
HAL Id: inserm-02155932
https://inserm.hal.science/inserm-02155932v1

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genome-wide identification of RETINOBLASTOMA
RELATED 1 binding sites in Arabidopsis reveals novel

DNA damage regulators
Daniel Bouyer, Maren Heese, Poyu Chen, Hirofumi Harashima, François

Roudier, Christian Grüttner, Arp Schnittger

To cite this version:
Daniel Bouyer, Maren Heese, Poyu Chen, Hirofumi Harashima, François Roudier, et al.. Genome-
wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel
DNA damage regulators. PLoS Genetics, 2018, 14 (11), pp.e1007797. �10.1371/journal.pgen.1007797�.
�inserm-02155932�

https://inserm.hal.science/inserm-02155932v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Genome-wide identification of

RETINOBLASTOMA RELATED 1 binding sites in

Arabidopsis reveals novel DNA damage

regulators

Daniel BouyerID
1☯, Maren HeeseID

2☯, Poyu Chen2, Hirofumi HarashimaID
3¤a,

Francois RoudierID
1¤b, Christian GrüttnerID
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Abstract

Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last com-

mon ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA

RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but

is also implicated in developmental decisions, stress responses and maintenance of

genome integrity. Although most functions of pRb-type proteins involve chromatin associa-

tion, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing.

Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-

wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of

Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements,

preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified

targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3

and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched

motifs in the RBR1-marked domains include sequences related to the E2F consensus site

and the MSA-core element bound by MYB3R transcription factors. Following up a key role

of RBR1 in DNA damage response, we performed a meta-analysis combining the informa-

tion about the RBR1-binding sites with genome-wide expression studies under DNA stress.

As a result, we present the identification and mutant characterization of three novel genes

required for growth upon genotoxic stress.
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Author summary

The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its

inactivation is associated with many types of cancer. Since pRb’s first description as a tran-

scriptional repressor of genes important for cell cycle progression, many more functions

have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of

human pRb have been identified in most eukaryotes, including plants, indicating an

ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide

DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabi-
dopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in

cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal

extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved

in a plethora of processes, our dataset provides a valuable resource for researches from dif-

ferent fields. As an example, we used our dataset to successfully identify new genes neces-

sary for growth upon DNA damage exerted by drugs such as cisplatin or the

environmentally prevalent metal aluminum.

Introduction

The first molecular function assigned to the human tumor suppressor Retinoblastoma (pRb)

was that of a transcriptional repressor controlling entry into S-phase. It was shown that pRb

binds and inhibits the function of E2F-DP transcription factors and that phosphorylation of

pRb by CDK-cyclin complexes disrupts this interaction, releasing E2F-controlled genes from

repression [1].

Since then, a wealth of additional functions in cell proliferation, differentiation, environ-

mental response and genome stability have been discovered for the family of pRb related pro-

teins in various organisms [2–5]. To date, more than 200 interactors of human pRb are listed

in the BioGRID database [6], reflecting the multi-functionality of this molecular hub. Although

there is evidence for a role outside the nucleus, e.g. in the cytoplasm to regulate nuclear import

of viral proteins [7] and at mitochondria where pRb seems involved in the control of apoptosis

[8], most functions of pRb-type proteins are chromatin associated [5].

The pRb–E2F module originated before the divergence of the plant and animal lineages,

likely in the last common ancestor of all eukaryotes [9]. While there exists only one pRb homo-

log in C. elegans, i.e. lin-35, there are two homologs, Rbf1 and Rbf2, in Drosophila and in

humans, pRb is member of a small gene family comprising pRb (p105), p107 and p130 [10]. In

the model plant Arabidopsis thaliana, there is only one homolog, termed RBR1 (RETINO-

BLASTOMA RELATED 1) and its loss is female gametophytic lethal [11].

In their function as transcriptional regulators of the cell cycle, pRb-type proteins not only

control G1-S transition in proliferating cells but also operate at other phases, i.e. as repressors

of G2 and M phase genes in response to DNA damage [12] as well as in G0 to control quies-

cence as part of the DREAM complex.

The human DREAM complex consists of DP, pRb-like (p130 or p107), E2F and the Multi-

vulval class B (MuvB) core-complex, comprising five additional proteins, LIN9, LIN37, LIN52,

LIN54, and RBAP48. When cells exit G0 and reenter the cell cycle, the DREAM-complex is

disassembled upon phosphorylation of p130/p107 and the MuvB-core-complex sequentially

associates with other transcription factors, like B-Myb and Fox-M1 to activate different sets of

genes important for subsequent phases of the cell cycle [13,14]. In Drosophila, a homologous

complex, termed dREAM (Drosophila Rbf, E2F2 and Myb-interacting proteins), has been
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characterized but, in contrast to mammals, the fly pRb-type proteins and the only Myb tran-

scription factor have been shown to concomitantly bind the MuvB-core complex [15,16].

Recently, different versions of an ArabidopsisDREAM-like complex were described by

Kobayashi and co-workers and have been implicated in the control of mitotic genes [17]. Ara-
bidopsis contains five three-repeat MYBs (MYB3R), that function as transcriptional activators

and/or repressors of mitosis [17–19]. Since members of both classes of MYB proteins were

found to interact with DREAM components, these data suggest the existence of activating and

repressive DREAM-complexes depending on which MYB3R transcription factor is present

[4].

In addition to its role in controlling progression through the cell cycle, RBR1, like its animal

counterparts [20], is involved in developmental decisions, e.g. by interacting with non-E2F

transcriptions factors such as SCARECROW (SCR) to control asymmetric cell divisions in the

root meristem [21,22] and FAMA during stomata development [22,23]. Furthermore, RBR1

has been attributed a role in promoting the meiotic fate of the megaspore mother cell by

repressing the expression of the stem cell factorWUSCHEL [24].

Like human pRb, which interacts with different chromatin modifiers, such as histone dea-

cetylases and methyltransferases [25], the SWI-SNF complex [26,27], and the Polycomb

repressive complexes (PRC) [28,29], Arabidopsis RBR1 has also been linked to chromatin

modification [30]. For example, RBR1 has been shown to complex with the PRC2 subunits FIE

[31] as well as MSI1 [32], and a RBR1-PRC2 cooperation has been proposed to allow the

switch from late embryogenesis to autotrophic seedling development [33].

Another facet of Arabidopsis RBR1 is its role in DNA damage response (DDR) [34,35],

which involves two different modes of action. On the one hand RBR1 binds to and represses

DDR genes and by that likely links their regulation to activation of E2F and entry into the cell

cycle [34,35]. On the other hand, RBR1 partially co-localizes with γH2AX, a marker for double

strand breaks [34,35], and is required for the recruitment of the DNA repair protein RAD51 to

DNA lesions [34]. In addition to its role at damage-induced double strand brakes (di-DSBs),

RBR1 has also been shown to localize to SPO11-dependent foci in early meiotic prophase,

most likely reflecting processed sites of programmed double strand breaks (p-DSBs), i.e. sites

of cross-over formation [36].

Thus, like its animal homologs, Arabidopsis RBR1 is a multi-functional protein. However,

despite several studies on specific aspects, a comprehensive view of RBR1 action has been pre-

cluded by the lack of genome-wide DNA binding data. Using an optimized ChIP protocol on

Arabidopsis cell culture material, we now generated the first comprehensive collection of direct

RBR1 targets. These data allowed us to obtain insights into the properties of RBR1 binding in

mitotically active cells revealing the localization of RBR1 to genes and transposable elements

(TEs). Furthermore, we then used this dataset to identify three new genes to be required for

growth under genotoxic stress providing functional evidence for the power of our genome-

wide study.

