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An early increase in endothelial protein C
receptor is associated with excess mortality
in pneumococcal pneumonia with septic
shock in the ICU
Agnès Chapelet1,2,3, Yohann Foucher4, Nathalie Gérard2, Christophe Rousseau5, Olivier Zambon1,
Cédric Bretonnière1, Jean-Paul Mira5,6, Béatrice Charreau2,3 and Christophe Guitton1,2,7*

Abstract

Background: This study investigated changes in plasma level of soluble endothelial protein C receptor (sEPCR) in
association with outcome in patients with septic shock. We explored sEPCR for early sepsis prognosis assessment
and constructed a scoring system based on clinical and biological data, in order to discriminate between surviving
at hospital discharge and non-surviving patients.

Methods: Clinical data and samples were extracted from the prospective “STREPTOGENE” cohort.
We enrolled 278 patients, from 50 intensive care units (ICUs), with septic shock caused by pneumococcal
pneumonia. Patients were divided into survivors (n = 194) and non-survivors (n = 84) based on in-hospital mortality.
Soluble EPCR plasma levels were quantified at day 1 (D1) and day 2 (D2) by ELISA. The EPCR gene A3 haplotype
was determined. Patients were followed up until hospital discharge. Univariate and multivariate analyses were
performed. A scoring system was constructed using least absolute shrinkage and selection operator (lasso) logistic
regression for selecting predictive variables.

Results: In-hospital mortality was 30.2% (n = 84). Plasma sEPCR level was significantly higher at D1 and D2 in non-
surviving patients compared to patients surviving to hospital discharge (p = 0.0447 and 0.0047, respectively). Early increase
in sEPCR at D2 was found in non-survivors while a decrease was observed in the survival group (p = 0.0268). EPCR A3
polymorphism was not associated with mortality. Baseline sEPCR level and its variation from D1 to D2 were independent
predictors of in-hospital mortality. The scoring system including sEPCR predicted mortality with an AUC of 0.75.

Conclusions: Our findings confirm that high plasma sEPCR and its increase at D2 are associated with poor
outcome in sepsis and thus we propose sEPCR as a key player in the pathogenesis of sepsis and as a
potential biomarker of sepsis outcome.
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Background
Severe sepsis is a frequent and serious disease in inten-
sive care units (ICUs). It remains a leading cause of
death in critically ill patients, despite efforts to improve
patient outcomes [1]. Septic shock is associated with sys-
temic inflammation and an exacerbated procoagulant
state mediated by the tissue factor (TF) pathway. The
protein C (PC) anticoagulant pathway is a major system
that prevents coagulation, and its impairment influences
outcome in sepsis. This pathway involves two soluble
proteins: PC and protein S, and two endothelial recep-
tors: thrombomodulin (TM) and the endothelial protein
C receptor (EPCR). EPCR (CD201) is a 46-kDa type I
transmembrane protein that is expressed mainly on the
luminal surface of endothelial cells from large vessels and
which is homologous to major histocompatibility complex
class I/CD1 family proteins [2–4]. PC binding to mem-
brane EPCR (mEPCR) increases PC activation by
thrombin-TM complexes [3]. Activated protein C (APC)
has anticoagulant effects enhanced by EPCR, but also ex-
hibits anti-inflammatory effects via the protease-activated
receptor 1 (PAR 1) [5, 6], and anti-apoptotic effects [7, 8]
requiring binding to mEPCR in lipid rafts. Membrane
EPCR also binds with factor VII on endothelial cells [9].
Disruption of the EPCR gene in mice causes placental
thrombosis and embryonic lethality, confirming a key role
for EPCR in controlling coagulation [10].
Soluble EPCR (sEPCR) levels have been described in hu-

man plasma during sepsis [11]. Soluble EPCR is generated
by ectodomain shedding [12] mediated by TACE/ADAM17
[13] and/or by alternative messenger RNA (mRNA) splicing
in haplotype-A3–carrying endothelial cells [14]. Soluble
EPCR binds both PC and APC with an affinity similar to
mEPCR [15]. While the role of mEPCR is clearly
anti-thrombotic and anti-inflammatory, the function of the
circulating sEPCR remains unclear. The binding of APC to
sEPCR interferes with binding of APC to phospholipids
and hinders factor Va inactivation. Furthermore, binding of
PC to sEPCR enhances APC generation, suggesting a
pro-coagulant effect of sEPCR [16]. Otherwise, in inflam-
matory diseases, such as systemic lupus erythematosus, the
release of sEPCR contributes to renal lesions [17].
In a preliminary study, we reported that sEPCR plasma

