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As a main actor in humoral immunity, B cells participate in various antibody-related disor-
ders. However, a deeper understanding of B-cell differentiation and function is needed in
order to decipher their immune-modulatory roles, notably with the recent highlighting of
regulatory B cells. microRNAs (miRNAs), key factors in various biological and pathological
processes, have been shown to be essential for B-cell homeostasis, and therefore under-
standing their participation in B-cell biology could help identify biomarkers and contribute
toward curing B-cell-related immune disorders. This review aims to report studies casting
light on the roles played by miRNAs in B-cell lineage and function and B-cell-related immune
pathologies.
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INTRODUCTION
MicroRNAs (miRNAs) are the most studied class of non-coding
RNAs and their gene-expression regulating role is key in vari-
ous biological and pathological processes. MiRNAs play a role
in immune processes such as the development of immune cells,
inflammation, and tolerance (1, 2). Evidence that miRNAs are
needed for B-cell development is given by mice where B-cell-
specific deletion of the endoribonuclease Dicer results in a lack of
B cells (3). Furthermore, miRNAs finely tune the differentiation
and activation programs of B cells, thus influencing their function.
B cells are also central mediators in humoral immunity and play
an important role in transplantation, autoimmunity, and reaction
to infectious diseases. Consequently, it is important to understand
in what circumstances miRNAs can influence B-cell function, and
therefore immuno-pathology. In the present review, we describe
recent studies shedding light on the roles played by miRNAs in B-
cell biology and B-cell-related immune pathologies (major miRNA
roles in B cells are reported in Table 1 and Figure 1).

MicroRNA CHARACTERISTICS
BIOGENESIS
Discovered in Caenorhabditis elegans in 1993 by Ambros
and Ruvkun’s teams, miRNAs are endogenous small (19–23
nucleotides in length) non-coding RNAs that perform post tran-
scriptional regulation by targeting messenger RNAs (mRNAs)
for degradation or translational inhibition (30, 31). Since their
first description, miRNAs have been extensively studied. The 20th
release (June 2013) of the official miRNA registry, miRbase, con-
tains 2, 578 and 1, 908 mature miRNAs for human and mouse,
respectively (32). MiRNA biogenesis has been reported in detail
(33). The canonical miRNA biogenesis involves the transcription
of long primary transcripts (pri-miRNA) by the RNA polymerase

II which allows transcription factor regulation (34). This pri-
miRNA is processed by the microprocessor complex, including
the endoribonucleases Drosha/Di George syndrome critical region
protein 8 (DGCR8). The resulting precursor miRNA (pre-miRNA)
is transported into the cytoplasm where it is processed and cleaved
by the Dicer RNase III. This process leads to the formation of a
short double-stranded RNA containing the miRNA and its com-
plementary sequence. Finally, the mature miRNA is unwrapped
and packed in the RNA-induced silencing complex (RISC). This
complex is composed of several proteins including the Argonaute
proteins (AGO) and allows a stable conservation of the miRNA.
This RISC complex guides the miRNA to the target mRNA
containing miRNA Recognition Elements (MRE) (35).

MECHANISMS OF ACTION
The most widely accepted model for miRNA targeting is based
on the seed region, a 6 nucleotide region in the 5′ end of the
miRNA, where miRNA/mRNA matching is perfect, whereas an
uncomplimentary region, or “bulge” sequence, is present between
the miRNA/mRNA hybrid (36). Due to this short recognition
sequence, miRNAs are predicted to target hundreds to thousands
of genes. This is confirmed in different reports where deletion or
over-expression of miRNAs regulate the expression of numerous
genes and proteins (37, 38). Consequently, a lot of predictive bioin-
formatic tools have been developed to identify potential direct
miRNA targets [reviewed in Ref. (39)]. However, even the most
accurate software gives a high rate of false positives and false
negatives and predictions have to be experimentally validated.