Results

Genome-wide RBR1-binding characteristics

One likely reason for the lack of genome-wide RBR1-ChIP data is the indirect binding of

RBR1 to DNA, i.e. via E2F and other transcription factors/chromatin modifiers. To close this

gap, we introduced several changes to our standard plant ChIP protocol [37]. Starting out

from liquid nitrogen ground tissue, we performed a double fixation step using Di(N-succini-

midyl) glutarate (DSG) followed by formaldehyde to fix protein-protein- as well as protein-

DNA interactions, a strategy successfully applied to improve ChIP results in human cell lines

Genome-wide RBR1 binding sites in Arabidopsis
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[38]. While the cross-linker Ethylene glycol bis(succinimidyl succinate) (EGS), has been used

in ChIP experiments of the transcription factor CRY2 in Arabidopsis [39], we found DSG, a

different length cross-linker, to work best for RBR1 among several long-range cross-linkers

tested. Another important change to the standard protocol is the use of a douncer, which

greatly enhances the release of nuclei prior to chromatin purification (S1A Fig, Material and

Methods).

The protocol was applied to two replicates of an exponentially growing Arabidopsis cell cul-

ture (MM2d cells, S1B Fig) [40] using a RBR1-specific antibody [41]. ChIP signal to noise ratio

and local resolution was high as verified by testing known RBR1 targets as well as negative con-

trols by qPCR (S1C Fig). When analyzed on a whole genome level by pyro-sequencing, both

ChIP replicates showed highly significant overlap (Fig 1, S2 Fig).

RBR1-bound domains were not only found to be associated with genes but also with trans-

posable elements (TEs, Fig 1A). While in both replicates RBR1-binding is mainly found in the

Fig 1. Characteristics of RBR1-marked domains. (A) Position of domains (= genomic regions) marked by RBR1 with respect to genes and transposable elements

(TEs). Replicate number is given in brackets. Full overlap = domain fully overlaps gene/TE; included = domain is included in gene/TE; 5’(-150) = domain overlaps 5’

of gene/TE or overlaps region 150 bp before the gene/TE; 3’(-150) = domain overlaps 3’ of gene/TE or overlaps region 150 bp after the gene; no overlap = domain

does not belong to any other class. (B) The overlap of both RBR1-ChIP replicates is highly significant and defines a core set of 937 genes and 475 TEs bound by RBR1

(Genes: P(X> = 937) = 0�; TEs: P(X> = 475) = 0�). P values marked by an asterisk (�) were below the calculation limits of the software (highly significant). (C) Meta-

analysis showing the distribution of RBR1-peaks with respect to genes. Each gene was divided in 50 bins (grey background), the 1 kb up- and downstream regions are

shown, divided in 100bp per bin (white background). (D) Meta-analysis showing the distribution of RBR1-peaks with respect to TEs. Each TE was divided in 50 bins

(grey background), the 1 kb up- and downstream regions are shown, divided in 100bp per bin (white background).

https://doi.org/10.1371/journal.pgen.1007797.g001
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5’ region of genes, the marking of TEs does not follow an evident pattern (Figs 1A, 1C and 1D,

S2 Fig). A meta-gene profile analysis revealed that the peak of RBR1-binding mostly lies within

200 bp upstream of the transcriptional start of genes, but is also often found within the 5’ end

of the transcribed region (Fig 1C). For further characterization of the RBR1-targeted loci, we

used the overlap of both replicates (Fig 1B, S1 Table), i.e. a total of 937 genes and 475 transpo-

sons representing a robust core set of RBR1-bound elements. Since in other organisms pRb-

type proteins have been shown to be associated with origins of replication (ORI) [42,43], we

related our data to an ORI set of Arabidopsis [44]. While there is a small, but still significant

overlap between gene-associated ORIs and our RBR1-gene set (P(X> = 66) = 3.24E-05), this is

not the case for TEs (P(X> = 1) = 0.452, S3 Fig).

RBR1 binds DNA-transposons

When we addressed the binding of RBR1 to TEs in detail, a clear overrepresentation of DNA-

transposons was found while retrotransposons were nearly absent (Fig 2A). At the level of

individual TE families, we found a more than 10-fold enrichment of Simplehat1, Simplehat2,

Simpleguy1, Arnoldy1 and Arnoldy2 in the RBR1 dataset when compared to the whole genome

frequency (Table 1). These families are all Miniature Inverted–Repeat TEs (MITEs), i.e. very

short elements of the non-autonomous type, which do not carry any ORF. Unless inserted

into the transcribed region of another gene, we assumed these elements to be transcriptionally

silent. Indeed, none of the MITEs of our list of RBR1-bound TEs showed clear transcriptional

activity in the wildtype or was significantly upregulated in ddm1 ormet1mutants in a recent

whole genome transcriptional study of TEs [45] (S2 Table).

We next asked if RBR1-marked MITEs, when inserted inside or close to a gene, would neces-

sarily influence that gene’s expression. However, neither AT1G65985, a gene that carries a Simple-
guy1 transposon (AT1TE80690) in the second intron, nor AT1G60020, where a Simplehat2
transposon (AT1TE72980) is inserted into the upstream-region, showed upregulation in hypo-

morphic mutants of RBR1 (rbr1-2, Fig 2B–2D). In line with this, we do not see enrichment of

RBR1-bound TEs in proximity of genes compared to the whole genome TE dataset (S3 Table).

RBR1 controls the VANB ORF of the VANDAL21 transposon Hiun
Among the significantly overrepresented RBR1-bound TE-families, there is only one autono-

mous DNA-transposon family, VANDAL21. Its RBR1 decorated members, including the well-

characterized TEHiun [46], show transcriptional activity which is significantly upregulated in

ddm1 andmet1mutants [45] (S2 Table).Hiun has been show to carry 3 ORFs, VANA, VANB
and VANC [46] (Fig 2E). VANA encodes a protein with high sequence similarities to MURA-

type transposases and VANC functions as a DNA demethylation factor implicated in the

escape ofHiun from epigenetic silencing. Interestingly, the RBR1-peak marks the upstream

region of VANB (Fig 2E) and an analysis of VANB-expression showed a significant upregula-

tion in rbr1-2mutants in comparison to the wildtype (Fig 2B). So far, a biological function has

not yet been assigned to VANB. However, our observation that this ORF is under RBR1 con-

trol suggests a possible connection to the cell cycle and/or cell differentiation.

E2F-consensus site enrichment in RBR1-bound TEs

A motif analysis of the RBR1 bound domains associated with TEs using the MEME-Chip soft-

ware [47] detected three highly overrepresented motifs (Fig 2F, see S1 Appendix for corre-

sponding probability matrices). The most enriched motif (TE-motif 1) fits the consensus

sequence described for the Arabidopsis E2F-transcription factor family, i.e. WTTSSCSS, where

Genome-wide RBR1 binding sites in Arabidopsis
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W stands for A or T and S stands for C or G [48] (S4A Fig). Matches to this more degenerate

consensus motif were subsequently found in 77% of all RBR1-targeted TE associated domains.

In contrast to genes, the transposon-associated RBR1-preaks are often broad, sometimes

overlapping the entire TE (S2B Fig). This finding is in accordance with the observation that

Fig 2. RBR1 binding to TEs. (A) Pie diagram displaying TE distribution among the four main transposon classes in the entire Arabidopsis genome (left) and the

RBR1-ChIP data (right). DNA transposons are highly overrepresented among TEs bound by RBR1 while retrotransposons are underrepresented (DNA transposon: P

(X> = 250) = 2.17e-19, Helitron: P(X> = 205) = 0.264, LTR-retrotransposon: P(X< = 9) = 4.28e-32, non-LTR-retrotransposon: P(X< = 11) = 2.68E-05). (B) qRT-PCR

analyses showing relative expression of AT1G60020, AT1G65985 and VANB (AT2G2349) in the inflorescences of rbr1-2mutants compared to the wildtype. RAD51 is

included as a positive control. Significant differences to the wildtype are marked by an asterisk (p<0.05). (C-E) Genome browser views showing RBR1-ChIP signals

from sample 1 (RBR1-s1) and sample 2 (RBR-s2) associated with different TEs. (C) A Simpleguy1 transposon inserted into the second intron of AT1G65985. (D) A

Simplehat1 transposon inserted directly 5’ of AT1G60020, an ORF belonging to a neighboring transposon (ATCOPIA5). (E) VANDAL21 transposonHiun containing

three ORFs (VANA, VANB, VANC). Note the RBR1 peak upstream of VANB. (F) DNA motifs detected by a MEME-ChIP analysis in the TE-associated RBR1-domains

(E-value� 0.01). Motifs were discovered by MEME and DREME and clustered by similarity. Only the most significant motif per cluster is shown.

https://doi.org/10.1371/journal.pgen.1007797.g002
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transposon-associated E2F-sites are frequently organized in a microsatellite structure [49].