level was stable in a cohort of 40 ICU patients with se-
vere sepsis [18]. However, we found that patients with a
poor outcome at D28 had an early significant increase in
sEPCR level at D2 post admission. This finding sug-
gested that a rise in sEPCR level at D2 might be corre-
lated with a poor prognosis and that sEPCR could
provide an early biological marker of sepsis outcome.
Our findings also strongly suggested an implication of
elevated sEPCR in the pathogenesis of severe sepsis. The
present study was conducted firstly to further evaluate
the relationship between quantitative change in sEPCR

level and mortality in a large and homogeneous cohort of
patients with septic shock. Our experiments included the
quantification of plasmatic sEPCR, at D1 and D2, together
with the determination of EPCR genotypes in septic pa-
tients. We hypothesized that patients with early increase
in sEPCR within 48 h of hospital admission would have a
higher risk of in-hospital death compared to patients with-
out such an increase. The secondary aim was to propose a
prognostic scoring system for patients admitted to the
ICU for septic shock, based on both clinical and biological
variables, in order to discriminate between survivors at
hospital discharge and non-survivors.

Methods
Study population
Data and biologic samples were extracted from the pro-
spective STREPTOGENE cohort, a multicentric prospect-
ive observational French study conducted in ICUs from
50 hospitals in France. Between December 2008 and
February 2012, 632 patients with severe pneumococcal
pneumonia and admitted to the intensive care unit were
included in the STREPTOGENE study. Patients had no
previous risk factors for pneumonia. Septic shock was de-
fined as the need of norepinephrine during the initial care.
Within this cohort, 389 patients had septic shock. Among
them, 111 (28%) were excluded due to lack of blood sam-
ples at D1. The initial cohort included 278 patients (Fig. 1).
For all patients, plasma sEPCR at D1 was measured by
ELISA. We secondarily excluded patients without blood
samples at D2 or without DNA samples. A total of 9
patients died before D2, blood samples at D2 were
missing in 8 patients and DNA samples were missing in
19 patients. Among the 278 patients initially included
in our study, 248 patients surviving at D2 were in-
cluded in the final analysis.
Baseline characteristics of the patients were collected,

including demographic information, severity score at ad-
mission, Simplified Acute Physiology Score (SAPS) II,
Sepsis-related Organ Failure Assessment (SOFA), and
comorbidities. DNA and blood samples at D1 and D2
collected and stored for the STEPTOGENE study were
used in this ancillary study.

Quantification of plasma sEPCR by ELISA
Blood samples were collected on admission to ICU
(D1) and on the following day (D2). Samples were cen-
trifuged at 3500 rpm for 10 min at room temperature
and stored at − 80 °C until use. Quantification of
sEPCR in plasma was performed using ELISA kits
(Asserachrom, Stago-Diagnostica, France) according to
the manufacturer’s recommendations. All assays were
performed in duplicate.
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DNA isolation and EPCR genotyping
EPCR genotyping was determined for all patients to
identify the occurrence of the EPCR A3 allele, previously
reported to affect baseline sEPCR plasma level [16].
Genomic DNA was purified from blood using PLC Mag-
naPure Compact (Roche Diagnostics, Meylan, France),
diluted at a final concentration of 5 ng/mL, and stored
at − 80 °C. PROCR gene polymorphism was determined,
by allelic discrimination using quantitative PCR. The
EPCR gene was screened using probes (rs867186, Life
technologies, Carlsbad, CA, USA) targeting the single
nucleotide polymorphism 6936 (A/G), characterizing the
A3 allele of the EPCR gene. Sequencing was performed
on Abi7900 (Applied Biosystems Applied Biosystems,
Foster City, CA USA). The analyses were performed
using SDS 2.4™ software. Allelic frequencies were calcu-
lated and expressed as percentages of patients carrying
at least one EPCR A3 allele.

Research ethics
The protocol of the study was approved by the institu-
tional medical research review board of Saint Louis
Hospital, Paris, France, department of Health and
Human development and by the Commission Nationale
Informatique et Liberté (CNIL). Written informed con-
sent was obtained from the patient or surrogate, before
inclusion, for the collection and storage of blood, cyto-
kine assays, isolation of DNA and determination of gene
polymorphisms. All data were anonymised. Tubes with
anonymous barcodes were used for DNA collection
(ABgene, Life technologies).