The exact mechanisms by which miRNAs repress gene-
expression still remain unknown. Recent experiments suggest that
miRNAs act as protein transcriptional repressors, preventing ribo-
some association with mRNAs, leading to mRNA destabilization
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Table 1 | Major miRNAs playing a role in B cells.

miRNA Targets Biological effects Associated disorders

miR-17-92

Cluster

Bim (3, 4) Participate in B-cell proliferation and cell-death

control (3, 4)Pten (4)

miR-24 Bim and Caspase 9

(5)

Inhibit B-cell development, under the control of

PU.1 (5, 6)

miR-29a TCL1, MCL10, and

CDK6 (7)

Up-regulated in indolent B-cell chronic lymphocytic leukemia

(CLL) compared to normal B cells (8).

miR-34a Foxp1 (9) Induces block of B-cell development whereas its

deletion induces high number of mature B cells (9)

miR-146a Irak1 and Traf6 (10) Participate in B-cell development, over-expression

causes spontaneous autoimmune disorders in

mice (10, 11)

Over-expressed in patients suffering from rheumatoid

arthritis and psoriasis (12–14)
Fas (11). Over-expressed in kidney biopsy and urine from patients

with IgA nephropathy (15)

Induced by EBV and inhibits the expression of interferon

related genes (16)

miR-150 c-Myb (17). Its over-expression in B-cell progenitors results in a

partial block of B-cell development and a reduction

in B1-cell numbers (17).

Under-expressed in peripheral B cells from SLE patients (18)

miR-155 Pu.1 (Sfpi1 gene) (19) Reduced generation of high-affinity antibodies

against a T-cell-dependent antigen (19, 20)

Over-expressed in peripheral B cells from SLE patients (18)
Shp1 (21) Is induced by EBV, through LMP1 and:

Aid (20, 22) -targets BMP signaling cascade suggesting an inhibition of

the antitumor effects of BMP signaling (23)

-contributes to the resistance toward Rituximab in inducing

cell survival signal (24)

miR-181a Bim (25) Its over-expression inhibits the pro-apoptotic

protein BIM (25) and increases number of

B-lineage cells (26)

miR-181b Aid (27) Impairs the class-switch recombination (27)

miR-210 Control of immunoglobin class-switch and under

the control of Oct-2 (28)

miR-221 Implicated in the retention of early B-lineage cells

in bone marrow and under the control of PAX5 (29).

FIGURE 1 | Role of miRNAs in the development of B cells. (in Blue: miRNA targets; FO Follicular B cells; MZ Marginal zone B cells).

Frontiers in Immunology | Alloimmunity and Transplantation March 2014 | Volume 5 | Article 98 | 2

http://www.frontiersin.org/Alloimmunity_and_Transplantation
http://www.frontiersin.org/Alloimmunity_and_Transplantation/archive


Danger et al. B cells and microRNAs

and degradation (40–42). This would explain the absence of
the rapid diminution of mRNA levels after miRNA induction.
This would further mean that miRNAs, not requiring translation,
could be active in inhibiting mRNA translation more quickly than
transcription factors.

Another important property of miRNAs is that they have dis-
tinct functions in different cell types, the transcript levels differing
depending on the cell, and number of mRNA containing MRE
also differing. This is the case for miR-155, which represses the
expression of the factor transcription c-MAF and the IFNγ recep-
tor 1 (IFNGR1) in activated naïve CD4 positive cells, whereas
it represses the expression of the PU.1 transcription factor and
the phosphatidyl inositol 5’-phosphatase SHIP1 in B-lymphocytes
[(21, 43, 44); reviewed in Ref. (45)]. Few miRNAs are cell-specific.
Some lymphoid miRNAs have been identified, such as miR-150,
that have been shown to be expressed in B cells and also in
T and NK cells (46). Furthermore, miRNAs have been found
expressed in various body fluids including plasma, sera, urine,
saliva (47, 48), and their resistance to degradation, either by enzy-
matic (RNases) or physic (freezing/defreezing) processes make
them good biomarkers.