Consistently, when we quantify the number of WTTSSCSS motifs per RBR1-bound TE associ-

ated domain, we see an average of 8.6 and a median of 6 motifs per WTTSSCSS bearing

domain, confirming a repetitive organization (Table 2). For comparison, the average of

WTTSSCSS occurrences is 1.9 with a median of 1 in gene-associated domains.

To follow up the question if clustering is specific for TE-motif 1, we performed a MCAST-

analysis (Motif Cluster Alignment and Search Tool-analysis) including all three overrepre-

sented motifs. A total of 218 clusters were identified in the RBR1-marked TE associated

domains 22 of which contained only TE-motif 1, while pure TE-motif 2 or TE-motif 3 clusters

occurred merely once. In most clusters however all 3 motifs were present in a variety of differ-

ent layouts (S2 Appendix).

RBR1-bound genes in proliferating cells

The S-Phase genes PCNA1, ORC3, ORC1A,MCM5 andMCM2, the DNA repair genes RAD51
and BRCA1 as well as the cyclin-dependent kinases CDKB1;1 and CDKB1;2 have been shown

to be RBR1 targets by gene specific RBR1-ChIP-qPCR experiments [23,24,33–35,50,51] and all

of them are present in our core dataset of 937 genes (Fig 1B, S1 Table) highlighting the quality

of the RBR1-ChIP result.

To get a whole genome view on RBR1-controlled processes in proliferating cells, we per-

formed GO-term enrichment studies of the RBR1-bound genes. In agreement with an evolu-

tionary conserved role of pRb-type proteins [5,52], several analyses using different algorithms

Table 1. TE-family distribution of RBR1 bound domains. Only families having five or more hits in the RBR1-ChIP are shown, more than 10-fold overrepresented TE-

families are listed in bold face. P value calculations are based on hypergeometric distribution, Bonferroni correction was used to adjust for multiple testing.

TE-family TE super-family Total genome

(31095)

RBR1-ChIP

(475)

% RBR1-ChIP % total P(X> = RBR1-ChIP) Bonferroni-corrected

P value

SIMPLEHAT1 DNA/HAT 56 22 25.72 9.13E-26 1.19E-24

SIMPLEGUY1 DNA/Harbinger 116 36 20.32 4.63E-37 6.02E-36

ARNOLDY2 DNA/MuDR 288 60 13.64 6.73E-50 8.75E-49

SIMPLEHAT2 DNA/HAT 73 12 10.76 1.11E-09 1.44E-08

ARNOLDY1 DNA/MuDR 237 38 10.50 2.02E-27 2.63E-26

VANDAL21 DNA/MuDR 64 5 5.11 2.96E-03 3.85E-02

HELITRONY3 RC/Helitron 1399 88 4.12 4.41E-30 5.73E-29

ATENSPM2 DNA/En-Spm 114 5 2.87 3.09E-02 4.02E-01

BRODYAGA1 DNA/MuDR 251 5 1.30 3.38E-01 1

ATREP15 RC/Helitron 1003 16 1.04 4.66E-01 1

BRODYAGA2 DNA/MuDR 525 8 1.00 5.52E-01 1

ATREP10D RC/Helitron 1295 18 0.91 6.92E-01 1

ATREP3 RC/Helitron 1439 19 0.86 7.74E-01 1

https://doi.org/10.1371/journal.pgen.1007797.t001

Table 2. WTTSSCSS occurrences in RBR1 bound domains.

WTTSSCSS occurrences TE associated domains Gene associated domains

average 6.66 1.18

average of domains with at least one motif 8.62 1.88

median 4 1

median of domains with at least one motif 6 1

maximum 42 20

https://doi.org/10.1371/journal.pgen.1007797.t002
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showed highly significant enrichment of GO terms like cell cycle, DNA repair, DNA replication
and chromatin organization (e.g. Table 3).

We also compared our RBR1-ChIP data with published gene lists covering different areas

of interest (S5 Fig, S4 Table). These comparisons revealed that more than two-thirds of the

Arabidopsis core replication machinery show RBR1-binding in our assay as well as more than

one third of the main cell cycle genes, including RBR1 itself (S5A Fig and S5B Fig). A little less

pronounced but still highly significant, is the overlap with genes involved in DNA repair and

chromatin organization (S5C Fig and S5D Fig).

When we compared RBR1-bound loci with previously published RBR1 RNAi transcrip-

tomes, there was considerable overlap with genes upregulated upon RBR1 depletion (Fig 3A).

Almost half of the genes upregulated in roots of a RBR1-RNAi line in which an antisense

RNA is specifically expressed in the root meristem [35], are bound by RBR1 in cell culture.

Also the overlap with transcriptome data from young leaves using an inducible RNAi con-

struct against RBR1 [53] is highly significant (roots, P(X> = 38) = 1.126e-33; young leaves,

P(X> = 122) = 5.516e-39). For the latter dataset, representing a time-course after RNAi induc-

tion, the overlap is mainly seen with genes upregulated at 12 and 24 hours after RNAi induc-

tion (hai) but only marginally with the 3 and 6 hai-datasets (Fig 3B). Thus, it apparently takes

more than 6 hours till RBR1 silencing and subsequent upregulation of direct RBR1 targets

becomes evident.

Taken together, these analyses indicate that our data are a reliable whole genome represen-

tation of RBR1-controlled genes in mitotically active cells, covering the area of cell cycle, espe-

cially replication, DNA repair and chromatin organization and provide a valuable resource for

further studies.

Table 3. GO-Term enrichment analysis of RBR1 bound genes.

PANTHER GO-Slim (Biological Process) REFLIST (27352) RBR-ChIP in

REFLIST (922)

Fold enrichment P value (Bonferroni correted)

DNA metabolic process 396 91 6.82 2.16E-43

cell cycle 786 111 4.19 6.45E-34

DNA repair 211 56 7.87 3.24E-29

DNA replication 145 46 9.41 5.42E-27

nucleobase-containing compound metabolic process 2544 184 2.15 1.10E-20

mitosis 303 52 5.09 1.15E-18

chromatin organization 194 40 6.12 8.53E-17

cellular process 6108 305 1.48 8.53E-12

chromosome segregation 84 23 8.12 9.20E-12

DNA recombination 60 19 9.39 1.20E-10

organelle organization 597 55 2.73 1.02E-08

cellular component organization 1048 75 2.12 3.14E-07

nitrogen compound metabolic process 1827 108 1.75 2.78E-06

primary metabolic process 6057 271 1.33 3.14E-05

cellular component movement 163 21 3.82 5.76E-05

cellular component organization or biogenesis 1341 81 1.79 8.72E-05

meiosis 48 11 6.8 1.93E-04

regulation of cell cycle 97 15 4.59 3.14E-04

response to stress 718 49 2.02 7.83E-04

metabolic process 7375 304 1.22 5.72E-03

https://doi.org/10.1371/journal.pgen.1007797.t003
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Common targets of RBR1, E2F and MYB3R transcription factors

In cell cycle regulation, RBR1, like pRb-type proteins in other organisms, has been shown to

complex with E2F and MYB transcription factors [17,51,54]. Hence, we next compared the tar-

gets of these transcriptional regulators with those of RBR1. Since RBR1 is best known as a

repressor of E2F-controlled genes, we first related our dataset to several published E2Fa target

datasets (see below) and genes having the E2F-binding consensus WTTSSCSS within 400 bp

upstream of their translational start site (Fig 3C and S6 Fig). We chose 400 bp upstream of the

start codon as a reasonable distance since up to that limit the WTTSSCSS motif was shown to

be overrepresented in a group of E2Fa-DPa upregulated genes [48]. For non-protein coding

genes 400 bp upstream of the beginning of the gene were used. The E2Fa datasets in our com-

parisons included two transcriptional datasets from seedlings containing genes with increased

transcription upon E2Fa-DPa over-expression [48,55], data from technically diverse E2Fa

chromatin purification experiments using cell culture (ChIP, Chromatin Affinity Purification

(ChAP) and Tandem Chromatin Affinity Purification (TChAP)) [56] as well as results of a

DNA affinity purification sequencing approach (DAP) from young leaves [57].