Statistical analyses
The means ± standard deviation (SD) were calculated
for continuous variables with a normal distribution. The
number of patients in each category and the correspond-
ing percentages were detailed for categorical variables.
Crude comparisons were performed using the unpaired
and two-sided Student t test for continuous variables,
and chi-square statistics for categorical ones.
The principal endpoint was the in-hospital mortality. To

construct the corresponding prognostic scoring systems,
clinical variables or biomarkers levels were selected using
least absolute shrinkage and selection operator (lasso) lo-
gistic regression [19]. All the variables were normalized.
The following variables were defined as possible candi-
dates: gender, septicaemia, body mass index, McCabe scale,
A3 phenotype, age, Fine’s score, SOFA score, and sEPCR
level at D1 and D2. The tuning parameter, i.e. the number
of selected explicative variables, was estimated by maximis-
ing the 10-fold cross-validation criteria. An advantage of
this method is to avoid the selection of the explicative vari-
ables by using the p value, which does not constitute a
relevant indicator of prognostic capacities [20, 21]. The
prognostic score was the sum of the product between
the regression coefficients and the explicative variables,
i.e. the linear predictor of the lasso logistic regression.
The 0.632+ bootstrap estimator of the corresponding
ROC curve was used in order to avoid over-fitting and
for internal validation, as we previously proposed [22].
Statistical analyses were performed using R version
3.0.1 [23]. The package penalized was used for the lasso
regression and the package ROC632 for the bootstrap
0.632+ estimations.

Fig. 1 Study flow chart. D1, day 1; D2, day 2
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Results
Description of the cohort
Demographic and clinical characteristics of the cohort at
D1 (n = 278) are summarized in Table 1 according to
in-hospital mortality. The ICU mortality was 28.0% (n = 78)
and in-hospital mortality was 30.2% (n = 84). Mean age was
64.4 ± 15.5 years, and 60.8% were male. The mean
admission SAPS II score was 52.9 ± 17.7 and the mean
SOFA score at D1 was 9.8 ± 3.7, the mean Fine score was
143.9 ± 41.5, and the mean duration of ICU stay was 18.5 ±
19.14 days. As expected, many differences between
non-survivors and survivors at hospital discharge have to
be underlined. In particular, patients that died before hos-
pital discharge were older and had significant higher mor-
tality and morbidity scores.

Time course of sEPCR levels at the onset of sepsis, and
influence of EPCR genotype
sEPCR levels and EPCR genetic analysis are reported in
Table 2. Plasma sEPCR levels at D1 were significantly
higher in patients who died before hospital discharge

compared to patients alive at hospital discharge (mean
sEPCR = 102.5 ± 57.9 ng/mL vs 87.5 ± 53.0 ng/mL respect-
ively, p = 0.0447). Similarly, mean sEPCR at D2 was also
higher in the non-survivor group (108.8 ± 63.9 ng/mL vs
84.6 ± 50.1 ng/mL, p = 0.0047). The time course of sEPCR
levels between D1 and D2 further revealed significant dif-
ferences between the two groups. Indeed, an increase in
the mean of sEPCR from D1 to D2 was observed in de-
ceased patients (D2–D1 mean value 4.6 ± 26.9 ng/mL)
while, in contrast, a decrease in patients alive at
hospital discharge was found (D2–D1 mean value − 3.5
± 23.1 ng/mL, p = 0.0268).
In our cohort of 261 genotyped patients, carrying

EPCR haplotype A3 was associated with higher sEPCR
at D1. Patients carrying a single A3 allele displayed ele-
vated sEPCR (mean 159.9 ± 69.52 ng/mL) compared to
non-A3 (81.25 ± 43.77 ng/mL), p < 0.001. Two patients
homozygous (A3+/A3+) for the EPCR A3 allele had an
average sEPCR level of 165.3 ± 60.20 ng/mL similar to
patients who were heterozygous carrying a single A3 al-
lele. However, no statistically significant difference in

Table 1 Population characteristics at day 1 (n = 278)

Population characteristics at day 1
(n = 278)