Finally, while the large number of miRNA targets, their possible
rapid intervention, and their multifactorial function explain why
miRNAs are important in cell biology, the exact mechanisms of
miRNA are complex and as yet undiscovered. MiRNAs can directly
induce gene-expression (49, 50) despite being mainly described as
gene-expression repressors. They can also act in the 5′ untranslated
region (UTR), and not only in the 3′ UTR (51). Finally miRNAs
can themselves be regulated by long non-coding RNA (52).

miRNAs AND B-CELL LINEAGE
SPECIFIC miRNAs HIGHLIGHTED IN B-CELL LINEAGE
Knock-out (KO) experiments have shown that miRNAs are
involved in, and even indispensable to, normal hematopoiesis (3,
53) (Figure 1). Indeed, reconstitution of irradiated mice with
Ago2-deleted bone marrow cells, which induces a reduction in
miRNA levels, impairs generation of pre-B cells and subsequently
peripheral B cells (53). Specifically in B cells, the Dicer ablation
at an early stage blocks cells at the pro-B to pre-B-cell transition
(3) whereas the Dicer ablation at a later stage, in antigen-activated
B cells, results in a severe impairment of antibody response with
prevention of germinal center (GC) B-cell, long-lived plasma cell,
and memory B-cell formation (54). Analysis of up-regulated genes
in blocked pro-B cells highlights gene-bearing seed motifs for
miRNAs such as miR-142-3p and the miR-17–92 cluster (includ-
ing miR-17, -19a, -19b, -20a, and -92), suggesting that at least
these miRNAs are important for B-cell development (3). Among
genes targeted by miRNAs from the miR-17–92 cluster, the authors
showed that Bim (BCL2-like 11), a pro-apoptotic gene, is increased
in Dicer KO mice and could be responsible, at least in part,
for the massive apoptosis observed at the pre-B stage. In con-
trast, the over-expression of this miR-17–92 cluster in transgenic
mice results in lymphoproliferative and autoimmune phenotypes
due to a reduced PTEN (phosphatase and tensin homolog) and
BIM protein expression (4). Altogether, these data suggest that
the miR-17–92 cluster has a role in the proliferation control of
B cells.

Similarly, the over-expression of miR-181a in hematopoietic
stem cells induces an increase in the number of B-lineage cells in
both tissue-culture and adult mice after re-implantation in bone
marrow (26). A deep-sequencing experiment confirms the prefer-
ential expression of the miR-181 family in early and transitional
B-cell stages (55). Furthermore, the inhibition of the pro-apoptotic
gene BIM by miR-181a, reducing B-cell apoptosis, could explain
the observed increased number of B cells when miR-181a is over-
expressed (25). This sequencing study also confirms the expression
of miRNAs related to B-cell differentiation, such as miR-146a,
miR-150, miR-155, and miR-34a. MiR-150 is indispensable for B-
cell development as it controls, in a dose-dependent manner, the
expression of c-Myb (v-myb avian myeloblastosis viral oncogene
homolog, officially called Myb), coding for a transcription fac-
tor important in multiple steps of lymphocyte development and
notably the generation of B1 cells, considered as innate immune
cells producing immunoglobulin M and A (IgM and IgA) (17).
The ectopic expression of miR-150 in B-cell progenitors results in
a partial blockade of B-cell development and a reduction in B1-cell
numbers whereas splenic B1 cells are four-times as numerous in
miR-150 KO mice (17). Interestingly, in mice with miR-150 ectopic
expression, no obvious adverse physiological effect is observed in
non-hematopoietic lineage cells, demonstrating that miRNAs dis-
play their functions with cell-specificity. Similarly to miR-150, the
constitutive expression of miR-34a results in a partial blockade
of B-cell development, whereas its deletion induces high num-
ber of mature B cells (9). Indeed, miR-34a constitutive expression
inhibits the transition of pro-B cells into pre-B cells by targeting
the gene coding the transcription factor Foxp1 (Forkhead box P1).
Spierings et al. described high levels of expression of miR-146a
in B1 lineage and in to a lesser extent in marginal zone (MZ)
B cells (55). Considering that this miRNA has been described
as playing a role in a negative feedback loop on NF-kB activity
by down-regulating IL-1 receptor associated kinase 1 (Irak1) and
TNF receptor–associated factor 6 (Traf6) upon lipopolysaccharide
stimulation in monocyte, miR-146a could be implicated in B1-cell
development. The possibility of this role is reinforced by the fact
that miR-146a controls Irak1 and Traf6 in splenic B cells (10) and
furthermore by the association of increased miR-146a expression
in c-Myc related lymphoma models (56) and in splenic MZ lym-
phoma (57). Thus, it is clear that miRNAs play key roles in B-cell
development.

As for other RNAs, the expression of miRNAs is under the con-
trol of transcription factors, which are definitely involved in B-cell
development. Starting from the fact that PAX5 (paired box 5) par-
ticipate in B-cell fate, Knoll et al. have shown the down-regulation
of miR-221 and miR-222 during B-lymphocyte development, and
the involvement of miR-221 in the retention of early B-lineage cells
in bone marrow (29). A similar procedure has been shown with
the transcription factor PU.1 {encoded by the Sfpi1 gene [SPI1
spleen focus forming virus (SFFV) proviral integration onco-
gene]}, because high ectopic expression of Pu.1 in multipotent
progenitors promotes myeloid cell development at the expense
of B-cell development (6). Using a Pu.1−/− myeloblast cell line
and model of bone marrow transplantation, the authors iden-
tified miR-24 as a transcriptional target of PU.1 able to inhibit
B-cell development in vivo as well as in vitro (6). In contrast, the
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same group report that miR-24 enhances cell survival in both the
myeloid and pre-B-cell lines, inhibiting pro-apoptotic molecules
such as BIM and Caspase 9 (5). It remains unclear why this miRNA
inhibits B lymphopoiesis or enhances lymphocyte survival but is
likely due to a change in the cellular environment.

Regarding the other roles of miRNAs in B cells, it is clear
that they partly control proliferation and apoptosis in B cells
and numerous miRNAs have been highlighted in lymphoma. B
lymphoma-related miRNAs were reviewed recently (58). Their
study highlighted the role of miRNAs in normal B cells. For exam-
ple, miR-155, which was initially described within the non-coding
B-cell integration cluster (BIC) gene, is over-expressed in vari-
ous lymphoma, and has also been shown to be a major miRNA
involved in B-cell maturation. This is also the case for miR-29a,
highly expressed in B cells and up-regulated in indolent B-cell
chronic lymphocytic leukemia (CLL) compared to normal B cells
(8). Its B-cell-specific over-expression induces a CLL-like disease
in mice with an expanded CD5+CD19+ B-cell population suggest-
ing that miR-29a acts as an oncomiR (8). However, this miRNA
is expressed less in aggressive CLL compared to indolent CLL,
and it is speculated that a reduction of control of miR-29a targets,
including several oncogenes such as T-cell leukemia/lymphoma 1A
(TCL1), myeloid cell leukemia sequence 1 (MCL10) and cyclin-
dependent kinase 6 (CDK6) participate to the aggressive CLL
phenotype (7). Thus, miR-29a could act either as an oncogene
or a tumor suppressor, demonstrating that miRNAs can play dif-
ferent roles depending on the cellular context. Finally, the role of
miR-29a in normal B cells has not yet been described, but con-
sidering the enrichment of B-cell signaling pathways among its
targets, it is also likely to have an important function in normal B
cells [reviewed in Ref. (59)].

ENRICHED miRNAs IN B-CELL LINEAGE
Overall, most miRNAs are ubiquitously expressed, only some of
them being preferentially expressed, in restricted cell types (60,
61); this is the case for miR-122 in liver and miR-1 in muscle.
Global profiling studies focusing on hematopoietic cell lineage
and particularly in B cells also foreground enriched miRNAs such
as miR-16, miR-30c, miR-34a, miR-142-3 and-5p, miR-150, miR-
155, miR-181, and miR-223 (46, 55, 62–65). These profiling studies
are very useful tools in a first attempt to appreciate the role of a
particular miRNA in conjunction with cells or tissues expressing
this miRNA. This is the case for the deep-sequencing study by
Spierings et al. which shows the expression of 232 known miRNAs
in 10 developmental stages (55). Altogether, these studies demon-
strate that miRNAs with distinct expression in B cells have to be
investigated for the complete understanding of B-cell biology.

IMPLICATION OF miRNAs IN PERIPHERAL B-CELL
DEVELOPMENT
ROLES OF miRNAs IN FO MZ FATE DECISION
Primary antibody diversification takes places during B-cell differ-
entiation in the bone marrow through somatic DNA rearrange-
ment of Ig by V(D)J recombination. This process leads to a
high diversity of B-cell antigen receptors that can recognize self-
antigens and potentially induce autoimmunity. Control of B-cell
auto-reactivity is guaranteed by intrinsic tolerance mechanisms

(66, 67). Two checkpoints ensure B-cell tolerance in bone mar-
row and the periphery, where strongly self-reactive B cells might
undergo receptor editing or clonal deletion (66, 67). In mice,
peripheral immature IgM+ B cells start to express IgD and ter-
minate their differentiation into follicular (FO) or MZ B cells
(11, 68). FO B cells are currently associated with a T dependent-
response whereas MZ B cells, located in the spleen marginal sinus,
can mount independent humoral responses. The differentiation
of immature B cells into FO or MZ B cells depends on BCR
intensity signals and cleavage of Notch2. For their differentia-
tion MZ B cells need weak BCR signals, allowing the activation
of Notch2 pathways, whereas FO B cells are generated after strong,
tonic BCR interactions associated with BAFF survival signals (11).
MiRNA are involved in the FO vs. MZ fate decision (69). Mice
with conditional KO of Dicer in B cells exhibit a total switch of
their B-cell subsets, with a higher proportion of immature and
MZ B cells and a strong alteration of the FO B cells (69). This
alteration is specific to Dicer deletion and not due to any com-
pensatory homeostatic mechanisms. Mixed chimeric mice, with
50% wild-type bone marrow and 50% conditional Dicer KO bone
marrow, exhibit an impairment of FO B-cell generation and an
increase in the MZ compartment only in the KO part. This con-
firms that the augmentation of MZ B cells in Dicer-deficient mice
is not a homeostatic response but instead reflects an altered process
in B-cell fate induced by the absence of miRNAs (69). Remark-
ably, FO B cells have a higher expression of Dicer than MZ B
cells, suggesting a central role for miRNAs in this population.
Indeed, among the 177 measured, 31 differentially expressed miR-
NAs have been highlighted in FO and MZ B cells. Among them,
miR-185 was identified as central for the differentiation into the
FO compartment (69). MiR-185 targets burton tyrosine kinase
(BTK ), which transduces signals downstream of BCR by phospho-
rylating Erk pathway. Consequently, by targeting BTK, miR-185
modulates BCR signals and its activation threshold. Thus, in phys-
iological conditions, miR-185 dampens BCR signals, confirming
that immature B cells needs strong BCR activation to differenti-
ate into FO B cells (70). In Dicer-deficient mice, BCR signals are
not diminished and so immature B cells preferentially differenti-
ate into the MZ compartment. In addition, Dicer KO mice exhibit
autoimmune features with a skewed antibody repertoire enriched
in self-reactive specificities that lead to the development of autoim-
mune diseases (69). Concentration of IgG against dsDNA, ssDNA,
and cardiolipin autoantigens are increased in Dicer KO mice, sug-
gesting a passive biased selection of the BCR repertoire, probably
due to alterations in BCR signals. More interestingly, these autoim-
mune features are only found in older female mice, mimicking
thus the etiology of autoimmune diseases in human where older
women are more susceptible to developing such pathologies (71).

ROLES OF miRNAs IN THE CONTROL OF MEMORY AND HUMORAL
RESPONSES
Memory and plasma cells are generated during the primary
immune response against foreign antigens. This process is initi-
ated when naïve FO and MZ B cells expressing surface Ig bind
the antigen in secondary lymphoid organs, receive or do not
receive signals from helper T cells, and proliferate. This prolifera-
tion produces short-lived plasmablasts and GC cells. A secondary
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diversification process occurs in the GC where B cells switch their
Ig constant region from IgM to IgG, IgA, or IgE and generate
somatic mutations in their variable regions. B cells expressing high
affinity Ig survive and emerge from the GC reaction and differenti-
ate into plasma cells. Recently, a number of studies have identified
the involvement of miRNAs in the GC reaction and B-cell mem-
ory responses. Mice lacking miR-155 exhibit substantial immune
defects with reductions in GC B cells and dampened B-cell mem-
ory responses accompanied by an alteration in the function of T
lymphocytes and dendritic cells (43, 72). miR-155 deficiency in
B cells leads to a reduced generation of high-affinity antibodies
against a T-cell-dependent antigen (19). The authors have identi-
fied the transcription factor PU.1 among targets of this miRNA.
Furthermore, they have shown that Pu.1 over-expression in B cells
results in reduced numbers of IgG1-switched cells, reinforcing the
evidence of this factor in B-cell maturation. In addition, the gene
coding for the activation-induced cytidine deaminase (Aid gene)
regulating the class-switch recombination and somatic hypermu-
tation, has also been shown to be a miR-155 target (20, 22). Aid is
also a target gene for miR-181b, impairing the class-switch recom-
bination, and its expression is down-regulated upon B-cell acti-
vation, allowing efficient antibody maturation (27). Although the
majority of miRNAs are down-regulated upon B-cell activation,
miR-210 has been shown to be up-regulated in these circumstances
(28). In models of KO and transgenic mice, miR-210, itself under
the control of the transcription factor OCT-2, is involved in the
control of immunoglobin class-switch preventing autoimmunity
(28) and mice deficient in miR-210 spontaneously produce high
levels of autoantibodies.

Collectively these data demonstrate that miRNAs have a key
role in the differentiation of peripheral mature B cells and in
humoral responses. In addition, the data suggest that deregula-
tion of miRNA expression can alter B-cell homeostasis and break
tolerance by favoring the generation of autoantibodies. Regard-
ing the significance of miRNAs in B-cell biology, we can also
assume that miRNAs are involved in other essential functions
of B-cells. However, to our knowledge, no miRNA has yet been
described as playing a direct role in B cells functions such as
antigen presentation to T cells, cytokine secretion or regulatory
functions (73).

miRNA DYSREGULATION IN B-CELL-RELATED DISORDERS
B-CELL-RELATED miRNAs IN AUTOIMMUNE DISORDERS
B-cells are involved in autoimmune diseases due to their primary
function of antibody production. That miRNA plays a role in the
establishment of autoimmunity has been strongly suggested in
rodents (69), but few studies have been performed specifically on
human B cells. Stagakis et al. found seven miRNAs with differential
expression in peripheral B cells in a small group of 5 patients with
SLE, compared to three healthy controls (18). Three were under-
expressed in SLE (miR-150, miR-16, miR-15a) and the four others
were up-regulated (miR-155, miR-25, miR-21, miR-106b). Inter-
estingly, miR-21, a pleiotropic miRNA described as controlling
major cell functions, had also been shown to be over-expressed
in splenic B cells from two mice models of SLE, the MRL/lpr
and the B6.Sle123 mouse strains, suggesting it has a role in this

pathology (74, 75). Among others, miR-15a modulation has also
been described in another SLE model, B/W mice enhanced by
IFNλ, with a significant correlation between miR-15a expression
and autoantibody production in SLE prone-B/W mice (76). Sur-
prisingly, miR-15a expression is essentially found in the regulatory
B-cell subset under steady state and its expression progressively
increases in other B-cell subsets along the course of the disease.
However, in this study, miR-15a is over-expressed in splenic B
cells, although it has previously been described as down-expressed
in human blood B cells (18). Further investigation is required to
decipher whether this discrepancy is due to differences in the ori-
gins of the analyzed B cells (peripheral blood vs. splenic B cells)
or to differences between the mice model and human SLE. Even
if miRNA sequences are well conserved between species, their
expression profiles could be different from one species to another.
For example, among 12 analyzed miRNAs which were expressed
both in human and mouse, only 6 had similar expression profiles
in their lymphocyte subsets (mainly CD4+ cells) (77). Using a
hypothesis-driven approach, miR-30a was shown to directly tar-
get Lyn, a member of the Src family preferentially expressed in B
cells (78). Gene and protein levels of Lyn are lower in SLE patients
and negatively correlate with the expression of miR-30a in blood
CD19+ purified cells (78). Unlike other members of the miR-
30 family, only miR-30a exhibits regulatory capacity upon B-cell
proliferation and antibody production in the two B-cell lines stud-
ied (Daudi and Raji). Interestingly, miR-142-3p and -5p, which
are down-regulated in CD4+ T cells from SLE patients, have an
indirect effect on IgG production; the over-expression of these
miRNAs in SLE CD4+ T-cells induces a decrease in IgG produc-
tion (79). In multiple sclerosis (MS), two studies from the same
group show two sets of modulated miRNAs in isolated B cells
from relapsing-remitting MS patients compared to healthy con-
trols (80, 81). Despite no overlapping miRNAs, five differential
miRNAs from the second study have been validated in a second
set of samples and could thus be investigated to decipher B-cell
deregulation in MS (miR-106b, miR-19b, miR-181a, miR-25, and
miR-93) (81).

The over-expression of miR-146a has been reported in synovial
tissue from patients with rheumatoid arthritis. In situ hybridiza-
tion analysis reveals that CD79A+ B cells express high amounts
of miR-146a in these synovial tissues (13). Similarly, miR-146a is
over-expressed in kidney biopsy and urine from patients with IgA
nephropathy, although its specific expression has not been proven
(15). The involvement of miR-146a in immune disorders is further
suggested by the generation of transgenic mice over-expressing
miR-146a with immune disorders including enlarged spleens and
lymph nodes, increased frequency and numbers of T and B cells,
accumulation of GC B cells, and an increase in Ig serum levels
(11). MiR-146a mediates its effect by repressing the expression of
Fas in B cells, a molecule essentially expressed on GCB cells and
which promotes their apoptosis during GC reaction. Thus over-
expression of this miRNA enhances homeostatic B-lymphocyte
proliferation leading to the development of autoimmune lympho-
proliferative syndrome. In concordance with these observations,
higher levels of miR-146a have been found in patients suffering
from rheumatoid arthritis and psoriasis (12–14).
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B-CELL-RELATED miRNAs IN SOLID ORGAN TRANSPLANTATION
An increasing number of articles dealing with miRNAs and solid
organ transplantation, including kidney, liver, and lung, sug-
gest their significant role in organ acceptance or rejection and
their usefulness as biomarkers (82, 83). Regarding B cells, sev-
eral miRNAs have been identified in biopsy or peripheral blood
mononuclear cells from patients with antibody-mediated rejec-
tion (AMR) in renal transplantation (84–86). The link between
these miRNAs and B cells is probable, but because B cells can
exercise their function at a distance from the graft and because
other factors participate in the AMR process, further investigation
is required to demonstrate that these miRNAs are really involved.
To our knowledge, we were the first to report miRNA dysreg-
ulation specifically in B cells after transplantation. We reported
the over-expression of miR-142-3p in blood B cells from patients
with operational tolerance, a specific situation where transplant
patients maintain a well-functioning graft having stopped their
immunosuppressive treatment (87). The over-expression of miR-
142-3p in the Raji B-cell line induces the modulation of genes
previously described as associated with renal tolerance, sug-
gesting that it may contribute to the maintenance of tolerance
in B cells. These observations were reinforced by the obser-
vation that miR-142-3p may play a regulatory role in T lym-
phocytes by controlling leukocyte activation (79). In addition,
miR-155 has been shown to contribute to resistance to Ritux-
imab in inducing cell survival signals through AKT and myeloid
cell leukemia sequence 1 (MCL1) since its inhibition resulted
in a significant decrease in the survival of EBV-positive cells
treated with Rituximab (24). These results indicate that the inhi-
bition of miR-155 could be a valuable approach for treating
EBV-induced PTLD.

Of course, other phenomena not directly related to B cells
could occur during transplantation, including ischemia and reper-
fusion, cellular rejection, and recurrence of the initial disease,
and miRNAs could be associated with these. In renal transplan-
tation, miR-142-5p, shown to be present during chronic AMR,
has been previously indicated as over-expressed in biopsies from
patients with cellular acute rejection (85, 88). Similarly, miR-142-
3p, related to B cells in renal operational tolerance, has been found
to be associated with interstitial fibrosis and tubular atrophy in
urine (87, 89).

B-CELL-RELATED miRNA USEFULNESS IN THERAPY
Since miRNAs can be detected and measured in various body flu-
ids, they may represent ideal non-invasive biomarkers. Among
recent, numerous examples, miR-210 has been proposed as an
urinary biomarker of acute rejection in renal transplantation (48),
miR-142-5p to diagnose chronic AMR in renal allograft (85),
and miR-155 to predict patients with CLL who fail to achieve a
complete response in plasma samples collected before treatment
initiation (90).

As a result, the use of miRNA inhibitors, otherwise known as
antagomirs, may be promising as therapeutic tools. One partic-
ular example is the use of miRNA inhibitor against miR-122, a
liver specific microRNA required by the hepatitis C virus (HCV)
for replication. The use of this miR-122 inhibitor, “miravirsen,”

induced a decrease in HCV RNA levels in a dose-dependent man-
ner in a clinical phase II study (91). Other inhibitors of miRNAs
have been proposed for various diseases and it can be assumed that
B-cell targeting ones will be designed in the future, for example
to impair their production of antibodies. However, the targeted
miRNAs generally have several functions in several different cell
types and while their inhibition could provide powerful reme-
dies, they could also have wide-reaching side-effects and caution
is mandatory.

Finally, it has recently been proposed to use B cells as pro-
ducers and delivers of therapeutic miRNAs in CD8+ T cells (92).
After in vitro transfection of B cells with a plasmid coding for
miR-155, these B cells delivered miR-155 in CD8+ T cells during
antigen cross-priming only (92). The authors suggest this cell-
based strategy could be used in inflammation and autoimmune
diseases.

CONCLUSION
Recent studies have clearly demonstrated that miRNAs are
involved in B-cell development and function. With the current
interest in miRNAs, as well as the renewed emphasis on B-cell
function, notably triggered by the recent discovery of regula-
tory B cells, it seems clear that further discoveries will be made
in the near future. Ideally, theses insights would allow the use
of miRNAs as disease biomarkers, but may also allow modula-
tion of miRNA expression as master gene modulators to cure
B-cell-related immune disorders.
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