012[178]; Noymer 2011 [179]; Noymer 2009 [180]; Zurcher 2016 [181]

Neutral Roth 2013[182]

S. pyogenes Animal Synergistic/

Facilitating

Klonoski 2014 [183]; Okamoto 2003 [184]; Okamoto 2004 [185]; Hafez 2010 [186]

Human Synergistic/

Facilitating

Scaber 2011 [187]; Zakikhany 2011 [111]; Tasher 2011 [188]

Neutral Tamayo 2016 [189]

https://doi.org/10.1371/journal.ppat.1006770.t001
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Many noninfluenza viruses are also suspected of interfering with influenza virus acquisi-

tion, based on different types of studies (Table 2). During the 2009 influenza pandemic, Casa-

legno et al. reported that in France, the second pandemic wave was delayed due to the

September rhinovirus epidemic [66], although this shift was not observed in other countries

[67,68] and may have been affected by variable reporting rates. Coinfection by the two viruses

might also enhance disease severity for individuals [69–71], although evidence is discordant

[72–74]. Similarly, competitive interaction with respiratory syncytial virus (RSV) has been pos-

ited for many years [75,76], and some evidence was found for delayed RSV epidemics due to

the second wave of the 2009 pandemic in France [77] and tropical regions [78,79]. There is dis-

crepancy in the findings of interaction between influenza and RSV; while most studies found

increased severity [74,80,81], others found no effect [69] and some found less severity [82].

Competitive interaction with parainfluenza viruses was also inferred, based on less frequent

coinfection pairs than expected [83], but that observation is not consistent across studies [84–

86]. In terms of severity, parainfluenza and influenza coinfection is usually more severe than

influenza alone [69,71,87] but not always [72,73].

The general pattern is that bacteria tend to synergize with influenza, often boosting trans-

mission of either pathogen or increasing invasion of the bacteria following influenza infection.

It is not always clear whether this is a true synergy—in which both pathogens benefit—or

rather that influenza facilitates bacterial invasion. In contrast, viral pathogens tend to form

Table 2. Viruses that may be affected by interaction with influenza.

Virus Study system Effect Illustrative publications

RSV Population

incidence

Competitive Anestad 2007 [190]; Anestad 2009 [191]; Casalegno 2010 [77];, Anestad 1987 [192]; Yang 2012 [79];

Nishimura 2005 [193]; Glezen 1980 [76]; Pascalis 2012 [83]; Yang 2015 [67]; van Asten 2016 [194]; Meningher

2014 [195]; Velasco-Hernandez 2015 [117]

Neutral Navarro-Mari 2012 [68]

Coinfection

detection

Competitive Greer 2009 [84]; Martin 2013 [196]

Laboratory

investigation

Competitive Shinjoh 2000 [197]

Rhinovirus Population

incidence

Competitive Casalegno 2010 [66]; Casalegno 2010 [77]; Pascalis 2012 [83]; Linde 2009 [198]; Anestad and Nordbo [199];

Cowling 2012 [65]; Yang 2015 [67]

Neutral Yang 2012 [79]; Navarro-Mari 2012 [68]; van Asten 2016 [194]

Coinfection

detection

Competitive Tanner 2012 [200]; Mackay 2013 [201]; Nisi 2010 [86]; Greer 2009 [84]; Martin 2013 [196]

Laboratory

investigation

Competitive Pinky and Dobrovolny 2016 [112]

Influenza Population

incidence

Competitive van Asten 2016 [194]

Coinfection

detection

Competitive Nisii 2010 [86]; Sonoguchi 1985 [56]

Laboratory studies Competitive Easton 2011 [202]; Laurie 2015 [57]

HPIV Population

incidence

Competitive Yang 2012 [67]; Anestad 1987 [192]; Yang 2015 [67]

Neutral Mak 2012 [78]

Coinfection

detection

Competitive Pascalis 2012 [83]

Neutral Murphy 1975 [85]; Nisii 2010 [86]; Greer 2009 [84]; Martin 2013 [196]

Laboratory

investigation

Synergistic/

Facilitating

Goto 2016 [203]

Abbreviations: HPIV, human parainfluenza virus; RSV, respiratory syncytial virus.

https://doi.org/10.1371/journal.ppat.1006770.t002
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competitive interactions with influenza, although whether these are direct, specific interactions

with particular other viruses or the result of an ‘early advantage’ to the first infector remains

unclear. This pattern may occur because of the differing natural histories of bacteria and

viruses; while the former tends to infect hosts for long time periods, the latter has shorter infec-

tions more similar to the natural history of influenza itself. This is a complex system in which

each host–pathogen or pathogen–pathogen interaction phenomenon may impact the others.

Surprisingly, however, such interactions remain poorly studied and, in particular, very few

modelling studies have addressed these questions.

Impact of interactions at the population level

Although coinfections occur at the host level, their consequences are far-reaching (Fig 2).

Coinfection may alter the natural history, severity, or timing of illness in an individual and

thereby modify the morbidity, healthcare-seeking behaviour, and treatment of that individual.

Heterogeneity in these can affect the probability of, and timing of, reporting disease, thereby

transferring the effect from individual hosts to the population level.

Development and implementation of public health policies rely on analyses of population

surveillance data on influenza epidemics and burden. Policies then generate changes in medi-

cal interventions at the population level, e.g., change in vaccination targets, or at the individual

level, e.g., recommendations for antibiotics or antivirals in certain groups. These public health

interventions then have their own impacts on the dynamics of pathogens and coinfections.

Therefore, because coinfections may alter surveillance data, and policies based on evidence

from surveillance data may alter coinfection or interference risk, there is a complex cycle of

dependence, which highlights the difficulty—as well as the potential importance—of assessing

the impact of coinfections (Fig 2).

To date, most of the published quantitative analyses of interactions rely on statistical associ-

ation between incident cases of influenza-like illness (ILI) and other infections based on

Fig 2. Cycle of factors affected by nonneutral interactions at the individual level and their impact on influenza

surveillance, treatment, prevention, and control. Factors that affect coinfection on an individual scale can feed

forward to an effect on population surveillance through their effects on the reporting of infection. Decisions on public

health interventions are made in response to population-level data. These interventions then take effect at the

individual level, to give a feedback loop both generated and impacted by effects of coinfection.

https://doi.org/10.1371/journal.ppat.1006770.g002
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regression and correlation analyses [88,89]. A major methodological challenge of detecting

interactions is that significant correlation between epidemics of two pathogens in surveillance

data may result from either a true biological direct or indirect interaction or may be confound-

ing as a result of the two pathogens sharing common ecological conditions (e.g., cold weather).

Regression models describe simple functional links between, for example, the incidence time

series, onset or peak time, or epidemic magnitude or severity. Despite their apparently simple

formulation, they rely on strong statistical assumptions on the shape of the data and the associ-

ation [90]. Regression models are also used to calculate correlations between reported time

series at different time lags. When properly controlled for confounding variables, they have

proved very useful tools to detect signals of associations. Other methods have been proposed

through the deployment of seasonal autoregressive integrated moving average (SARIMA)

models to analyse time series [91], Granger causality [92,93], or seasonality patterns [94].

However, these models do not formalize the transmission process or biological mechanism of

interaction, so the interaction mechanism cannot be determined nor the strength of interac-

tion quantified. Furthermore, this lack of mechanistic formulation prevents easily interpret-

able predictions that are required to support public health decision-making.

Due to the complex phenomena and many feedback loops, mechanistic models are needed

to dissect the cause and effect of the different components (Box 1) [95]. The role of modelling

Box 1. Mathematical modelling definitions

Mathematical versus statistical models: A mathematical model (or transmission or

mechanistic model) is a mechanistic description by mathematical equations of how the

number of infected entities changes over time. For example, a mathematical model of

transmission between people might explicitly track the number of infected people and

describe how many contacts they make, how often these contacts lead to transmission,

and how this is affected by temperature. Depending on the scale of the model, entities

can be cells, individuals, or groups of individuals (e.g., a household, a city). Statistical

models do not include a mechanistic link between quantities but only rely on an

observed association, often in the form of a probability distribution. So, in the case of the

statistical model, you might say that you see more cases when the temperature is low,

without explicitly explaining why.

Individual-based model versus compartmental models: Individual-based models (or

agent-based models) include a description of the properties (e.g., age, immune status,

risk factors) of each of the individuals in the studied population. In contrast, compart-

mental models group individuals with similar characteristics together into compart-

ments and look at relationships between these compartments. The most famous

compartmental in epidemiology is the SIR model, based on three compartments, Sus-

ceptible-Infectious-Recovered, which is the basis of most of the existing models of patho-

gen transmission. Compartmental models are easier to fit to data (see next section) and

interpret. Individual-based models are more flexible when it is important to integrate a

wide range of characteristics of the population but are comparatively slow to implement

and run, more difficult to interpret, and require good data on each characteristic that is

modelled.

Model fitting: Models are built around a structure (the mechanisms), which is modu-

lated by parameters governing the rates of change between compartments, disease states,

behaviours, etc. Historically, parameters have been estimated using results from studies
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is two-fold: first, mathematical modelling provides a common language to integrate heteroge-

neous mechanisms and test competitive hypotheses. By doing so, models contribute to build-

ing basic knowledge about infection processes. Second, modelling enables assessment of

potential intervention scenarios by predicting their impact.

For these reasons, public health interventions based on modelling of infectious diseases

have become informative and effective. For example, in the UK, a transmission model fitted to

a vast range of ILI and influenza surveillance data demonstrated that vaccinating children

against influenza will have the same protective effect on people over 65 years old as vaccinating

those individuals [96]. This outcome is a consequence of the diminished community transmis-

sion that results from reducing infections in children. Such an impact would be impossible to

identify without mechanistic models. Box 2 summarises the potential benefits of coinfection

transmission models.

published in the literature. In recent years, with the increased availability of epidemio-

logical data, modelers try whenever possible to fit the model to data (also called parame-

ter inference or calibration). For this, they use algorithms that explore ‘parameter

space’, which is the set of all possible values for parameters, and retain sets of parameters

that explain the observed data best. Fitting can be computationally intensive if the model

includes many parameters. More efficient fitting algorithms allow fitting of more com-

plex models and thus the study of potentially more interaction mechanisms.

Box 2. Benefits of coinfection transmission models

• Allow causal relationships to be drawn from the data by testing hypotheses regarding

interaction mechanisms

� For example, using models to analyse the cellular dynamics observed in vivo in

mouse coinfection experiments, it is possible to design models of hypothesised

immunological pathways and determine which most closely fits observed patterns

[97].

• Evaluate contributions to influenza burden with more precision

� For example, year-to-year influenza epidemics have a different estimated reporting

fraction. A model could be used to determine whether coinfection or concurrent

epidemics of other viruses are the reason for an increased (or decreased) probability

of reporting infection.

• Predict or project incidence of coinfections, including during pandemics

� For example, fitting multipathogen models to respiratory virus surveillance data

would allow quantitative assessment of the hypothesis that during the 2009 pan-

demic, influenza affected the timing of rhinovirus, RSV, and influenza by competi-

tion [66,77].

• Optimize prevention and control of influenza infections and their complications
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Models of influenza interactions

Despite mounting evidence of influenza–bacteria interactions and the concurrent increasing

use of dynamic modelling to study infectious diseases in recent decades, influenza interactions

have rarely been modelled. Interestingly, previous literature reviews describing evidence of

interactions between influenza virus and other respiratory bacterial or viral pathogens

neglected mathematical models that, despite their limited number, provide insight into mecha-

nisms of interaction and their consequences [3,27]. We have systematically reviewed the litera-

ture for models incorporating influenza with bacteria or noninfluenza viruses (details on the

search strategies are provided in S1 Appendix, section A).

Influenza–bacteria interaction

The only influenza–bacterium interaction that has been integrated into mathematical modelling

studies is the influenza–pneumococcus system, both within host and at the population level.

Several dynamic models of coinfection at the cellular level were proposed relatively recently

[97–101]. In a study combining modelling and empirical data from mice coinfected with two

different influenza viruses and two pneumococcus strains, Smith et al. assessed the likelihood

of different immunological interaction mechanisms [97]. They found a role of macrophage

dysfunction leading to an increase of bacterial titres and increased virus release during coinfec-

tions [97], although their results suggest that coinfection-induced increase of bacterial adher-

ence and of infected cell death were not very likely. Shrestha et al. used an immune-mediated

model of the virus–bacterium interaction in the lungs to specifically quantify interaction tim-

ing and intensity [98]. They assumed that the efficiency of alveolar macrophages, which are a

critical component of host immunity against bacterial infections, was reduced by viral infec-

tion and tested the impact of inoculum size, time of bacterial invasion after influenza infection,

and the potential impact of antiviral administration. The model predicted that enhanced sus-

ceptibility to invasion would be observed four to six days after influenza infection, suggesting

that early antiviral administration after influenza infection (<4 days) could prevent invasive

pneumococcal disease. Smith and Smith modelled a nonlinear initial dose threshold, below

which bacteria (pneumococcus) declined and above which bacteria increased. Using data from

mice experiments, they showed that this threshold was dependent on the degree of virus-

induced depletion of alveolar macrophages. Because macrophage depletion varies through the

course of influenza infection, this important finding may explain why risk of bacterial invasion

also changes over the course of infection, with particularly low dose requirement in the first

few days of infection [99]. In a follow-up study, the same authors analysed published data

� For example, a model of influenza and pneumococcal pneumonia could determine

optimal target groups for pneumococcal vaccination, based on both the bacterial

carriage rates in each age group and the expected influenza vaccination rates in

those age groups.

• Estimate the costs and benefits of intervention strategies

� For example, a model-based analysis of in vitro experimental data could allow

assessment of the impact of early antiviral or antibiotic treatment on probability of

pneumococcal invasion [98,100]. Combined with population, it would be possible

to assess the impact on secondary bacterial infections.
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from influenza–pneumococcus coinfected mice treated with antiviral, antibiotic, or immune

modulatory agents. They found that antivirals are more efficient at preventing secondary

infection when used in the first two days of influenza infection and also found an important

benefit of immunotherapy, especially for low bacterial loads [100]. Lastly, in a within-host

model, Boianelli and colleagues investigated the efficacy of different oseltamivir treatment reg-

imens in influenza–pneumococcus coinfected individuals using parameters drawn from

human and mouse studies. They found that increasing the dose of oseltamivir, but not dura-

tion of treatment, might increase both its antiviral and antibacterial efficacy [101].

At the population level, there have been several models to assess influenza interactions with

bacteria and test hypotheses regarding the main mechanisms [102–106]. The comparison of

pneumococcal transmission models to analyse time series of pneumococcal meningitis and

viral respiratory infections in France highlighted two important processes in colonized indi-

viduals: (1) a virus-related increase in pneumococcal pathogenicity and (2) an enhanced

between-individual transmissibility of bacteria [102]. Models of transmission of bacterial

pneumonia fitted to US data also highlighted significant interactions, mainly due to influenza-

associated increase of individual risk of pneumonia [103,107]. Recently, in a simulation study,

Arduin et al. used a flexible individual-based model of influenza–bacteria interaction to assess

the population consequences and associated burden of a range of pneumococcus–influenza

interaction mechanisms [108]. Population dynamic models have also been used to test the

public health impact of control measures [104–106]. Different strategies of antibiotic use (as

treatment or prophylaxis) and of vaccination were assessed by modelling the dual transmission

of pneumococcus and influenza [104]. For a 1918-like pandemic, this model suggested that

widespread antibiotic treatment of individuals with pneumonia would significantly lower

mortality, whereas antibiotics in prophylaxis would effectively prevent pneumonia cases. A dif-

ferent model evaluated the benefit of vaccinating the UK population against pneumococcus in

the context of pandemic influenza using different scenarios: 1918-like, 1957/1968-like, or

2009-like virus [105]. This indicated that pneumococcal vaccination would have a major

impact only for a pandemic with high case fatality and secondary pneumococcal infection

rates (e.g., the 1918-like), with less influence in other scenarios.

Viral interaction

Influenza–influenza interactions predominate in models of two viruses, with limited investiga-

tion of influenza–RSV interactions and no models of other viruses.

Within host, several models of multistrain influenza infections were proposed [109–111],

especially examining the interval before the secondary infection. One model of RSV–influenza

interaction at the cellular level explored the hypothesis of the viruses interacting through com-

petition for resources within the cell [112]. This indirect competition was sufficient to explain

the observed rate of virus replication. The model also explored how the speed of virus replica-

tion confers an advantage to the first infecting pathogen and determined the ‘head start’ on

infection that the slower-replicating virus would require to maintain dominance.

Population models have been used extensively to examine the dynamics of influenza and multi-

strain influenza systems (for a review see [113]) although many fewer studies examined multispe-

cies systems. Because the influenza virus comprises two types, multiple subtypes, and potentially

numerous strains of each, many viruses may be circulating at any given time, providing varying

degrees of cross-protection after recovery and sometimes with complex dynamics of within-spe-

cies strain replacement due to genetic drift or reassortment. There is evidence of competition

between strains, with some models requiring short periods of heterologous immunity after infec-

tion to create the ladder-like phylodynamic structure of influenza viruses [114], although recent
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studies could capture this feature without this mechanism [58]. One comprehensive early model

tested four mechanisms of interaction between influenza types using data from Tecumseh, Michi-

gan, but the data were insufficient to distinguish the mechanisms [115]. Influenza–influenza mod-

els must also account for the complex immune history of hosts, related to which there is mounting

evidence that the timing of an individual’s influenza encounters, and especially the first infection,

shapes their future response [61–63]. The methods for modelling influenza–influenza interactions

should be extended into interactions with other viruses.

One model for pandemic influenza, in which coinfection with other respiratory pathogens

leads to enhanced influenza transmission, was proposed to explain the multiple waves of the

1918 influenza pandemic in the UK [116]. A recent example of influenza and RSV cross-spe-

cies analysis in a climatically driven model provided some evidence that RSV dominates influ-

enza, but the model was not explicitly fitted to data [117].

Illustration from a simple model

To demonstrate how both synergistic and competitive interactions can be modelled, we used a

simple transmission model and simulated the effect of interactions (Box 3, Figs 3 and 4 and S1

Box 3. A simple model of interaction

The simple model in Fig 3 tests two interaction mechanisms: increased (or decreased)

infectiousness on coinfection and decreased (or increased) probability of coinfection

occurring. These are the two most commonly suggested mechanisms, the first of the

‘bacterial type’ and the second of the ‘viral type’ (Fig 4).

In Fig 3, all individuals start in the Susceptible (S) class and move to the Infectious clas-

ses when they are infected by either pathogen 1 (I1) or 2 (I2).

Infected (and infectious) compartments are shown in colour, where red is infectious

with pathogen 1, blue marks infectious with pathogen 2, and infected and infectious

with both pathogens in purple. Infection rates are given by the four forces of infection

(λ1, λ2, λ12, λ21). After being infected by one pathogen, individuals can either be coin-

fected by the other pathogen and move to the coinfection compartments in purple (I12
or I21), or they can recover at rates γ and move to the Recovered compartments (R1 and

R2). Coinfected individuals (I12 and I21) recover and remain in the doubly recovered

compartments, R12 and R21. Individuals in R1 or R2 are subject to force of infection λ2 or

λ1, respectively, i.e., of the pathogen they have not yet had. On infection with the other

pathogen, they move to the consecutive infection compartment (C12 or C21). After recov-

ery, those individuals move to the doubly recovered compartments (R12 and R21).

Parameters β1 and β2 are the baseline transmissibility of pathogen 1 and 2, respectively.

There are four interaction parameters modulating the pathogen’s transmissibility: σ1 and

σ2 are the change in infectiousness of coinfected classes, where a value less than 1 makes

the coinfected class less infectious, and a value greater than 1 means coinfected individu-

als are more infectious. Parameters δ1 and δ2 alter the probability of acquisition of a sec-

ond infection following a first infection, where a value less than 1 makes coinfection less

likely, and a value above 1 makes it more likely.

Details on the model equations and computer code generating the trajectories are given

in S1 Appendix, section B and S1 Code.
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Appendix, section B). We show how these interactions occurring at the individual level can

impact the epidemics at the population level. The ‘bacterial type’ interaction firstly shows an

increase in bacterial prevalence when influenza infection increases bacterial transmission, in a

facilitative interaction. In a synergistic interaction, where coinfection increases transmission of

both influenza and bacteria, prevalence of bacteria increases, and the epidemic of influenza has

a quicker and higher peak. In the ‘viral type’ competitive interaction, progressively decreasing

the probability that a second pathogen can infect an already infected host causes the epidemic

peaks to separate in time. It also decreases the peak size of the outcompeted pathogen without

altering the number of people infected in total (Fig 4).

Limits of the current view

Historically, scientific and medical studies have tended to focus on host–pathogen interactions in

an independent manner by studying each pathogen alone. We highlighted here, as others [3,27,

28], that many respiratory viruses and bacteria have been linked to influenza epidemiology, based

on in vivo evidence and from individual and epidemiological studies. These nonneutral interac-

tions, mostly facilitative for bacteria and competitive for viruses, probably have individual- and

population-level effects on influenza pathogenicity, burden, and potentially its epidemic profile.

Mathematical models are crucial to guide public health decision makers, who, for ethical or

cost reasons, cannot conduct large-scale trials. Two examples of interventions based on model-

ling results and mobilizing important public resources are pandemic preparedness (stockpiling

of antivirals, use of vaccine doses) [118] and national immunization programs [20]. Neglecting

the cocirculating pathogens—i.e., adopting influenza tunnel vision—and the indirect impact

of coinfections may potentially affect the estimation of the risk associated with influenza infec-

tion and, consequently, the accuracy of model predictions. Interaction strength may also

change from year to year and depend on the circulating influenza strains. For evaluation of

interventions, this neglect can lead to overestimation of the impact—if burden was measured

without considering the changing landscape of coinfection in the population—or underesti-

mation—if the effect of an intervention does not account for the potentially decreased burden

of an interacting pathogen as a result of diminished influenza transmission. For all these rea-

sons, we think that adopting a more holistic approach to modelling of respiratory pathogens

will improve their surveillance and the strategy to control them.

Opportunities

Considering influenza virus in its ecological context and its interactions as a cause of the asso-

ciated morbidity and mortality should offer opportunities for prevention and treatment. In

Fig 3. Illustration of a simple model of two circulating pathogens in interactions. Schematic of the compartments

and rates of transition between compartments, with equations of the forces of infection by pathogen 1 (λ1), pathogen 2

(λ2) for susceptible hosts, and pathogen 1 (λ21) and pathogen 2 (λ12) for hosts already infected by the other pathogen.

The full system of ordinary differential equations describing the changes of the compartment’s populations over time is

described in S1 Appendix, section B. Details of the model and parameters are provided in Box 3.

https://doi.org/10.1371/journal.ppat.1006770.g003
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addition to influenza vaccines that (partially) protect against infection, antibacterial vaccines are

also critical. For example, pneumococcal vaccines have been shown to have good efficacy against

influenza-associated nonbacteremic pneumonias [119,120]. The 23-valent pneumococcal polysac-

charide vaccine significantly lowered the risk of invasive pneumococcal disease and attributed

mortality in the elderly [121]. Better understanding of possible influenza–pneumococcus interac-

tions and integrating those into transmission models could potentially enable us to identify syner-

gies between vaccination programs and optimize the use of both vaccines.

Fig 4. Example model outputs showing effect of synergistic and competitive interaction. Box 3 gives details on the model that

produces these epidemic trajectories. (A) In the baseline enhancing scenario, an endemic bacterial pathogen (blue) occurs at 5%

prevalence. An influenza epidemic occurs with no interaction, and the bacterial prevalence does not change. If the presence of

influenza coinfection increases bacterial transmissibility by 4-fold (σ1 = 4), then there is a transient rise in bacterial prevalence. If

there is also an increase in influenza transmissibility during coinfection (σ1 = 4 and σ2 = 2), then there is also a higher and earlier

influenza peak as a result of coinfection. (B) In the baseline competition scenario, the second epidemic pathogen is introduced later

than influenza. The two pathogens have the same transmission characteristics (same γ, same β). If there is only a 50% chance of

infection with pathogen 2 when individuals are infected with pathogen 1 (δ1 = 0.5), then the epidemic trajectory of pathogen 2 is

lower and later. If competition is even stronger (δ1 = 0.1) so there is a 90% reduction in chance of coinfection, the profile of pathogen

2 is even further separated from pathogen 1. Computer code generating these trajectories is given in S1 Code.

https://doi.org/10.1371/journal.ppat.1006770.g004
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In addition, there may be opportunities for optimization of antibiotic and antiviral pre-

scriptions. First, antibiotics have historically been used to prevent secondary infections

[122,123]. Increasing rates of antibiotic resistance worldwide led to policies to decrease anti-

biotic consumption, focusing particular attention on reducing prescriptions for viral infec-

tions. Second, neuraminidase inhibitors were found to prevent some secondary bacterial

pneumonias in animal experiments, human epidemiological studies, and mathematical

modelling studies, beyond the window in which they directly impact the influenza viral load

[98,124,125]. Although antivirals may only modestly attenuate influenza symptoms, a body of

evidence suggests they could avoid severe and economically important outcomes of influenza

infection [125–128].

Lastly, accurate burden quantification is crucial to designing and implementing public

health interventions against influenza. Focusing efforts to better understand these interactions

is therefore critical, especially in the context of pandemic influenza but also to plan for seasonal

epidemics, by forecasting the onset and peak times and estimating the expected burden. To

improve our knowledge, models can be used to analyse available surveillance and experimental

data, generate hypotheses regarding interaction mechanisms at play in transmission or infec-

tion, and test their likelihoods. Competing assumptions on the biological interaction processes

can be assessed, and the strength of interactions can also be estimated. From a public health

viewpoint, such models would help better estimate the burden of influenza virus interactions

in terms of morbidity and mortality, the cost-effectiveness of interventions, and, critically,

more accurately predict the real impact of control measures.

Challenges

Integrating transmission and infection by multiple pathogens into mathematical models poses

several challenges. From a methodological perspective, modelling several pathogens with inter-

related natural histories makes classical compartmental approaches more difficult. Individual-

based frameworks (Box 1) are better adapted for this task. For example, this approach could be

used to investigate the effect of the interval between influenza infection and bacterial acquisi-

tion, which reportedly affects the risk of bacterial invasion [31,129]. Individual-based models

are often more computationally intensive and can introduce new difficulties in terms of

parameter estimation, requiring the design of new methods. Recent developments in statistical

inference methods, like particle Markov chain Monte Carlo (pMCMC) or maximum likeli-

hood estimation via iterated filtering (MIF) [130,131], now enable modelers to jointly fit com-

plex population-based models to multiple types of data, thereby allowing more data and more

diverse types of data to inform the model parameters.

Epidemiological data represent the second major challenge. To date, modelling studies

have been limited by the poor knowledge of respiratory viruses and bacteria circulating in the

community, especially because little is known about prevalence, incidence, at-risk populations,

and even epidemic profiles in different populations. Deeper understanding of the ecology of

the vast number of microorganisms that can contribute is needed. On an individual level, new

studies are required to assess the effect of coinfections rather than ecological associations from

incidence data. Important features include (i) coinfection-induced alteration of diseases’ natu-

ral histories, e.g., increased acquisition and severity risk, changes of infection durations and

generation times; (ii) specific at-risk periods for secondary infection or invasion of the coin-

fecting pathogen, or at-risk periods for severe outcomes; and (iii) at-risk populations, as char-

acterized by individuals’ age, comorbidities, or behavioural risk factors.

For population-level data, in most countries, surveillance of influenza acquisition is based

on networks of general practitioners who notify patients consulting for clinical symptoms of
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ILI [132]. Surveillance data streams based on syndromic surveillance [133], inpatient data

[134], and pathogen testing [135,136] should be combined, and linked at the patient level, to

better identify noninfluenza infections or anomalous epidemics that could signal interaction.

Improvement of data quality in patient records and detection of the biases inherent in different

types of surveillance data are critical to achieve this goal. The latter could be reached by devel-

oping new microbiological tools, including new sampling kits able to rapidly detect multiple

pathogens for use during medical consultations.

Public health decision-making for interacting pathogens is a difficult but important chal-

lenge. When multiple competing treatment options are available, a coherent framework is

needed to determine the best strategy. While the question goes beyond influenza to interac-

tions and coinfections for respiratory viruses in general (e.g., RSV), influenza is one of the

most studied viral infections and is therefore the ideal first candidate to develop a more holistic

mathematical modelling approach.

Conclusion

In this study, we examined the epidemiological and biological evidence supporting influenza

virus interference and interaction with other pathogens. We highlighted opportunities to

improve knowledge and control of the virus, if we can move forward from the tunnel vision of

single-pathogen models. It is time to develop a more holistic approach to pathogen dynamics

in mathematical modelling, with novel methodological innovations, and further efforts in data

collection and surveillance. The motivation to do so lies in the real opportunity to improve

public health practices and create better, more cost-effective interventions against influenza.
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