Cohort
n = 278

Non-survivors
n = 84

Survivors
n = 194

P value

Patient age (years) 64.4 ± 15.5 70.1 ± 14.5 61.9 ± 15.3 <0.0001

Male, n (%) 169 (60.8) 62 (73.8) 107 (55.2) 0.003

Body mass index (kg/m2)a 25.3 ± 5.8 25.2 ± 5.2 25.4 ± 6.1 0.791

McCabe score at day 1, n (%) 252 (90.7) 72 (85.7) 180 (92.8) 0.063

History of:

Cardiac disease, n (%) 138 (49.6) 53 (63.1) 85 (43.8) 0.003

Respiratory disease, n (%) 154 (55.4) 44 (52.4) 110 (56.7) 0.506

Diabetes mellitus, n (%) 58 (20.9) 22 (23.8) 36 (18.6) 0.150

Renal disease, n (%) 17 (6.1) 9 (10.7) 8 (4.1) 0.035

Immunologic disease, n (%) 34 (12.2) 9 (10.7) 25 (12.9) 0.612

Fine’s score 143.9 ± 41.5 163.9 ± 35.3 135.3 ± 41.1 <0.0001

SOFA score day 1 9.8 ± 3.7 11.6 ± 4.1 9.1 ± 3.2 <0.0001

SAPS II 52.9 ± 17.7 62.6 ± 17.2 48.7 ± 16.3 <0.0001

Norepinephrine at admission, n (%) 207 (74.5) 65 (77.4) 142 (73.2) 0.462

Mechanical ventilation day 1, n (%) 199 (71.6) 71 (84 .5) 128 (65.9) 0.002

Renal replacement therapy day 1, n (%) 30 (10.8) 21 (25.0) 9 (4.6) <0.0001

Septicaemia, n (%) 117 (42.1) 38 (45.2) 79 (40.7) 0.484

Hydrocortisone, n (%) 167 (60.1) 59 (70.2) 108 (55.7) 0.023

Drotrecogin, n (%) 41 (14.8) 17 (20.2) 24 (12.4) 0.089

Length of stay (days)

ICU 18.5 ± 19.14 16.7 ± 23.0 19.3 ± 17.2 0.298

Hospital 28.9 ± 26.3 18.7 ± 25.8 33.5 ± 25.3 <0.0001

Description of the population according to the status of patients at hospital discharge: survivors (n = 194) or non-survivors (n = 84). The mean ± standard
deviation was reported for continuous variables. The number of patients in each category and the corresponding percentages are given for categorical variables.
P values were obtained using chi square statistics for qualitative variables and the unpaired and two-sided Student’s t test for continuous ones
SOFA Sepsis-related Organ Failure Assessment, SAPS Simplified Acute Physiology Score
a19 values were missing for body mass index
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EPCR A3 allele carriage was observed between survivors
and non-survivors (12.8% vs 15.5% respectively, p =
0.5804). Thus, carrying the EPCR A3 allele did not consti-
tute a significant predictive factor for survival in our study.
Moreover, no interaction between EPCR genotype and the
association between sEPCR plasma level and septic patient
outcome was significant (p > 0.05). These results suggest
no apparent impact of the EPCR genotype. According to
these data, the sEPCR plasma level could represent a pos-
sible prognostic factor of in-hospital patient survival.

Weight of sEPCR levels in multivariate analysis and
survival prognostic scoring system
First, a multivariate analysis was performed. This analysis
highlighted the following parameters as risk factors: age,
gender, McCabe score, Fine’s score, SOFA, SAPS2, sEPCR
level at D1 and variation in sEPCR values between D2 and
D1 (Table 3). Our findings indicate a significant associ-
ation between high level of sEPCR at D1 and an increased
risk of mortality (OR = 1.95; p = 0.0407). Moreover, the in-
crease in sEPCR from D1 to D2 was also associated with
an increased risk of death (OR = 1.01; p = 0.0323).

Next, to further evaluate the prognostic capacity of
sEPCR we used a mortality scoring system that we previ-
ously described (22). In this scoring system, when the
weight is positive (OR > 1), scoring system increases with
the value of this risk factor (Table 3). Parameters of the
scoring model at D2 (SD-2) for predicting mortality of a
patient with septic shock are detailed in Additional file 1.
Figure 2 shows the area under ROC curve (AUC) associ-
ated with the score (AUC= 0.75). In comparison, sEPCR
level at D1 and its early time course from D1 to D2 taken
as single predictors were associated with an AUC of 0.59
and 0.57, respectively, thus indicating a limited predictive
value.

Discussion
In several studies, sEPCR levels in septic patients were
found to be significantly higher [11, 15], similar to [24–29]
or even lower [25] than in healthy or non-septic controls.
A possible explanation for these discrepancies is the bi-
modal distribution of sEPCR levels related to the A3
haplotype, as this gene polymorphism was associated with
high levels of sEPCR. In a preliminary study, we compared
the sEPCR levels at the time of admission (D1) between

Table 2 sEPCR levels and polymorphism (n = 278)

Global
n = 278

Non-survivors
n = 84

Survivors
n = 194

P value

sEPCR level in plasma (ng/mL)

Day 1, n = 278 92.0 ± 54.9 102.5 ± 57.9 87.5 ± 53.0 0.0447

Day 2, n = 261 a 91.3 ± 55.2 108.8 ± 63.9 84.6 ± 50.1 0.0047

Delta EPCR: day 2 - day 1 −1.3 ± 24.4 4.6 ± 26.9 −3.5 ± 23.1 0.0268

EPCR A3 haplotype, n (%) (n = 259b) 38 (14.7) 10 (12.8) 28 (15.5) 0.5804

Description of soluble endothelial protein C receptor (sEPCR) levels at day 1, day 2, kinetics between day 1 and day 2, and polymorphism EPCR A3 in survivors
and non-survivors
a17 blood samples were missing at day 2 (9 patients died before day 2, 8 sample were missing)
b19 DNA samples were missing (3 patients died before DNA sample was obtained, and DNA sample was missing for 16 patients)

Table 3 Multivariate analysis of the in-hospital mortality and prognostic scoring system at day 2 (n = 248)

Prognostic markers Logistic regression Scoring system

Odds ratio P value 95% CI Weight

sEPCR log at day 1 (ng/mL) 1.95 0.0407 [1.03–3.70] 0.289

delta sEPCR (day 2 - day 1, ng/mL) 1.01 0.0323 [1.00–1.03] 0.269

Age (years) 1.03 0.0586 [1.00–1.05] 0.293

McCabe score at day 1 0.52 0.1833 [0.19–1.37] −0.014

Gender, male versus female 2.02 0.0586 [0.97–4.19] 0.384

Fine’s score (log) 2.94 0.1928 [0.73–11.8] 0.341

SOFA score at day 1 (square) 1.01 0.0199 [1.00–1.01] 0.441

SAPS II 1.02 0.2136 [0.99–1.04] 0.257

The scoring system and the multivariate analysis were based on least absolute shrinkage and selection operator (lasso) logistic regression. The prognostic score
was the sum of the product between the weights and the normalized explicative variables
sEPCR soluble endothelial protein C receptor, SOFA Sepsis-related Organ Failure Assessment, SAPS Simplified Acute Physiology Score
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patients with severe sepsis and healthy patients and we
found no significant difference [18]. However, that study
was based on a small cohort of patients and the impact of
the EPCR genotype was not examined. Additionally, we
reported an early, transient, but significant rise in sEPCR
levels at D2 in patients who did not survive [18]. In
addition, Vassiliou et al. showed that the level of sEPCR at
ICU admission was higher in patients who were originally
non-septic who subsequently became septic compared to
those who did not [28]. Consequently, these data sug-
gested that sEPCR level and its temporal change could
provide an early biological marker of sepsis outcome.
This observational study was designed to investigate fur-

ther the prognostic value of sEPCR in patients with septic
shock and pneumonia. For this purpose, a larger and
homogenous cohort of independent patients (compared to
our preliminary study) was analysed. A major result was
the higher sEPCR level at D1 in non-survivors versus sur-
vivors at hospital discharge. This elevated baseline level of
sEPCR was not the result of different incidence of EPCR
A3 haplotype. We focused our analysis on the early phase
of septic shock (the first 24 h of care) by performing a dy-
namic analysis of the sEPCR levels. Indeed, sepsis is a dy-
namic process that evolves extremely fast, especially in the
most severe forms. A kinetics analysis rather than a static
analysis thus had pathophysiological and clinical meaning.
The results are consistent with this view. A moderate

elevation of around 4.4% in the sEPCR level from D1 to
D2 was observed in patients who subsequently died. In
contrast, a decrease of 4.0% was observed in patients who
survived. Together, these data confirmed the EPCR path-
way as a key biological factor in severe sepsis. Recent stud-
ies reported on parasites (Plasmodium falciparum) from
patients with severe malaria that preferentially bind to
EPCR [29, 30]. These studies represent a breakthrough in
malaria pathogenesis research because they provide a link
between pathophysiological mechanisms and parasite
cyto-adhesion. These data suggest that malaria-associated
loss of EPCR combined with parasite impairment of the
EPCR–APC interaction may promote coagulation, inflam-
mation, and endothelial barrier breakdown. Interestingly,
soluble EPCR shed from endothelial cells by treatment
with the metalloproteinase TNF-α converting enzyme was
shown to block parasite attachment to the vessel wall cells.
Ultimately, these researchers also propose the develop-
ment of new strategies to disrupt the parasite–EPCR
interaction or counteract its effects [31]. Whether similar
mechanisms may occur in sepsis is still unknown.
We also studied the prognostic value of the sEPCR

level at D1 and its course between D1 and D2, inde-
pendently of the most relevant characteristics and scor-
ing systems reflecting patient health state at baseline, i.e.
SOFA, McCabe score, SAPS II, age, and Fine’s score. In
other words, the sEPCR level at D1 and its course

Fig. 2 ROC curve for the scoring system at day 2 (SD-2). The 0.632+ bootstrap estimator was used to evaluate the scoring system SD-2 and to
produce the corresponding ROC curve. The AUC obtained was 0.75. The soluble endothelial protein C receptor (sEPCR) level at day 1 and its time
course from day 1 to day 2 were associated with univariate AUC values of 0.59 and 0.57, respectively
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between D1 and D2 might constitute additional informa-
tion for understanding mortality.
Our study confirms that EPCR A3 haplotype is

strongly associated with sEPCR level in septic patients,
consistent with the recent data reported by Vassiliou et
al. [32]. However, we found no relationship between the
EPCR gene polymorphism and sepsis prognosis. The
genetic polymorphism of EPCR is the primary factor
known to influence the basal levels of sEPCR [16, 32]. In
this cohort the prevalence of EPCR A3 allele was 15%.
These data are consistent with the prevalence described in
the general population [16] and with our previous findings
in a cohort of transplant donors [26]. A first study in the
ICU setting showed an under-representation of the EPCR
A3 allele in patients hospitalized for sepsis [27], suggesting
the need to further investigate the possible involvement of
the EPCR gene variant in the prognosis of sepsis. Vassiliou
et al. recently found, consistent with our findings, that the
distribution of the A3 allele was similar among survivors
and non-survivors [32].
As usual for such an observational study, our study had

several limitations that must be acknowledged. First, caus-
ality cannot be interpreted: soluble EPCR level and vari-
ation of EPCR are significantly associated with mortality
risk, but the direct implication of EPCR and its release as a
pathogenic factor remains to be established. Nevertheless,
these results suggest that in septic shock, an early anomaly
in the regulation of plasma levels of EPCRs although mod-
erate, contrasting with the stability of sEPCR levels, is asso-
ciated with poor outcome. Second, even if we elaborated
an adjusted model taking confounders into consideration,
we could not exclude non-observed confounding factors.
Third, even if we used a statistical method for an internal
validation of its prognostic capacities (AUC= 0.75), the
scoring system we proposed has to be externally validated.
There was also no power analysis, since the cohort was
predefined before the study. Therefore, the biological path-
way of sEPCR has yet to be studied to provide a biological
marker for use in current clinical practice.

Conclusions
Soluble EPCR level at baseline and its early increase
were both significantly associated with in-hospital mor-
tality in a large ICU cohort of patients treated for
pneumococcal pneumonia with septic shock, although
the EPCR genetic polymorphism was not associated with
prognosis in septic patients. This study suggests that the
sEPCR pathway could help us understand poor outcome
in sepsis and thus suggests sEPCR as a key player in the
pathogenesis of sepsis and as a potential biomarker of
sepsis outcome. This last point has to be confirmed by
external validation studies. In addition, the biological
background of this early dysregulation in the release of
sEPCR in sepsis still remains to be explored.

Additional file

Additional file 1: The scoring system and the prognostic score at day 2
to predict in-hospital mortality. The scoring system and the multivariate
analysis were based on lasso logistic regression. The prognostic score
was the sum of the product between the weights and the normalized
explicative variables. (DOCX 26 kb)
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