Several conclusions can be drawn from this comparative analysis: First, the overlap of

RBR1-targets with E2Fa-DP responsive genes (S6B Fig and S6C Fig) as well as with genes

showing direct E2Fa association (ChIP, ChAP, TChAP and DAP, Fig 3C, S6A Fig and S6D

Fig) is very large, in accordance with an important role of E2F transcription factors in RBR1

targeting. Second, the WTTSSCSS site on its own, even if positioned in the 5’ region of a gene

is not sufficient for RBR1 binding as only a fraction of all genes having a WTTSSCSS motif

within 400 bp up-stream of the start codon were associated with RBR1 in our ChIP experi-

ment. Yet, this is similar for E2Fa target genes (Fig 3C and S6 Fig) as noticed before [48,55–

57]. The third general observation is, that RBR1 as well as E2Fa also bind to genes that do not

contain a consensus WTTSSCSS site in their 5’ region, indicating that binding can occur to a

more degenerate or even completely different motif (see below). Finally, there are WTTSSCSS

containing, RBR1-bound genes which are apparently not regulated by E2Fa, possibly reflecting

Fig 3. Overlap of RBR1-ChIP with E2F-ChIP/ChAP/TChAP and RBR-RNAi data. (A) Highly significant overlap of RBR1-bound genes with genes

de-regulated in RBR1-RNAi lines as published by Horvath et al. ([35] up roots, P(X> = 38) = 1.171329E-33; down roots, P(X> = 3) = 1.97E-02) and

Borghi et al. ([53] up young leaves, P(X> = 122) = 6.91E-39; down young leaves, P(X> = 26) = 8.07E-01). Transcriptional de-regulation was monitored

using the Arabidopsis Ath1-Chip. For comparison, RBR1-ChIP data were therefore reduced to genes present on the Ath1-Chip. (B) Comparison of the

RBR1-dataset with a time course of genes upregulated after RBR1-RNAi induction in young leaves [53] indicates that the majority of RBR1 responsive

genes shows upregulation later than 6 hours after induction (hai) of silencing. (C) Overlap of RBR1-bound genes with the top 200 E2Fa-bound genes

identified by ChIP, Chromatin Affinity Purification (ChAP) and Tandem Chromatin Affinity Purification (TChAP) published by Verkest at al. ([56] P

(X> = 185) = 3.03E-223) and with genes showing an E2F-binding consensus site (WTTSSCSS) within 400 bp up-stream of the START-codon or

beginning of the gene for non-protein coding genes (P(X> = 375) = 1.33E-106).

https://doi.org/10.1371/journal.pgen.1007797.g003
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a dependency on the developmental context and/or control by other members of the E2F

family.

In a second set of comparative analyses, we related our RBR1-ChIP with whole genome ChIP

data for MYB3R3, a repressive MYB-transcription factor that has recently been shown to be part

of a plant DREAM-like complex (Fig 4A) [17]. Notably, more than half of the MYB3R3 gene tar-

gets also exhibit RBR1 binding and almost a quarter bind E2Fa in addition to RBR1 based on an

E2Fa dataset from Verkest et al. [56]. A meta-analysis locating the position of RBR1 binding with

respect to the center of E2Fa and MYB3R3 bound sites, revealed peaks centered around the same

position (S7 Fig), which is in accordance with all three proteins being part of a DREAM complex

regulating the same genes. Although there is a weak preference of MYB3R3 for M-Phase associ-

ated genes (MYB3R3: P(X> = 66) = 3.78E-52; RBR1: P(X> = 48) = 1.38E-15) and RBR1 binding

is slightly more pronounced for S-Phase associated genes (MYB3R3: P(X> = 30) = 1.03E-14;

RBR1: P(X> = 58) = 7.88E-24), the general picture is that both MYB3R3 and RBR1 bind to and

potentially control S- as well as M-Phase genes (Fig 4B and 4C).

Next, we performed a GO-term enrichment analysis of the genes bound by RBR1 and

MYB3R3 (RBR1/MYB3R3-overlap), by RBR1-only and by MYB3R3-only (S8 Fig). This

revealed an enrichment of the GO-terms DNA replication, chromatin organization, chromo-
some segregation, DNA recombination, DNA repair andmitosis in the RBR1-only and in the

RBR1/MYB3R3-overlap groups while of these GO-terms onlymitosis is enriched in the

MYB3R3-only class (S8B Fig). Furthermore, when we compared these three gene sets with

genes upregulated in amyb3r1 myb3r3 myb3r5 triple mutant [17], we saw preferential overlap

with the MYB3R3-only group (S8A Fig). Thus, there seems to be a sub-class of mitotic genes

under MYB3R control that are not co-repressed by RBR1, an example being the cytokinesis

specific syntaxin KNOLLE [58] (S2C Fig).

Enriched motifs in gene-associated RBR1-ChIP peaks

Since not all RBR1-bound genes appeared to be targets of E2F and/or MYB3R3 (see above), we

performed a search for overrepresented motifs in our RBR1-ChIP data. A MEME-ChIP

Fig 4. Characterization of MYB3R3- and RBR1-bound genes. MYB3R3- and RBR1-bound genes in comparison with E2Fa-bound genes ((A) Verkest et al. [56]),

core replication genes ((B) Shultz et al. [136]) and S-phase or M-phase associated genes ((C) Menges et al. [137]). Transcriptional upregulation in (C) was monitored

using the Arabidopsis Ath1-Chip. For comparison, RBR1-ChIP data in (C) was therefore reduced to genes present on the Ath1-Chip. Overlap MYB3R3–RBR1: P

(X> = 207) = 1.90E-217. Overlap MYB3R3–E2Fa: P(X> = 106) = 2.82E-134. Overlap MYB3R3–core replication: P(X> = 20) = 6.30E-24. Overlap RBR1–core

replication: P(X> = 44) = 4.99E-55. Overlap MYB3R3–S-phase associated genes: P(X> = 30) = 1.03E-14. Overlap RBR1–S-phase associated genes: P(X> = 58) =

7.88E-24. Overlap MYB3R3–M-phase associated genes: P(X> = 66) = 3.78E-52. Overlap RBR1-M-phase associated genes: P(X> = 48) = 1.38E-15.

https://doi.org/10.1371/journal.pgen.1007797.g004
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analysis with standard settings identified six motif-clusters. The most significantly enriched

motif of each cluster is shown in Fig 5 (gene-motif 1–6, see S1 Appendix for corresponding

probability matrices).

To estimate the genome-wide frequency of these motifs as well as the distribution among

the MYB3R3- and/or RBR1-marked protein coding genes, we performed a FIMO-analysis

(FIMO, Find Individual Motif Occurrences) [59] using 400bp upstream of the start codon as

target sequences. Since FIMO counts all individual motif occurrences, we also clustered over-

lapping sites and summed up the clusters reducing the number of counts especially for repeti-

tive motifs like gene-motif 1 and gene-motif 3 (Table 4).

This analysis showed that sequences matching the repetitive motifs 1 and 3 occur at high

frequency within 400 bp upstream of the translational start of genes on a genome-wide level.

Gene-motif 1 strongly resembles the so-called GAGA-motif (see S4 Fig for motif alignments),

which has been described as an element of PREs (polycomb responsive elements) in animals

[61,62] and plants [63,64] while gene-motif 3, also named translocon1-motif (TL1, GAAGAA-

GAA), has been shown to be bound by TBF1, a heat-shock factor-like protein associated with

the expression of defense response genes [65]. Whereas RBR1 function has not yet been docu-

mented for drought stress or ABA-signaling, processes associated with the less frequent gene-

motif 4 (ACGTGKC) [66,67], a very similar motif has been found enriched in plant PREs as

well [64] and related to a motif called G-box (CACGTG). A third match to motifs described as

relevant for PREs is gene-motif 5, which resembles the so-called telobox (AAACCCTAA) [64].

In addition, teloboxes, which consist of 1.3 units of the Arabidopsis telomere repeat, are

enriched in promoters of components of the translational machinery and can be bound by

Fig 5. Overrepresented motifs in gene-associated RBR1-bound domains. The analysis was done using MEME-ChIP

(E-value� 0.01). Motifs were discovered by MEME and DREME and clustered by similarity. Only the most significant

motif per cluster is shown.

https://doi.org/10.1371/journal.pgen.1007797.g005
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AtPurα [68]. Noteworthy, complex formation of AtPurα and E2Fa has been documented in

Arabidopsis [69] and the mammalian homolog, Purα, has been shown to directly interact with

pRb [70] suppressing the transcriptional activity of E2F-1 [71].

As expected from our comparative studies with E2Fa, gene-motif 2, which matches the E2F

consensus, is the strongest enriched motif in the complete RBR1 dataset as well as in the

RBR1/MYB3R3 and the RBR1-only fraction from the RBR1/MYB3R3 comparison (Table 4).

Furthermore, gene-motif 6, which shows very significant enrichment in the RBR1/MYB3R3

and the MYB3R3-only set, contains the core of the MSA-element (AACGG) found in the pro-

moter of mitotic genes and known to be bound by MYB3R transcription factors [72].

RBR1 target genes in DNA damage response

Since DNA repair is among the highly enriched GO-terms in our RBR1 core dataset and since

it was shown that at least a few DDR genes are under direct RBR1 transcriptional control

[34,35], we decided to zoom into this role of RBR1 as a functional test case of our work.

Exposure to stresses, such as DNA damage, usually causes a cascade of transcriptional

responses making it difficult to separate primary from subsequent and/or indirect effects. We

hypothesized that combining the criteria “transcriptional upregulation upon DNA damage”
and “gene bound by RBR1”might be a valid approach to identify so far uncharacterized, yet

important DDR genes. We also postulate that “gene bound by RBR1”might be better suited

than the criterion “upregulated upon loss/reduction of RBR1 activity” since the reduction of

RBR1 by RNAi or the use of the hypomorphic rbr1-2mutant only resulted in a rather weak

upregulation of DDR genes [34,35].

It was previously proposed that the regulation of DDR genes by RBR1 could represent a

priming mechanism, i.e. the coupling of DDR gene expression to the cell cycle might open the

chromatin of these genes in dividing cells, in which DNA damage is especially critical. This

opening of the chromatin would then make them easily and fast accessible for other, DDR spe-

cific transcriptional regulators, such as SOG1 [34].

For our analysis, we made use of publicly available transcriptional profiles of various Arabi-
dopsis tissues after treatment with DNA damaging agents [73–82, GEO series GSE5620 and

GSE5625]. We extracted the transcriptionally upregulated genes from 32 experiments (S5

Table 4. Gene motif frequencies in different datasets. Comparative motif analysis using 400 bp upstream of the start codon as target sequence. The number of motif

occurrences was calculated by FIMO (MEME-suite) with a P value cut-off at 0.0001. Overlapping motifs were clustered and the number of clusters is given (FIMO cluster).

Significance of motif enrichment was calculated with AME (Analysis of Motif Enrichment) [60] using the whole genome as control sequence dataset.

dataset whole genome RBR1-ChIP RBR1/MYB3R3—overlap RBR1/MYB3R3—

MYB3R3 only

RBR1/MYB3R3—RBR1

only

protein coding genes 26872 900 199 181 701

FIMO FIMO cluster FIMO cluster AME p FIMO cluster AME p FIMO cluster AME p FIMO cluster AME

p

Gene-

motif1

32570 12752 544 3.94 E-12 126 8.54 E-05 164 1.71 E-13 418 3.57 E-09

Gene-

motif2

1469 1467 301 3.77 E-98 107 1.62 E-41 31 2.96 E-03 194 7.18 E-63

Gene-

motif3

26115 13950 569 9.33 E-07 128 5.73 E-03 128 4.65 E-07 441 8.74 E-05

Gene-

motif4

2730 2497 126 1.63 E-02 44 1.07 E-03 30 n.s. 82 n.s.

Gene-

motif5

7379 7282 323 1.26 E-07 81 5.59 E-05 62 n.s. 242 2.12 E-04

Gene-

motif6

513 508 33 7.73 E-10 15 2.02 E-09 19 3.29 E-10 18 2.54 E-04

https://doi.org/10.1371/journal.pgen.1007797.t004
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Table) and calculated the overlap with our RBR1-ChIP dataset as well as a reference list of

genes involved in DNA repair (S4 Table). In total, 8907 genes were found to be upregulated in

DNA stress experiments, 307 of which are RBR1 targets according to our analysis. As shown

in Fig 6A there is an about tenfold enrichment of genes involved DNA damage repair in the

RBR1 bound subset (11.1%) compared to the non-RBR bound group (0.9%) of transcription-

ally upregulated genes providing proof of concept for the validity of our approach.

Fig 6B displays all genes that are upregulated under DNA stress in more than three experi-

ments and that are also bound by RBR1. In search of genes with a not yet described role in

DDR, we selected four candidates based on the availability of homozygous insertion lines, i.e.

AT1G04650, AT2G45460, AT3G20490 and AT5G46740 for further analysis (Fig 6B, black

label; Material and Methods). To verify if RBR1 binding to these genes indeed reflects tran-

scriptional inhibition, we monitored their expression in the wildtype and rbr1-2mutants using

qRT-PCR. As for known DNA-damage regulators like BRCA1 and RAD51, we see a slight, yet

significant upregulation of all four candidate genes in rbr1-2mutants (S9 Fig).

After confirming the absence of full-length transcripts in mutant lines of the candidate

genes (S10 Fig), we analyzed them in root growth assays on different DNA damaging agents.

In a first set of experiments, we used bleomycin and cisplatin since we have previously shown

that rbr1-2mutants are sensitive both toxins [34] (Fig 7). Bleomycin induces double strand

breaks, which can be repaired by non-homologous end joining (NHEJ) and homologous

recombination (HR). Cisplatin also causes DNA breaks and in addition, DNA cross-links,

which require homology-dependent DNA repair. In addition we tested for root-growth on

hydroxy urea (HU) containing media to complement our set of DNA damaging drugs with an

agent causing replication stress, which eventually leads to double strand breaks in S-Phase that

can be repaired by HR as well (S11 Fig).

Whereas plants mutant for AT2G45460 grew like the wildtype on bleomycin, cisplatin as

well as HU containing media, the loss of any of the other genes resulted in different patterns of

hypersensitivity to these three DNA damaging drugs (Fig 7, S11 Fig). While this work was in

progress, the closest rice homolog of AT1G04650 was shown to participate in meiotic recombi-

nation and designatedMEICA1 (Meiotic Chromosome Association1) [83]. More recently,

AT1G04650 itself was found to be an interactor of the anti-crossover factor FIDGETIN-LIKE-

1 (FIGL1) in Arabidopsis and therefore named FLIP (FIDGETIN-LIKE-1 INTERACTING

PROTEIN) [84]. While FLIP’s crossover limiting role in meiotic recombination has been

clearly demonstrated, a likely analogous function in DNA damage repair has only been specu-

lated on. AT5G46740 will be referred to as UBP21 (Ubiquitin-specific protease 21), according to

the nomenclature introduced by Yan et al. [85] and AT3G20490 will be called KNOTEN1
(KNO1, German for “to knot, to tie together”) since the mutant shows an accumulation of

DNA lesions upon genotoxic stress (see below).

Mutants in KNO1 showed a strong growth inhibition on cisplatin, were only mildly affected

by HU and displayed no significant growth reduction on bleomycin at the concentrations

used in our assay (Fig 7, S11 Fig). For the flip lines, we observed a clear mutant phenotype on

cisplatin as well as bleomycin although the growth inhibition on cisplatin was less pronounced

than for kno1. Growth of flipmutants on HU was mildly, yet significantly reduced, similar to

that of kno1 plants. Mutants for UBP21 were not affected by HU, but showed a mild growth

inhibition on cisplatin and bleomycin containing plates, the latter being slightly more

effective.

We further tested all hypersensitive lines for recovery growth after treatment with 1.5 mM

aluminum (S12 Fig). Bioavailable aluminum (e.g. as Al3+) is a toxin plants are frequently

exposed to on acidic soils [86] and previous work has indicated that it also induces DNA

breaks [87]. Significant reduction in recovery growth was seen for the kno1mutants from day
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Fig 6. Meta-analysis of gene expression data from DNA stress experiments. (A) VENN diagram displaying the number of genes upregulated at least once in

32 DNA-stress experiments (S5 Table) in comparison with RBR1-bound genes (S1 Table) and genes known to be involved in DNA repair (S4 Table). Highly
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three after treatment onwards. Also the flipmutant lines showed a clear trend towards growth

reduction on aluminum. However, the result was statistically significant only for line flip-3
after 4 days. In contrast, the ubp21mutants did not show any obvious reduction in recovery

growth after aluminum treatment at the conditions tested.

To analyze if the observed hypersensitivity of kno1, flip and ubp21 plants to genotoxic

agents is indeed due to enhanced DNA damage, we monitored γH2AX foci as a marker for

double strand breaks after short term incubation in media with and without cisplatin or bleo-

mycin [88]. While wildtype plants only showed few γH2AX-foci upon DNA stress under these

conditions, we observed an enhanced accumulation of foci in the mutant lines (Fig 8).

Whereas the damage for kno1-1 and flip-2 on cisplatin was slightly more severe than the dam-

age on bleomycin at the conditions tested, the opposite was true for ubp21-1, which showed a

stronger accumulation of γH2AX-foci on bleomycin than cisplatin in agreement with its

slightly higher sensitivity towards bleomycin in the root growth assay.

Next, we asked if the genes identified might be involved in signaling of DNA damage. We

therefore used qRT-PCR to check the respective mutant lines for expression of the SOG1 tar-

gets CYCB1;1 and RAD51, known to be transcriptionally upregulated upon DNA lesions (Fig

9A and 9B). While expression of CYCB1;1 in upb21-1 is at wildtype level in stressed and non-

stressed plants, it’s upregulation upon cisplatin treatment is significantly less pronounced in

the kno1-1 line and significantly more upregulated in flip-2mutants when compared to the

wildtype (Fig 9A). A similar trend is seen for RAD51 (Fig 9B). This result indicates that kno1-1
plants have problems in transmitting a DNA damage-induced signal, which normally leads to

RAD51/CYCB1;1 upregulation, while the finding for flip-2 is in accordance with an impaired

repair process, where the plant shows a compensatory response by transcriptional upregula-

tion of repair pathway components.

Finally, we analysed RAD51 localization as a marker for the assembly of the HR repair machin-

ery upon treatment with cisplatin or bleomycin (Fig 9C). In upb21-1 and flip-2mutants RAD51

localized in a wildtype-like pattern, indicating that RAD51-mediated homology search still takes

place in these mutants, whereas no clear RAD51-foci were seen in kno1-1mutants. The reason for

this could be the reduced RAD51 transcription. However, since RAD51 upregulation is only

reduced but not abolished in the kno1-1 line, the lack of RAD51 foci might also indicate an addi-

tional function of KNO1 in the proper recruitment of the repair machinery to lesion sites.

Taken together, using “RBR1 binding” and “transcriptional upregulation upon DNA stress”
as combined criteria is an efficient approach to identify new genes involved in different aspects

of the DNA damage response.

Discussion

Here, we present the first genome-wide RBR1-ChIP dataset for plants. Using proliferating cells

of Arabidopsis, we identified a core set of 937 genes and 475 TEs marked by RBR1. The high

reliability of our dataset is indicated on the one hand by the GO-term enrichment results,

which are in accordance with Rbf1/Rbf2-ChIP results from flies [89–91] and ChIP results for

human pRb-type proteins [92–94] and on the other hand by a strong overlap with gene sets

regulated by proteins known to form a complex with RBR1, like E2Fa-DP and MYB3R3. Our

significant enrichment (p < 0.0001, Fischer’s Exact test) of genes involved in DNA repair is seen when genes that are upregulated under DNA stress and bound

by RBR1 (11.1% DNA repair genes) are compared with those that are upregulated but do not show RBR1 binding (0.9% DNA repair genes). (B) List of genes

that are upregulated upon DNA stress in more than three out of 32 experiments and that are RBR1 targets according to the RBR1-ChIP experiment. The Y-axis

displays the number of experiments in which a gene was found to be significantly upregulated under DNA-stress. For more detailed information, see S5 Table.

Genes that are also present in the DNA-repair dataset (S4 Table) are labeled in red and the candidate genes for further investigation in black.

https://doi.org/10.1371/journal.pgen.1007797.g006
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data reveal a preferential RBR1-binding to the 5’ end of genes, as expected for a transcriptional

regulator and a strong enrichment of the E2F consensus sequence WTTSSCSS in the

RBR1-bound domains.

However, it needs to be tested if the analysis of different tissues/cell types will complete the

list of RBR1-targets, especially since previously identified RBR1-targets involved in develop-

mental processes were not detected by our approach [21,22,50]. We assume that this discrep-

ancy is not due to technical constraints of the established ChIP protocol, which resulted in

very reproducible and strong signal enrichments, but rather indicates that RBR1 binding to,

and repression of developmental targets is temporally and/or spatially restricted.

For Arabidopsis, there are several indications of interplay between RBR1 and PRC2, a chro-

matin associated complex implicated in the stable repression of genes turned off during devel-

opmental progression [95,96]. On the one hand, the PRC2 components MSI1 and FIE have

been shown to interact with RBR1 [31,32]. However, MSI1 likely also acts independently of

PRC2 since it is an essential part of the CAF-1 complex [97] and by homology to the mamma-

lian RBBP4 it is a putative component of a plant DREAM complex [17]. In support of this

notion, transcriptional control ofMET1 in the endosperm depends on MSI1-RBR1 but is inde-

pendent of PRC2 [32]. On the other hand, three of the DNA sequences enriched in our

RBR1-ChIP, i.e. the very frequent and repetitive gene-motif 1 (GAGA) as well as gene-motif 4

(ACGTGKC) and the telobox-like gene-motif 5, resemble DNA motifs that were recently

shown to contribute to PREs in plants [64]. Nevertheless, when we compared the RBR1 targets

with gene sets marked by either FIE or by H3K27me3, the chromatin mark reflecting PRC2

action, we did not find significant overlap on a genome wide level. On the contrary, relating

lists of RBR1 bound and H3K27me3 decorated genes, we see significantly less overlap than

expected by chance indicating a mutually exclusive pattern [64,98,99] (S13 Fig). Thus, either

the overrepresentation of similar motifs in RBR1 and PRC2 bound domains is due to some

higher order similarity between both gene sets or concomitant/interdependent gene repression

by both regulators takes place only transiently and therefore is not seen by analysis of data

from different tissues.

Our ChIP data indicates that RBR1 is recruited to E2F-sites that have been picked up and

amplified by TEs in Arabidopsis. It has been reported that spreading of TEs with E2F-binding

sites in microsatellite structure also occurred in other Brassicaceae species [49]. Interestingly, it

is not always the same TE family showing this sequence motif expansion, although there is a

clear bias for DNA-transposons, more specifically MITES. This suggests that the local reten-

tion of E2F/RBR1 is beneficial regarding TE amplification, as the E2F sequence motif occurs

in different TE families even in closely related species and therefore must have accumulated

after their evolutionary separation (Henaff 2014). Since MITES do not carry any ORF, this

advantage is likely unrelated to RBR1’s role in transcriptional control. Because replication tim-

ing correlates with chromatin accessibility [100], one possibility is, that phosphorylation of

RBR1 at G1/S and thus dissociation from E2F might lead to a decompaction of chromatin

structure at the start of S-phase allowing for early replication of the affected loci and thus, giv-

ing a higher chance for multiplication by transposition from a newly replicated chromatid to a

yet unreplicated site. Alternatively, local RBR1 accumulation might be beneficial for DNA-

repair upon transposition of MITEs. In this respect, it is noteworthy not only that the mobili-

zation of the DNA transposon Sleeping Beauty in human cell lines depends on Xrcc3/Rad51C,

Fig 7. Root growth analysis on DNA damaging drugs. Root growth of the wildtype and kno1 (at3g20490), flip (at1g04650), ubp21
(at5g46740) and at2G45460, represented by 2 different mutant alleles each, on 20 μM cisplatin (CiPt) and 0.3 μg/ml bleomycin (BLM). (A)

Pictures after 6 days of growth. (B) Root length per day. Statistically significant differences to the wildtype are indicated by asterisks (p< 0.05).

https://doi.org/10.1371/journal.pgen.1007797.g007
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Fig 8. DNA damage analysis in the wildtype versus kno1-1, flip-2 and ubp21-1 mutants. (A) Root nuclei incubated with an anti-γH2AX antibody after 3

hr treatment of seedlings with cisplatin and bleomycin in comparison with mock treated samples. (B) Quantification of γH2AX foci, 50 nuclei were

counted per line.

https://doi.org/10.1371/journal.pgen.1007797.g008
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a complex that functions during homologous repair (HR), and on Ku70/Ku80, a key player in

non-homologous end-joining (NHEJ), but also that Sleeping Beauty transposase directly inter-

acts with the Ku70/Ku80 hetero-dimer [101]. Conversely, the involvement of pRb in canonical

NHEJ and HR has been described, and it has been shown that pRb interacts with the ku70/

ku80 hetero-dimer as well [102,103]. Also for Arabidopsis, we and others have seen that RBR1

is involved in DNA repair at the site of the lesion [34,35], partially co-localizing with RAD51, a

major player in HR [34]. It is known that TEs use and modify the cellular machinery of the

host at several levels to promote their own survival [104,105]. Thus, RBR1 might provide a link

to the recombination/repair machinery required for stable MITE transposition in the host

genome.

Additionally, in case of the non-MITE transposon Hiun, which belongs to the VANDAL21

family, we see a different example of interplay between the host machinery and the transposon,

since one of theHiun-localized ORFs is transcriptionally controlled by RBR1 and therefore

potentially activated during G1/S phase, the moment when DNA transposons excise and

mobilize [106].

To make further use of the information derived from our genome-wide study, we combined

the core-set of RBR1-bound genes with transcriptional data from DNA stress experiments.

This led to the identification of three genes with so far unknown function in protection against

DNA damage. At the beginning of this study, only two of the four genes analyzed had a func-

tional annotation based on homology, i.e. AT5G46740 as ubiquitin-specific protease (UBP21)

and AT2G45460 as SMAD/FHA domain-containing protein, while KNO1 (AT3G20490) and

FLIP (AT1G04650) were described as genes of unknown function. With the new set of mass

annotation provided by Araport11 [107], KNO1 became annotated as putative Rho GTPase-
activating protein and FLIP asHolliday junction resolvase, but both annotations are still lacking

experimental support in Arabidopsis. Holliday junction resolvases function in meiotic as well

as somatic HR in different organisms [108] and FLIP has recently been shown to act as a sup-

pressor of meiotic crossovers in complex with FIGL1 [84]. A role in damage induced HR has

not been shown so far, yet is very likely in light of our findings.

Our results show that KNO1 is needed after DNA damage to efficiently up-regulate and

probably also localize components of the HR repair machinery like RAD51. In humans geno-

toxin-induced DNA damage stimulates nuclear Rac1, a Rho GTPase required for the activa-

tion of stress kinases [109]. However, plants do not possess Rac1 orthologs, but a plant specific

family of Rho-type GTPases (Rop) instead [110], which to our knowledge has not yet been

linked to DDR. Notably, KNO1 as well as UBP21 are among 146 recently identified direct tar-

gets of the major DNA damage related transcription factor SOG1 [111], adding further sup-

port for their role in DDR. In addition, ubiquitin-specific peptidase 21 (USP21) from human,

which like UBP21 of Arabidopsis is a ubiquitin carboxyl-terminal hydrolase, has been shown

to de-ubiquitinate and stabilize BRCA2 to promote efficient RAD51 loading at DNA double-

strand breaks [112] and it is tempting to speculate if UBP21 has a similar role. However,

although we cannot exclude subtle quantitative effects, we still see RAD51 loading in ubp21
mutants. Further studies are needed to unravel the exact molecular function of Arabidopsis

KNO1, FLIP and UBP21 in somatic cells to fully understand their here discovered requirement

under DNA damaging conditions.

Fig 9. KNO1 is needed for RAD51 localization. Expression of (A) CYCB1;1 and (B) RAD51 in the wildtype as well as in kno1-1, flip-2, and ubp21-1mutant

seedlings as detected by qRT-PCR after 3 hr treatment with and without 50μM cisplatin. Statistically significant differences in expression compared to the

corresponding wildtype sample are marked by an asterisk (p<0.05). (C) Root cell nuclei of the wildtype and kno1-1, flip-2 and ubp21-1mutants incubated

with an anti-γH2AX antibody and an anti-RAD51 antibody after 3 hr treatment of seedlings with cisplatin and bleomycin in comparison with mock treated

samples.

https://doi.org/10.1371/journal.pgen.1007797.g009
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Perspective

Here we have presented the first genome wide RBR1-binding study in plants. We show, that

RBR1 associates with TEs, especially MITEs, and with genes highly enriched for GO-terms like

cell cycle, replication, chromatin and DNA repair in actively dividing cells. However, previously

described developmental RBR1 targets remain unmarked. To investigate RBR1’s proposed

role as a potential integrator of cell cycle regulation with developmental processes, genome-

wide RBR1 distribution at specific developmental time points and in defined cell types will be

beneficial and can be achieved by applying our optimized ChIP protocol in combination with

FACS or INTACT methods [113,114].

Further, our results demonstrate a vast commonality of genes bound by E2Fa, MYB3R3

and RBR1. In this respect, it will be valuable to gain and integrate information on genome

wide binding of the different MYB3R and E2F transcription factors as well as RBR1 in distinct

cell types as well as upon short and long term DNA damage. Recently, an involvement in DDR

has been shown for repressive MYB3R proteins, but so far only the impact on G2/M genes has

been analyzed in detail [115]. A comprehensive, context-dependent analysis will reveal if spe-

cific compositions of the DREAM complex govern the expression of the same genes in differ-

ent cellular contexts or if different DREAM complexes have distinctive targets.

Finally, the here presented set of RBR1-controlled genes is a valuable resource that can be

exploited to identify new genes involved e.g. in cell cycle control, chromatin remodeling and

DNA repair as exemplified by our successful approach to reveal new DNA damage regulators.

Material and methods

Double crosslinking ChIP

Triplicates of the Arabidopsis MM2d cell culture, ecotype Landsberg erecta [40], were collected

3 days after sub-culture and frozen at -80˚C. The material was homogenized by thorough

grinding using mortar and pistil with permanent addition of liquid nitrogen. 300mg of the

powder was dissolved in 10ml fixation buffer (10mM Hepes pH = 7.6, 0.5M Sucrose, 5mM

KCl, 5mM MgCl2, 5mM EDTA, 14mM β-Mercapto-ethanol, 2.5mM DSG [Sigma, Di(N-suc-

cinimidyl) glutarate], protease-inhibitor [Roche, cOmplete tablets], 0.6% Triton X-100) and

incubated for 1 hr at room temperature (RT) with gentle agitation (turning wheel). 300μl

formaldehyde (Sigma, 37% FAA solution) was added to reach a final concentration of 1% FAA

and incubated for exactly 5 min with gentle agitation. To stop the crosslinking reaction, 1ml of

2.5M Glycine was added to the solution and mixed immediately. The cross-linked material

was transferred on ice and nuclear isolation was performed using a dounce tissue grinder set

(Sigma, 100ml D0189). The lysate was filtered through a miracloth mesh and centrifuged in a

swinging rotor using 50ml Falcon tubes at 3000g for 10 min at 4˚C. The pellet was dissolved in

300μl nuclear isolation buffer (10mM Hepes pH = 7.6, 0.5M Sucrose, 5mM KCl, 5mM MgCl2,

5mM EDTA, 14mM β-Mercapto-ethanol, protease-inhibitor [Roche, cOmplete tablets]) by

gentle shaking and overlayed onto a 600μl 15% Percoll solution (HEPES pH8.0 10mM, 15%

(v/v) Percoll (pH8-9), 0.5M sucrose, 5mM MgCl2, 5mM KCl, 5mM EDTA) in a 1.5ml tube.

After centrifugation at 3000g for 5 min at 4˚C all supernatant was removed and the pellet was

dissolved in 500μl nuclear lysis buffer (50mM Tris-HCl, pH7.5, 0.1% SDS, 10mM EDTA)

without generating bubbles and vortexed thoroughly for 1 min. Sonication was carried out

using a cooled Diagenode Bioruptor with a 45 sec ON– 45 sec OFF cycle for 2x15 min (water

was changed between the cycles). Sonication efficiency was tested by de-crosslinking 20μl of

the sonicated solution overnight and migrating on a 1.5% agarose gel. Sonication should lead

to fragmentation of all gDNA to a fragment size of 200–500nt length (in case of remaining
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high size gDNA the nuclei solution needs to be further sonicated and tested for proper frag-

mentation). 100μl of the fragmented chromatin was then incubated in 1ml ChIP dilution

buffer (15mM Tris-HCl, pH7.5, 150mM NaCl, 1% Triton-X-100, 1mM EDTA) over night at

4˚C using a turning wheel with magnetic beads (Merck, Magna ChIP Protein A+G Magnetic

Beads), pre-incubated for 1 hr in 500ul ChIP dilution buffer at 4˚C with 1μg of affinity-purified

anti-RBR1 [41] and anti-E2Fa antibody [116], respectively. Beads without antibody were used

as negative control. The next day the beads were washed once by resuspending/pipetting first

and subsequently for 15 min on a turning wheel with 500μl of the following washing buffers:

(1) at 4˚C: ChIP-dilution buffer (see above), (2) at 4˚C: Low Salt buffer (20 mM Tris-Cl pH

8.0, 0.1% SDS, 1% Trition X 100, 2 mM EDTA, 150 mM NaCl), (3) at 4˚C: LiCl buffer (20 mM

Tris, pH 8.0, 0.25 M/0.5M LiCl, 1% NP40/Ipepal, 1% deoxycholate, 1 mM EDTA), (4) at room

temperature: TE. The immuno-complex was eluted from the beads using an incubation with

twice 250μl elution buffer (prepare fresh: 0.1M NaHCO3, 1% SDS) for 10 min at 65˚C with

gentle agitation. To de-crosslink the DNA, 20μl of 5M NaCl was added and left at 65˚C over

night, together with the input material (1% of the quantity used in the IP, volume was adjusted

to 500μl using elution buffer). The next day, Proteinase K was added (20μl Tris, pH 6.5, 10μl

0.5M EDTA, 20μg Proteinase K) and incubated at 45˚C for 2 hrs. DNA was isolated using Phe-

nol-Chloroform purification and precipitation by Na-acetate/EtOH. The pellet was re-sus-

pended in 20–50μl TE from which 1μl was used for a single qPCR reaction.

ChIP-seq analysis

ChIP-seq analyses were performed with two biological replicates. For each replicate, 1 ng of

immunoprecipitated (IP) and genomic (INPUT) DNA were used to prepare libraries with the

MicroPlex Library Preparation kit (Diagenode). Quality of libraries was validated using 2100

Bioanalyzer (Agilent). Multiplexed libraries were sequenced using a HiSeq 2000 system (Illu-

mina) with single-end 50-bp reads. Following a FASTQC (version 0.11.5) quality control,

reads were mapped onto the TAIR10 Arabidopsis thaliana genome assembly using Bowtie

(version 0.3 [117]) run in the sensitive mode, allowing one mismatch and randomly choosing

one map position in case of multiple matching. MACS (version1.4.2 [118]) was used for peak

detection including INPUT DNA as control and using the following parameters: Effective

genome size = 120 Mbp, tag size = 50 bp, bandwidth = 150 bp, P value cutoff for peak

detection = 1e-05, MFOLD range = 10,30. The average peak width is 930 bp (replicate 1) / 670

bp (replicate 2) and the median is at 600 bp (replicate 1) / 450 (replicate 2). Peaks were

assigned to a gene or TE using an iterative procedure: (1) peak overlaps with gene or TE by at

least 150 bp, (2) peak overlaps with gene or TE by at least 50 bp, (3) peak overlaps with 150 bp

up-stream or downstream sequence of a gene/TE.

Data analysis

The MetaGene Profile was generated using the toolmakeMetaGeneProfile.pl of theHomer
Software [119]. Venn diagrams were generated using the VENN diagram generator designed

by Tim Hulsen at http://www.biovenn.nl [120]. The test for statistical significance of the over-

lap between two groups of genes was calculated using the phyper function in R [121]. Data

sources for comparative analyses are given in the text or the respective figure or table legends.

GO-term enrichment analysis was done with PANTHER Version 13.0 [122], Fisher’s exact test

was selected as test type and the Bonferroni correction has been applied to the P values. We

used MEME SUITE [123] for Motif-analysis, i.e. the tools MEME-ChIP [47], including

MEME [124] and DREME [125] for motif discovery, as well as AME [60] for calculation of

motif enrichment, FIMO [59] to count individual motif occurrences and MCAST [126] to
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perform a motif cluster analysis. The Integrative Genomics Viewer (IGV) [127] was used to

display signal distribution over representative genes and TEs.

Root growth assay

Plants were germinated and grown on vertical plates containing half Murashige and Skoog

(1/2 MS) medium under long day light conditions (16h) at 22˚C for 6 days. Chemicals used in

this study are bleomycin (bleocin, Duchefa), cisplatin (Nacalai Tesque) and hydroxyurea

(Sigma-Aldrich). Seedlings were transferred to medium with or without 0.3 μg/ml bleomycin,

20 μM cisplatin, 2 mM hydroxyurea or 2.5 mM hydroxyurea and grown for 6 days further.

The position of the primary root tip was marked daily for each plant. After 6 days, plates were

photographed and root length was measured using ImageJ software. Data are presented as

mean ± SD (n > 30). Significant differences from wildtype were determined by Student’s t-
test: �, p< 0.05.

For the aluminum recovery growth assay, plants were germinated and grown on vertical

plates containing ½ MS medium for 6 days. Seedling were then transferred to 1.5 mM Al-con-

taining hydroponics (water solution (pH 4.2) consisting of 1 mM KNO3, 0.2 mM KH2PO4, 2

mM MgSO4, 0.25 mM (NH4) 2SO4, 1 mM Ca(NO3)2, 1 mM CaSO4, 1 mM K2SO4, 1 μM

MnSO4, 5 μM H3BO3, 0.05 μM CuSO4, 0.2 μM ZnSO4, 0.02 μM NaMoO4, 0.1 μM CaCl2,

0.001 μM CoCl2) prepared as previous described [128,129] and treated for 12 hrs. Treated

seedlings were planted on vertical ½ MS medium and allowed to grow for 5 days. The position

of the primary root tip was marked daily for each plant. After 5 days, plates were photographed

and root length was measured using ImageJ software. Data are presented as mean ± SD

(n> 30). Significant differences from wildtype were determined by Student’s t-test: �,

p< 0.05.

Immunofluorescence staining

10-day-old seedlings were transferred to ½ MS liquid medium containing 3μg/ml bleomycin

or 50μM cisplatin. