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Abstract: Notch signaling is a major pathway in cell fate decisions. Since the first reports 

showing the major role of Notch in embryonic development, a considerable and still 

growing literature further highlights its key contributions in various pathological processes 

during adult life. In particular, Notch is now considered as a major player in vascular 

homeostasis through the control of key cellular functions. In parallel, confounding 

evidence emerged that inflammatory responses regulate Notch signaling in vitro in 

endothelial cells, smooth muscle cells or vascular infiltrating cells and in vivo in vascular 

and inflammatory disorders and in cardiovascular diseases. This review presents how 

inflammation influences Notch in vascular cells and, reciprocally, emphasizes the 

functional role of Notch on inflammatory processes, notably by regulating key cell 

functions (differentiation, proliferation, apoptosis/survival, activation). Understanding how 

the disparity of Notch receptors and ligands impacts on vasculature biology remains 

critical for the design of relevant and adequate therapeutic strategies targeting Notch in this 

major pathological context. 
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CSL, CBF1/RBP-j/Su(H)/Lag-1; DC, dendritic cell; Dll, Delta-like; Dlk1/2, Delta-like 1/2 homologue; 

DNER, Delta and Notch-like epidermal growth factor-related receptor; ECs, endothelial cells;  

HAEC, human arterial EC; EMT, epithelial/endothelial to mesenchymal transition;  

EPC, endothelial progenitor cells; HUVEC, human umbilical vein EC; ICD, intracellular domain; 

EGF, epidermal growth factor; FIH-1, factor inhibiting; Hes, hairy and enhancer of split;  

Hey, Hes-related proteins; HIF-1, hypoxia-Inducible factor-1; HMEC, human microvessel EC; 

ICAM1, intercellular adhesion molecule-1; IFNγ, interferon gamma; IκBα, inhibitor of nuclear factor 

κB; IL, interleukin; iNOS, inducible nitric oxide synthase; IRF-1, interferon regulatory factor 1;  

Jag, Jagged; JNK, c-jun N terminal kinase; LPS, lipopolysaccharide; MALM, Mastermind-like; 

MAPK, mitogen-activated protein kinase; MHC-II, major histocompatibility complex, class II;  

MI, Myocardial infarction; NECD, Notch extracellular domain; NFκB, nuclear factor κB;  

NICD, Notch intracellular domain; NO, nitric oxide; oxLDL, oxidized low density lipoprotein;  

PDGF, platelet-derived growth factor; PI3K, phosphoinositide 3- kinase; RBP, recombination binding 

protein; SMA, smooth muscle α-actin; SMC, smooth muscle cells; SOCS1, suppressor of cytokine 

signaling-1; TGFβ, transforming growth factor; TLR, Toll like receptor; TNF, tumor necrosis factor; 

VCAM-1, vascular cell adhesion molecule-1.  

1. Introduction 

Notch signaling is a major intercellular communication pathway highly conserved through 

evolution. Originally identified in Drosophila, in which a mutant allele gave rise to a notched wing [1], 

the Notch pathway was then reported to be a crucial regulator during embryonic development in 

vertebrate and in invertebrate organisms. Notch is also clearly implicated in many cellular processes, 

like differentiation, activation, apoptosis and proliferation in a wide array of cell types during  

adult life [2].  

Notch receptors and ligands are type 1 transmembrane proteins. In mammals, four Notch receptors 

(Notch1-4) have been identified and five Notch ligands (Jagged [Jag]1 and Jag2 from the 

Jagged/serrate family and Dll1, three and four from the Delta-like family [Dll]). This generates a large 

number of receptor-ligand combinations, which could potentially generate distinct responses. 

However, whether particular receptor-ligand combinations provide selective Notch signaling is still 

largely unknown. In addition to the canonical ligands, a large set of non-canonical ligands can activate 

or inhibit Notch signaling, as recently reviewed by D'Souza et al. [3]. Non canonical ligands include, 

DNER (Delta and Notch-like epidermal growth factor-related receptor) [4] F3/Contactin1,  

NB-3/Contactin6 [5] and Delta-like 1/2 homologue (Dlk1/2). An example of a non-canonical ligand is 

Dlk1/2, which is structurally similar to the Dll ligands, but lacks a DSL domain. As a consequence, 
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Dlk1/2 fails to transactivate Notch and, therefore, acts through cis-inhibition by competing with 

canonical ligands [6]. Notch1–4 receptors are characterized by their extracellular (NECD) and 

intracellular domains (NICD) that respectively confer ligand recognition and signaling properties. The 

relative strength and specificity of receptor-ligand interactions, however, can be modulated by  

post-translational modifications. The extracellular epidermal growth factor (EGF) repeats of Notch 

receptors can be serially modified by fucosylation and glycosylation. The final glycosylation of Notch 

receptors mediated by Fringe proteins orients the response towards Notch ligands (Dll versus Jag) by 

promoting interactions with Dll1 and reducing interaction with Jag1 [7,8]. Alternatively, Notch can 

also be glycosylated by the glycosyltransferase Rumi and by at least two members of the 

glycosyltransferase 8 family. The impact of glycosylation, as well as the possibility to use 

glycosylation to modify the Notch receptors and ultimately their functions, is the subject of much 

investigation, as reviewed by Rampal et al. [9]. 

Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the 

interaction between membrane-bound Notch receptors and ligands expressed on a neighboring cell  

(for review, see [10]) (Figure 1). The first activating cleavage is mediated by the disintegrin and 

metalloproteinases (ADAM)10 or ADAM17 and follows Notch receptor/ligand interaction that 

mechanically expose the ADAM target site. The γ-secretase complex is responsible for the second 

proteolytic event that leads to the release of NICD into the cytoplasm. Following nuclear translocation, 

NICD forms a nuclear complex with the transcription factor, CSL (CBF1/RBP-j/Su(H)/Lag-1), and 

activates transcription of the downstream target genes. A molecular switch within this complex allows, 

finally, the expression of the main target genes of Notch signaling in mammals, including the hairy and 

enhancer of split (hes1, 5 and 7) and the Hes-related proteins (hey1 and 2 and Heyl). Hes/hey genes 

belong to a large family of transcription repressors and, therefore, regulate indirectly numerous Notch 

target gene expressions [2,11,12]. 

Intriguingly, Notch receptors and ligands are expressed on both the signal-sending cell and on the 

signal-receiving cell and sometimes at a roughly similar concentration. The direction of Notch 

signaling is given, at least partially, by the fact that ligands activate receptors on contacting cells 

(transactivation), but may sometimes inhibit receptors expressed in the same cell (cis-inhibition) [13]. 

A restricted distribution of Notch ligands and receptors to specific areas within cells can also 

contribute to signaling specificity. An alternative means to localize Notch activation is by positioning 

Notch ligands at cellular protrusions, such as filopodia, which leads to the activation of signaling some 

distance away from the signal-sending cell [14].  

In the vasculature, all Notch receptors and ligands are expressed. Notch signaling has been 

primarily and extensively studied in blood vessel formation [15]. The crucial role of Notch in vascular 

homeostasis was first reported, because genetic deletion of Notch1 or Dll4 is lethal by inducing large 

defects in the vasculature, aggravated when both Notch1 and Notch4 are inactivated [15–19]. Notch4 

and Dll4 were primarily described as endothelial-restricted molecules [16,20]. Unregulated activation 

of Notch4 alone also triggers vascular patterning defects [21]. Since these first reports, it is now well 

established that Notch pathway plays key roles in embryonic vasculogenesis. Notch signaling also 

plays key roles during adult life. Its implication in angiogenesis has been particularly under investigation 

in cancer research [22], notably by the development of Dll4 antibodies or γ-secretase inhibitors to 

reduce tumor growth [23].  
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Figure 1. Schematic illustration of the canonical Notch signaling pathway. Notch is a 

heterodimeric cell-surface receptor family (Notch 1–4). Notch family members are 

composed of an extracellular ligand-binding domain that is non-covalently associated with 

a single-pass transmembrane domain. There are two distinct families of Notch ligands in 

mammals, known as the Jagged ligands (Jagged1 and Jagged2) and the Delta-like ligands 

(consisting of Dll1, Dll3 and Dll4). Dll and Jagged proteins trigger the canonical Notch 

signaling pathway, wherein binding of a ligand to a Notch receptor results in the cleavage 

of the receptor at a site in the transmembrane domain. Upon binding by either Dll or 

Jagged ligands, Notch undergoes proteolytic cleavages catalyzed by A disintegrin and 

metalloproteinase (ADAM) proteases and the γ-secretase complex, leading to the 

translocation of the notch intracellular domain (NICD) into the nucleus. NICD interacts 

with the transcriptional repressor, recombination-signal-binding protein for 

immunoglobulin-kJ region (RBP-J) in the CSL complex (CBF1/RBP-j/Su(H)/Lag-1). The 

NICD interaction with RBP-J also recruits Mastermind (MAML) protein. The new 

transcriptional complex of NICD-RBP-J-MAML converts RBP-J from a repressor to a 

transcriptional activator. The Hes (hairy and enhancer of split) proteins subsequently 

regulate the expression of genes involved in Notch-dependent processes, including 

apoptosis, proliferation or differentiation for cell-fate determination. 

 

In endothelium and vascular cells, Notch has also been reported to be an important player during 

inflammation. Considering the broad effects of Notch on cell biology, such implication could provide 

new insights about its role in the inflammatory-related vascular injury and remodeling processes 

involved in atherosclerosis and chronic allograft vasculopathy (CAV). This article will therefore 

review the current state of knowledge about the role of Notch in vascular and cardiovascular 

inflammatory responses. 

2. Implication of Notch Signaling in the Pathogenesis of Cardiovascular Inflammatory Disorders  

Accumulative evidence supports the emerging concept that Notch signaling is central to chronic 

inflammatory events involved in the pathogenesis of cardiovascular diseases, and Notch may provide a 

new target for therapeutic approaches [24]. Notch receptors and ligands link cellular effectors  
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and mechanisms associated with major cardiac disorders, such as myocardial infarction (MI), 

atherosclerosis and cardiac allograft vasculopathy (Figure 2) Myocardial infarction is the most 

common and clinically significant form of acute cardiac injury and results in ischemic death of a large 

number of cardiomyocytes. The death of ischemic cardiomyocytes elicits an inflammatory cascade that 

initially allows the clearing of the necrotic tissue debris within the infarct and ultimately promotes 

healing and repair of the damaged tissue (for review, see [25]). The Notch pathway regulates the 

cardiac response to stress via the Notch1 receptor [26,27]. Specifically, the receptor Notch1 and its 

ligand Jagged1 are the predominant members of the Notch family expressed in the adult heart. The 

activation of the Notch pathway in the heart in response to stress likely depends on Jagged1 expression 

on the surface of cardiomyocytes [28].  

Figure 2. Contribution of Notch signaling in dynamic communication and cellular 

adaptation between immune, vascular and cardiac cells and in the control of the inflammatory 

reaction in damaged tissues. 

 

Notch signaling is naturally downregulated in adult compared to embryonic life. Similar to many 

embryonic proteins, levels of Notch1 and Hes1 decline in postnatal heart steadily after birth. Enhanced 

levels of Notch ligands and receptors have been reported in damaged and regenerating tissues, 

including heart, as well as in vessels. Augmentation of Notch activation after myocardial infarction in 

the adult, either by inducing cardiomyocyte-specific Notch1 transgene expression or by 

intramyocardial delivery of a Notch1 pseudoligand, increases survival rate, improves cardiac function 

and minimizes fibrosis, promoting anti-apoptotic and angiogenic mechanisms. Thus, the transient 

activation of endogenous Notch signaling has been observed following MI, but is insufficient to launch 

an effective response to cardiac damage [27]. LaFramboise et al. also investigated molecular changes 

in Notch signaling in response to myocardial infarction. The authors reported that Jag1 and Notch3 

expression decreased in the infarct zone, but did not specify the cellular basis of such regulation [29]. 

In contrast, endothelial cells from microvessels in ischemic skeletal muscle and in myocardial tissue 

upregulate Dll4 expression [5]. Notch also plays key roles in the regenerative capacity of self-renewing 

organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac 

precursors and is activated secondary to stimulated Jag1 expression on the surface of cardiomyocytes. 

Mice lacking Notch1 expression in the heart demonstrated that the Notch1 pathway controls 
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pathophysiological cardiac remodeling [30]. In the absence of Notch1, cardiac hypertrophy is 

exacerbated, fibrosis develops, function is altered and the mortality rate increases. An elegant model of 

transgenic Notch reporter (CBF1-REx4-EGFP) mice was recently used as a dynamic tool for  

the identification of Notch-activated progenitor cells that contribute to fibrosis repair after  

myocardiac injury [31].  

Notch receptors also regulate the function of bone marrow (BM)-derived cells that mediate cardiac 

repair after myocardial injury. Interestingly, increased expression of other Notch receptors, such as 

Notch2 and Notch3, was observed in cardiomyocyte-restricted Notch1 knockout mice. This increase in 

Notch expression after infarction may be partly attributed to Notch expression in recruited BM-derived 

cells. Nevertheless, Notch1 signaling promotes this selective mobilization of mesenchymal stem cells 

(MSC) from BM-derived stem cells. The contributory role of Notch1 in BM-derived inflammatory 

cells, such as macrophages, in cardiac repair may be very important and needs more detailed 

investigation [32].  
Most myocardial infarcts result from thrombotic complication of coronary atherosclerosis. 

Atherosclerosis is a chronic inflammatory disease resulting from interactions between lipids, 

macrophages/foam cells and arterial wall cells (for review, see [33]). Recent studies have identified  

the contribution of Notch in various mechanisms that greatly contribute to the pathogenesis of 

atherosclerosis. Hence, the role that the Notch pathway plays in macrophages, central to the 

development of inflammation and atherosclerosis, was recently reported. The first line of evidence 

includes the expression of multiple Notch receptors and ligands in human macrophages [34]. Dll4 and 

Notch3 colocalize in macrophages within atherosclerotic plaques. Dll4 binds to and activates  

Notch in macrophages. Notch activation leads to inflammatory gene transcription, consistent  

with a pro-inflammatory macrophage phenotype contributing to plaque burden, progression and 

thrombogenicity. Notch1 signaling is associated with macrophage activation via upregulation of 

expression of intercellular adhesion molecule 1 (ICAM-1) and major histocompatibility class II 

antigens [35]. Recent data also support the hypothesis that Notch signal activation in immune cells 

exacerbates atherosclerotic lesions and, in turn, that inhibition of Notch signaling by a γ-secretase 

inhibitor prevents or suppresses atherogenesis [36]. Consistently, blockade of Dll4-Notch signaling 

using neutralizing anti-Dll4 antibody attenuated the development of atherosclerosis in  

LDL-receptor-deficient mice [37]. Notch lateral inhibition mechanism could be extrapolated to a 

similar juxtacrine signaling between activated macrophages and vascular smooth muscle cell (VSMC) 

or valvular myofibroblasts, inducing a phenotype change in the latter. For example, a proliferative 

signal could be initiated in VSMC or myofibroblasts by activating Notch signaling, while having an 

opposite effect in endothelial cells (ECs), where Dll4 and Notch1 inhibit cell proliferation and 

angiogenic sprouting [38]. Endothelial cell function is also intimately involved in atherogenesis, and 

Notch-mediated regulation of endothelial activity can modulate the inflammatory phenotype. Little is 

known about the role of endothelial progenitor cells (EPC) in atherosclerosis. Kwon et al. have 

recently reported that deletion of the Notch ligand, Jagged-1, inhibits EPC-mediated angiogenesis by 

reducing EPC differentiation and activity [39]. 

Currently, cardiac allograft transplantation is the therapy of choice for patients with end-stage heart 

conditions. However, despite the advancements in immunosuppression, acute and chronic cardiac 

allograft rejection still limit the long-term graft survival cardiac allograft vasculopathy, the hallmark of 
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chronic cardiac allograft rejection, which remains a significant cause of mortality beyond the first year 

of cardiac transplantation [24,40]. CAV is associated with low-grade, chronic inflammation [33]. It is 

thought that the inflammatory events (immune cell infiltration, cytokine and chemokine production, 

complement and antibody deposition, endothelial cell and smooth muscle activation) contribute to the 

subsequent dysfunction of the vasculature. The successive injury and repair processes are central to  

the intimal thickening and vascular occlusion seen in CAV. Our previous work reported that CAV 

correlated with an important decrease in Notch2, Notch3 and Notch4 expression in heart allografts  

100 days post-transplantation. No significant change in Notch1 was observed. Downregulation of 

Notch4 was mainly driven by the graft endothelial cells (ECs). An extended histological analysis is 

still lacking to specify what cell type(s) are responsible of the overall decrease in Notch2 and Notch3 

in rejected allografts [41]. 

Taken together, these findings support the idea that Notch signaling participates in dynamic 

communication and cellular adaptation between immune, vascular and cardiac cells and also in the 

control of the inflammatory reaction in damaged tissues (Figure 2). Thus, further understanding of the 

Notch pathway in the context of vascular biology likely will provide novel insights into the 

mechanisms of inflammation and new opportunities for rational therapeutic intervention. 

3. Notch Signaling Is a Target of Inflammation in Vascular Cells and Inflammatory Cells 

In the past decade, the Notch signaling pathway has been consistently reported to be a target of 

inflammatory mediators or diseases. In vasculature, all Notch family members, including ligands, are 

expressed at the basal level with a specific expression pattern in endothelial cells, smooth muscle cells 

(SMCs) and fibroblasts. Notch members are also constitutively expressed on macrophages, dendritic 

cells (DCs) that play a role in both vascular function and inflammation. Expression of Notch molecules 

correlates with a constitutive activation of the Notch pathway, as reflected by effector hes/hey gene 

expression and by CBF-1 reporter assays [17,42].  

Activation by inflammatory cytokines (tumor necrosis factor (TNF), IL1β, IFNγ) triggers a change 

in the pattern of \Notch molecules expressed by ECs. Indeed, we recently established that, in cultured 

ECs, TNF and IL1β trigger a drastic decrease in Notch4 receptor and an increased Notch2 expression 

and activity associated with the increased presentation of Dll1 and Jag1. Interestingly, IFNγ do not 

modulate Notch4 expression, suggesting specific regulatory pathways and roles for the different Notch 

receptors in response to inflammation [43].  

The Notch expression and regulation pattern can differ between ECs from various vascular beds. In 

human arterial ECs (HAECs), TNF triggers an increase in Dll1 ligand expression, whereas it reduces 

the Dll1 mRNA level in umbilical vein-derived ECs (HUVECs) (Quillard T., unpublished data). 

Similarly, Jag2 is induced by TNF and lipopolysaccharide (LPS) in bone marrow (BM)-derived ECs  

in vitro and in vivo, but this effect was not observed in HAECs [44].  

In VSMCs, Notch3 has been mostly studied, because of its key implication in the cerebral 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) 

syndrome in humans. This pathology is triggered by Notch3 gene mutations on chromosome 19 that 

causes an abnormal accumulation of Notch3 NECD at the membrane of VSMCs, both in cerebral and 

extra-cerebral vessels [45], seen as granular osmiophilic deposits on electron microscopy. It is still 
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unclear, though, if CADASIL-related mutations of Notch3 result in a loss or gain of function for  

Notch3 signaling. In vitro, TNF and IL1β induces a negative regulation of Notch3 expression and  

hes/hey effector genes [46–48]. Reduction of Notch3 signaling is thought to be crucial in the 

“dedifferentiation” of SMCs in vascular inflammatory disorders (see below).  

Macrophages promote pathologic inflammation and angiogenesis in a large set of diseases. 

Recently, a specific subset of monocytes, called Tie2-expressing monocytes, with a non-inflammatory 

profile, has been described, supporting the concept of macrophage diversity and deciphering additional 

roles for macrophages in vascular development and angiogenesis [49]. Tissue macrophages, with their 

great mobility and flexibility and their affinity for tip-cell filopodia, are well located to help ECs on 

different vessel segments to establish contact [50]. By bridging tip cells from different vessel segments 

and embracing nascent fusion sites, macrophages act as cellular chaperones for EC fusion to increase 

vascular complexity and contribute to vascular morphogenesis. Thus, macrophages are indeed 

important para-endothelial constituents of the vascular wall [51]. Accumulation of macrophages in the 

vessel wall during atherogenesis could however affect Notch signaling in resident vascular cells,  

either by releasing inflammatory disorders or through direct intercellular communications via  

Notch signaling. Dll4 ligand, initially described as an endothelial-restricted molecule, is induced in 

macrophages by the inflammatory mediators, LPS, IL1β or oxLDL [34,52]. Moreover, macrophage 

activation and differentiation correlates with increased expression of Notch1, Notch2 and Notch3 

receptors [34,35,53,54]. Depending on the environment, macrophages can display a spectrum of 

activation states ranging from classically activated, M1 inflammatory macrophages producing 

inflammatory mediators in response to Toll-like receptors (TLRs), to various alternatively activated M2 

macrophages that are more involved in immune regulation, tissue repair, wound healing and resolution 

of inflammation [55]. Notch signaling appears as a regulatory pathway controlling the balance between 

M1 and M2 macrophage polarization. In particular, Notch signaling components, namely Dll4 ligand 

and the Notch1-ADAM10-γ-secretase-RBP-J axis, regulate expression of M1 genes [37,56].  

Dendritic cells bridge the innate and adaptive immune responses and are major regulators of 

cellular immune responses. DCs are commonly observed in early vascular lesions together with 

macrophages and T-cells. Notch and TLR pathways interact in DCs and as a result of this interaction, 

DCs stimulated concomitantly with Notch and TLR ligands have a distinct cytokine profile, characterized 

by enhanced IL10 and IL2 and reduced IL12 expression, compared with DCs stimulated with either 

Notch or TLR ligands alone. This interaction between Notch and TLR signaling occurs through a  

non-canonical γ-secretase-independent Notch signaling pathway [57]. 

4. Notch Signaling Actively Controls Key Cellular Functions That Contribute to  

Inflammatory Processes  

Beyond being a target of inflammation, recent studies demonstrated that Notch plays an active role 

in the development of inflammatory processes (see Figure 2).  

4.1. Production of Inflammatory Factors and Immune Responses 

Notch is an important regulator of immune cell differentiation and activation. Numerous studies 

reported its role in T CD4+, CD8+ lymphocyte, regulatory T-cell, B-cell, natural killer (NK) and 
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dendritic cell homeostasis [58,59]. As an example, in large-vessel vasculitis, Notch blockade through 

Jag1-Fc or γ-secretase inhibitor treatment induces immunosuppressive effects by markedly reducing  

T-cell infiltration and proliferation. Th1 and Th17 responses are attenuated through the reduction of 

IFNγ and IL17 production in tissue, respectively [60]. Notch signaling also mediates IL10 production 

by T-cells via Dll4 presentation on plasmacytoid dendritic cells (pDCs) [58]. 

Upon atherosclerosis, monocytes/macrophages progressively accumulate in the lesions and deeply 

contribute to the vascular remodeling associated with plaque development [59]. In a recent study, 

Outtz et al. demonstrated that Notch1 partial deletion (Notch1+/− hemizygous mice) induces a decrease 

in macrophage recruitment on the site of vascular injury associated with an impaired production of 

TNF in the wound, compared to wild-type controls. Macrophages isolated from Notch1+/− subjects 

secrete less pro-inflammatory cytokines (TNF, IL6, IL12) and chemokines (CXCL10, CCL2) in 

response to IFNγ than Notch1+/+ derived cells [61]. Consistently, constitutive activation of Notch1 in 

macrophages potentiates the induction of IRF-1 (interferon regulatory factor 1), SOCS1 (suppressor  

of cytokine signaling-1), ICAM1 (intercellular adhesion molecule-1) and MHC-II (major 

histocompatibility complex, class II) by IFNγ, while reducing NO (nitric oxide) production [35]. 

Interestingly, Dll4 reduces the production of the IL8 chemokine in response to ischemia or TNF, while 

selectively inducing the expression of inflammatory genes, such as iNOS (inducible nitric oxide 

synthase), pentraxin 3 and Id1 [34,62]. Overall, Notch signaling in macrophages, as, to a larger extent, 

in the vasculitis studies, seems to favor pro-inflammatory responses by releasing more cytokines and 

chemokines, supposedly through Notch1 and Notch3 activation.  

In contrast, in ECs, Notch4 (not present in macrophages) exhibited an anti-inflammatory function 

by reducing the TNF-mediated induction of vascular cell adhesion molecule-1 (VCAM-1) that plays a 

crucial role in the recruitment of immune cells to inflammatory sites [41].  

4.2. Control of Vascular Cell Phenotype 

Notch is a major regulator of cell phenotype. Chronic vascular inflammatory disorders that trigger 

vascular wall remodeling (atherosclerosis, CAV, PAH, etc.) are characterized notably by a progressive 

accumulation of VSMC/mesenchymal-like cells that exhibit low contractility and are prone to 

proliferate and migrate from the media to the neointima. These cells are derived from resident cells 

and/or circulating progenitor cells. The Notch pathway is strongly involved in cell fate control and, 

therefore, stands as a potentially important player in pathological remodeling processes [2]. Notch 

regulates differentiation and the phenotype of vascular cells.  

In ECs, dysregulated activation of Notch4 by overexpressing N4ICD triggers a loss in endothelial 

markers (vascular endothelial [VE]-cadherin, Tie1, Tie2, platelet-endothelial cell adhesion molecule-1 

and endothelial NO synthase), while inducing mesenchymal markers (alpha-smooth muscle actin, 

fibronectin and platelet-derived growth factor receptors) and migration toward platelet-derived  

growth factor-BB. Similarly, Jag1 stimulation also triggers this endothelial-to-mesenchymal  

transformation (EMT) [63]. 

Notch1 and Notch3 receptors are key regulators of VSMC differentiation [64]. Notch modulates 

VSMC differentiation in vitro through CBF-1-dependent mechanisms by controlling VSMC-restrictive 

genes (smooth muscle α-actin (SMA), calponin, smooth muscle myosin heavy chain (SM-MHC) and 
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smoothelin) [65,66]. Contrasting effects have been described. The SMA promoter is a direct target of 

CBF1, and Notch activation in SMC is required for expression of SMA in vascular smooth muscle  

cells [67]. On the other hand, a more recent study showed that Hey1 and Hey2 can act as repressors of 

SMA expression and are also able to inhibit the initial Notch-induced SMA expression in vitro [68]. 

Hey does not block NICD/CBF-1 complex formation, although it reduces NICD/CBF-1 binding and 

activation of the SMA promoter [68]. Moreover, NICD stimulates VSMC differentiation by interacting 

with myocardin, whereas Hey2 inhibits binding of SRF (serum response factor)/myocardin to CArG 

elements [65]. It is, therefore, likely that fine spatial and temporal regulation of Notch activation and 

effector genes expression is required to control the VSMC phenotype and that Hes/Hey induction stand 

for a negative feedback loop to limit expression of Notch direct target genes, such as SMA.  

In response to inflammatory stimuli, such as IL1β, the VSMC phenotypic transition towards an 

inflammatory or dedifferentiated state occurs notably through downregulation of VSMC markers and 

actin cytoskeleton reorganization. Activation of the Notch pathway by Dll1 or by the active form of 

Notch3 prevented this phenomenon, whereas Notch pathway blockade by a γ-secretase inhibitor 

enhanced it [47]. 

4.3. Cell Proliferation, Quiescence and Migration 

In addition to regulating the cell fate of VSMCs and ECs, Notch also affects cell proliferation and 

migration, key cellular functions associated with vascular remodeling processes.  

In primary ECs, activation of Notch4 and Notch1, through NICD transfection or through Jag1 or 

Dll4 presentation, inhibits proliferation [69,70]. EC growth arrest is mediated by the repression of 

mitogen-activated protein kinase (MAPK)/PI3K signaling and by p21Cip1 that prevents nuclear 

localization of cyclin D/cdk4 required for Rb (retinoblastoma gene product) phosphorylation  

and S-phase entry. Consistently, genetic or shRNA-mediated Dll4 blockade in ECs leads to  

increased proliferation [71,72]. 

The importance of Notch in vascular cell quiescence is of particular interest in the inflammatory 

context. Basal expression of Notch receptors and ligands in ECs and VSMCs suggest, indeed, that 

Notch signaling between ECs could contribute to the maintenance of endothelium quiescence. In the 

vasculature of the adult, it is estimated that only 0.01% of cells are actively proliferating [73,74]. As 

contacts between cells increase when confluence is reached, the Notch signaling pathway would 

therefore stand as a molecular mechano-sensor for quiescence control by inhibiting vascular cells 

proliferation. Noseda and others demonstrated that when ECs reach confluence, Notch signaling 

activity augments, while p21Cip1 is concomitantly downregulated [70,75]. Inhibition of Notch at 

confluence prevents p21Cip1 downregulation and induces Rb phosphorylation and proliferation. 

In VSMCs, it also appears that proper regulation of Notch3 activation is required at confluence to 

upregulate cell cycle inhibitor p27kip expression and, subsequently, block cell growth [76]. Notch 

signaling alters SMC growth, but in a precise manner as Notch1 and Notch3 activation, significantly 

increased SMC proliferation [64]. Moreover, primary VSMCs from hey2−/− mice proliferate at a 

reduced rate compared with wild-type cells, whereas the over-expression of hey1 in VSMCs leads to 

increased proliferation associated with reduced levels of the cyclin-dependent kinase inhibitors, 
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p21waf1/cip1 (Cdkn1a) and p27kip1 (Cdkn1b). In this latter study, the authors demonstrated that hey2 

repressor directly interacts with the p27kip1 promoter to block its transcription [77,78].  

4.4. Migration, Injury Repair and Angiogenesis 

Notch4 activation in human ECs from microvessels (HMECs) leads to inhibition of migration in 

collagen (not through fibrinogen) by increasing β1-integrin activation [79], whereas Dll4−/− mice 

exhibit higher endothelial migration from the dorsal aorta to peripheral regions, which constitute the 

main cause of arterial lumen reduction in these embryos [71]. Notch4 inhibition by siRNA in primary 

HAECs limits the injury repair process in an in vitro wound healing assay [41]. In this study, it 

remains, however, unclear whether the impact of Notch4 inhibition on cell growth/survival or cell 

migration accounts, for the most part, in this “healing” process. 

Consistently with these observations on proliferation and migration, an extensive literature depicted 

the role of Notch signaling in vasculogenesis and angiogenesis, especially in the perspective of cancer 

neoangiogenesis blockade (reviewed elsewhere [23]). Briefly, a fine tuning of Notch activation 

through Notch1, Notch4 and Dll4 is required for the development of mature new vessels. Blockade or 

over-activation of this pathway either induces higher proliferation and endothelial sprouting, leading to 

more immature vessels, or inhibits vessel formation, respectively. Both phenotypes are nonetheless 

associated with poor blood perfusion.  

In VSMCs, constitutive expression of Notch1 and Notch3 intracellular domain (ICD_ results in a 

significant inhibition of migration. Similar results were obtained following constitutive expression of 

Notch1 ICD. As expected, inhibition of CBF-1 activity with RPMS-1 significantly enhances  

VSMC migration [64]. 

In more integrative models in vivo, Notch1+/− (Notch1 hemizygous) and smNotch1+/− (SMC-restricted 

Notch1 hemizygosity) mice exhibit a drastic reduction of neointimal formation after carotid artery 

ligation compared with wild-type or control mice, whereas no significant difference was observed in 

Notch3−/− animals. This effect in Notch1 deficient mice associates with a decreased chemotactism and 

proliferation and an increased apoptosis [28].  

In support for a functional role of Notch pathway during the response to vascular injury, intimal 

hyperplasia after vascular injury is significantly decreased in hey2−/− mice [77]. This effect  

correlates with reduced cellular proliferation and decreased chemotaxis and migration in response to  

platelet-derived growth factor (PDGF). 

4.5. Apoptosis and Survival 

Endothelial cells express many protective molecules that protect them from apoptosis (e.g., A1, 

A20, Bcl2, Bcl-XL, HO-1, survivin) [80]. In pathological conditions associated with endothelial 

dysfunction (as in chronic inflammatory disorders), ECs can undergo apoptosis. The consecutive 

disruption of endothelial integrity sustains inflammation and, in the worst cases, can ultimately initiate 

thrombotic events when underlying coagulation factors, like the von Willebrand factor, become 

exposed to the circulating blood [81]. 

In addition to its impact on cell phenotype, growth and migration, Notch also affects EC survival. 

The Notch4 activation level regulates EC survival. In HMECs and HUVECs, transduction of Notch4  
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NICD protects cells from LPS-induced apoptosis [82]. Interestingly, constitutively active CBF-1 

demonstrates only partially anti-apoptotic activity by inhibiting the c-jun N terminal kinase  

(JNK)-dependent pro-apoptotic pathway. Endothelial protection can be mediated also through a  

CBF-1-independent mechanism that triggers the induction of Bcl-2 expression. Consistently, loss of 

Notch4 and Hes1 signaling by siRNA in primary HAECs elicits apoptosis [41]. In contrast, Notch2 

ICD transduction in HAECs and HUVECs promotes EC apoptosis, notably by inhibiting the 

expression of survivin [83]. It is, therefore, likely that Notch expression pattern modulation induced by 

inflammatory cytokines, such as TNF, characterized by a decrease in Notch4 expression and an 

increase in Notch2, can act as an important event that leads to endothelial dysfunction-associated 

apoptosis [43].  

In VSMCs, Notch1 and Notch3 activation promotes resistance to apoptosis, which is a prominent 

feature of the response to injury and regulates the consequent formation of the neointima [64,76,84]. 

Inhibition of CBF-1 activity with RPMS-1 results in a significant increase in apoptosis following 

serum deprivation, whereas constitutive expression of Notch3 and Notch1 ICDs protects VSMCs from 

death [76]. Moreover, both transient and constitutive Hey2 overexpression promotes VSMC survival 

in response to serum deprivation or Fas ligand, in part through the induction of Akt [78]. 

5. Crosstalks between Notch and Inflammatory Signaling Pathways 

The signaling network between Notch and other major inflammatory pathways is complex and is 

defined by multifaceted interactions between signaling pathways at multiple levels. Intersections have 

been already established with the nuclear factor κB (NFκB), mitogen-activated protein kinase (MAPK), 

TLR, transforming growth factor (TGFβ), NO and hypoxia pathways (Figure 3). While Notch ICD 

seems to be the central compound of the signaling crosstalk with other pathways, this crosstalk could, 

in some cases, occur independently of further CSL interaction underlining non-canonical forms of 

Notch signaling (for review see [85]). 

Figure 3. Crosstalks between Notch and inflammatory signaling pathways. The signaling 

network between Notch and other major inflammatory pathways is complex and includes 

multifaceted interactions between Notch, nuclear factor κB (NFκB), mitogen-activated 

protein kinase (MAPK), Toll-like receptor (TLR), transforming growth factor (TGFβ), NO 

and hypoxia signaling pathways.  
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5.1. Notch and NFκB Signaling  

The NFκB signaling cascade, considered as one of the major signaling pathways leading to  

pro-inflammatory responses in macrophages and ECs, has been linked in several models to Notch 

signaling [86–88]. Notch and NFκB signaling pathways present important mutual retro-control loops. 

Notch1 can inhibit NFκB p50 (but not p65) by regulating molecules. A recent study showed that 

treatment with γ-secretase inhibitor or silencing of Notch1 decreases the translocation of NFκB p50 

into the nucleus upon LPS/IFN-γ stimulation [54]. Notch1 ICD also prevents p50 fixation to DNA by 

direct interaction and, therefore, blocks its transcription factor function [89]. Moreover, CBF-1 

repressor can interact with the IκBα promoter on a common binding site for both CBF-1 and NFκB 

and, therefore, favors NFκB activation by repressing IκBα expression [90]. Reciprocally, p65 

sequestration in the cytosol by IκBα induces the translocation of co-repressors of Notch signaling 

transcriptional complex (SMRT/N-CoR) from the nucleus into the cytosol, allowing expression of 

Notch target genes [48]. NFκB modulates Notch signaling via both extrinsic (through Notch ligands) 

and intrinsic (intracellular Notch modulators) interactions [91]. Altogether, these data suggest that 

NFκB and Notch signaling pathways antagonize each other by various mechanisms. EC activation by 

TNF induces NFκB signaling through IκBα phosphorylation and degradation. NFκB p65 and p50 

translocate then into the nucleus and induce NFκB target genes expression. As cited previously in this 

review, TNF in ECs also strongly represses Notch4 and Hes1 expression. As an illustration of the 

inhibitory loops between these pathways, the use of chemical inhibitors of NFκB signaling confirmed 

that TNF-mediated Notch impairment in ECs was dependent on NFκB, at least partially [43]. Similar 

findings have been reported in fibroblasts [46,48]. NFκB is also responsible for the induction of Jag1 

in response to TNF in ECs [92].  

5.2. Notch, MAPK and Innate Immunity Signaling  

Interestingly, TNF-mediated induction of Notch2 receptor is not mediated by NFκB, but by the 

MAPK pathway. This suggests selective crosstalks between Notch and other signaling pathways and 

further highlights the specific functions and regulations of Notch receptors. Some reports described the 

communications between Notch, PI3K and MAPK pathways. Briefly, in ECs, activation of JNK 

induces Hes1 expression independently of Notch receptors activation. Notch1 activation reduces 

vascular endothelial growth factor (VEGF)-induced Akt and extracellular signal-regulated kinase 

(ERK)-1/2 activation [69]. In VSMCs, Notch3 signaling increases c-FLIP expression by inducing 

ERK1/2 phosphorylation via a CBF-1-independent mechanism [84]. Precise analysis of the direct or 

indirect mechanisms by which Notch integrates with such major signaling pathways remains  

to be defined. 

Considerable evidence suggests that an innate immune defense interacts and contributes to  

pro-inflammatory pathways [93]. In immune cells, such as dendritic cells, Toll-like receptor signaling 

via myeloid differentiation factor 88 (Myd88) adaptor protein leads to the induction of the Notch 

ligand, Dll4, that can, in turn, activate the Notch pathway in T-cells and/or in neighboring vascular 

cells in inflammatory diseases [94]. Furthermore, several studies reported the contribution of Dll4 

ligand in TLR9-dependent signaling in DCs, in immune responses and in venous thrombus  
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resolution [95–97]. In macrophages, a recent study supported this interaction by showing that Notch1 

and Notch2 suppressed the production of TLR4-triggered pro-inflammatory cytokines, but  

promoted production of anti-inflammatory cytokine IL10 through the ERK, MyD88/TRAF6 and  

TRIF pathways [98]. 

5.3. Notch- and Hypoxia-Mediated Signaling 

A decrease in the level of oxygen induces a cellular hypoxic response. Notch signaling is implicated 

by several ways to the hypoxia pathway. Functional Notch signaling is required for several events  

of the hypoxic response, such as the control of myogenic differentiation and EMT [99,100]. One 

important environmental parameter in inflammatory processes that may involve Notch signaling is the 

pivotal role of oxygen homeostasis in the phenotypic response of ECs and VSMCs following injury or 

after acute myocardial infarct. HIF-1 (hypoxia-inducible factor-1) is a transcription factor that 

functions as a sensor to changes in available oxygen in the cellular environment, a feature implicated 

in many vascular diseases [101,102]. 

HIF-1α and Notch signaling pathways appear to be functionally integrated. The activated form of 

HIF-1 enhances NICD-dependent target gene expression by stabilizing its binding to the promoters, 

thereby providing a new mechanism by which hypoxia can regulate the responses of vascular cells [99]. 

Hypoxia also induces the expression of Dll4 in endothelial cells, leading to increased Notch signaling 

in neighboring cells [103,104]. Hypoxia also controls the expression of other Notch ligands, and Dll1 

and Jag2 have been reported to be upregulated by low oxygen levels [100,105]. In pulmonary arterial 

hypertension, hypoxia upregulates Notch3 expression; Notch3 upregulation is a key initiating event of 

the disease [106]. An additional crosstalk is the interaction between NICD and the factor FIH-1 (factor 

inhibiting HIF-1α), that can suppress the intracellular level of HIF-α [107]. As FIH-1 binds preferentially 

to NICD more than HIF-1α, Notch activation indirectly enhances expression of HIF-1α-responsive  

genes [108]. Moreover, Notch signaling is needed to convert the hypoxic stimulus into  

epithelial-to-mesenchymal transition (EMT), increased motility and invasiveness. The Notch signaling 

pathway is an attractive candidate as a mediator for an alternative readout between hypoxia and  

EMT in tumor cells. Notch can upregulate Snail-1 and induce EMT in normoxia during normal 

development in cardiac [109] and kidney tubular cell [110] differentiation. Although Notch 

implication in tumor angiogenesis in response to hypoxia has been well established, the response of 

Notch signaling to hypoxia in inflammatory processes still remains to be clarified.  

5.4. Notch and NO Signaling  

Nitric oxide (NO) is a major player in cardiovascular responses to inflammation. NO is generated 

by nitric oxide synthases (NOS), which display three isoforms: endothelial (eNOS or NOS3), inducible 

(iNOS or NOS2) and neuronal (nNOS or NOS1). External signals (shear stress, calcium influx or 

growth factors) culminate in phosphorylation events that can either activate (Ser114 and Ser1177) or 

inhibit (Thr485) eNOS [111]. Similar to hemizygous Notch1 mutations in human [112], homozygous 

eNOS knockout mice display major cardiac anomalies [113]. Impairment of NO production by ECs 

notably characterizes EC dysfunction and is a key element that further contributes to cell  

activation and vascular remodeling [114]. A recent study demonstrates that Notch promotes  
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endothelial-to-mesenchymal transition (EMT) by an autocrine activation of NO signaling. Notch 

activation in ECs induces the secretion of activin A, leading to activation of eNOS and release of NO 

by a PI3K/Akt-dependent mechanism [115]. 

Some work in macrophages and microglia (resident macrophages of the brain) also support a link 

between these pathways. First, Dll4 presentation to macrophages induces inducible NO synthase 

(iNOS) [34]. Inversely, inhibition of Notch1 in microglia cells associates with a decrease in NO 

production and pro-inflammatory cytokines secretion [116]. Reciprocally, stimulation of macrophages 

by NO reduces Notch1 signaling by blocking the interaction between NICD and CBF1 through direct 

NICD nitration [52]. In other biological contexts, Notch and NO seem to be interdependent. In human 

glioblastomas, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro 

and induces the side population phenotype in primary glioma cell cultures [117]. Loss of NO in these 

tumors reduces Notch signaling in vivo. Similarly, in murine cholangiocytes, Notch1 expression is 

dependent on iNOS activity [118]. iNOS expression also facilitates NICD translocation into the 

nucleus and Notch target gene hes1 expression. Inversely, the inhibition of Jag1 decreases iNOS 

expression in activated astrocytes [119]. Interactions between Notch and NO signaling specifically in 

ECs and VSMCs have not been reported yet. 

5.5. Notch and TGFβ Signaling  

Notch signaling also intersects with the transforming growth factor (TGFβ) signaling pathway. 

TGFβ is the prototypic member of a family of pleiotropic cytokines, including three TGFβ isoforms 

(TGFβ1, 2 and 3), activins and bone morphogenetic proteins (BMP) (for review, see [120]). TGFβ 

displays a wide range of biological effects by regulating cell proliferation, differentiation and apoptosis 

and modulating the immune response. TGFβ expression is elevated in response to injury. Because of 

its anti-inflammatory and fibrogenic properties, TGFβ may be an essential mediator for cardiac repair 

by mediating the transition from inflammation to fibrosis. TGFβ is also an important regulator of the 

EC-SMC interaction. 

The TGFβ receptor is a heterodimer of TGFβ type I (termed activin linked kinase [ALK]5) and 

TGFβ type II receptors. ALK5 phosphorylates Smad-2 and -3, which bind to Smad4; the complex 

translocates into the nucleus and activates transcription of target genes. TGFβ also activates  

several non-canonical (SMAD-independent) signaling pathways, including: MAPK signaling cascades,  

RhoA-ROCK signaling and Ras signaling [121].  

A direct link between Notch and TGFβ/BMP signaling is evident, given the reported interactions of 

Notch ICD with SMADs (SMAD3 for TGFβ; SMAD1 for BMP) [122,123]. During Notch-TGFβ 

cross-talk, TGFβ signaling enhances canonical Notch signaling, whereas the effect of Notch on  

TGFβ signaling is more multi-faceted. For example, Notch/TGFβ induction of Hey1 occurs at the  

expense of TGFβ-mediated induction of inhibitor of DNA binding 1 (Id1) [123]. TGFβ-mediated  

epithelial-to-mesenchymal transition also requires functional Notch signaling in the developing  

heart [109]. During endothelial-to-mesenchymal transition in cardiac cushion morphogenesis, Notch 

signaling inhibits SMAD1 and SMAD2 expression, but increases SMAD3 mRNA expression. SMAD3 

is recruited to both SMAD and CSL binding sites to promote the downstream response [124]. The 

interactions between Notch NICD and SMAD appear to be receptor-specific. For example, Notch4 
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ICD, but not Notch1 or Notch2 ICD, interacts with phosphorylated SMAD-2 and -3 in SMCs [125]. 

Moreover, the latter study also supports the notion that SMADs can be recruited to the Notch 

transcription complex. On another hand, TGFβ downregulates the expression of Notch3 upon smooth 

muscle differentiation [126], indicating that aside from directly regulating smooth muscle 

differentiation genes, TGFβ acts through the repression of Notch3, a critical inhibitor of 

differentiation. Taken together, these data indicate that both TGFβ and Notch functions are  

context-dependent, and their subsequent effects are likely based on specific interactions with their 

respective signaling pathways. 

6. Limits and Perspectives 

It is clear now that inflammation alters Notch signaling in vascular cells. The main limit remains on 

how, in a multi-cellular complex tissue, Notch expression and activation pattern is regulated to orient 

the cell response to inflammation. 

An illustration of how important is to integrate Notch signaling in situ in a multi-cell-type 

communication system is that Jag1 expression on ECs is required for VSMC differentiation and 

development [127]. Because Jag1 can also trigger EMT [63], it also suggests that fine spatial and 

temporal regulation of Notch communications is crucial in a given cell type and in a heterogeneous 

tissue to trigger specific cell responses. These responses are likely to be dependent on what 

receptors/ligands combinations are involved, between resident and potentially recruited cells that can 

bear different sets of ligands or receptors. Parallel regulation of post-translational modifications on 

Notch molecules that can modify Notch receptors affinity for jag or serrate ligands are also of great 

importance in this matter [7,128]. Comparatively, in ECs, the net balance of the Notch signals, 

mediated by Notch2 and Notch4 that trigger selective responses, may orient the cell phenotype and 

play a critical role in the disease development (Figure 4). 

Figure 4. Functional impact of Notch signaling dysregulation in vascular endothelial cells 

(EC) upon inflammation.  
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Dysregulation of Notch members contributes to vascular disease development. Association of 

Notch3 mutations and Notch1 inactivating mutations with CADASIL syndrome and severe heart 

disorders, respectively, strongly support this hypothesis [45,129]. Whether CADASIL or Allagile 

patients (associated with Jag1 and Notch2 mutations) [130,131] also have additional defects in 

inflammatory responses have not been documented. Indirectly, a recent study interestingly established 

that CADASIL syndrome correlates with endothelial dysfunction (impairment of NO production) [132].  

As our knowledge of the impact of the Notch signaling increases, the possibility arises to 

experimentally manipulate the Notch pathway in disease. To this aim, elegant and sophisticated studies 

have been performed to interfere with Notch signaling. Dll4 has been proposed as a potential target for 

anti-angiogenic therapy. Several studies have already reported that the Dll4 blockade inhibits tumor 

growth by inducing nonproductive angiogenesis manifested by an increased tumor vascular density, 

but a decreased tissue perfusion [133,134].  

Other sophisticated strategies have been developed to interfere with specific stages of Notch 

signaling. For example, MAML-interfering peptides [135] or antibodies that block Notch1 receptor in 

an inactive state [136] have been recently developed. Unfortunately, the long-term use of such 

strategies might still yield unwanted side effects. In this respect, it has been shown that chronic Dll4 

blockade induces vascular neoplasms [137]. 

The potential implications of Notch in vascular inflammatory disorders are wide, from altering cell 

activation, recruitment, differentiation, proliferation, migration and/or apoptosis. Nonetheless, precise 

analyses of its contribution in a given disease are still poorly characterized. Beyond the capabilities of 

Notch to modulate cell functions, much effort is now required to establish the actual role of Notch in 

those disorders, in a dynamic, spatial and temporal perspective. Moreover, before converting our 

recent knowledge into possible therapies, we also need to further elucidate the players, the functions 

and the regulatory events involved in the specificity and control of the Notch pathway in  

vascular cells. 
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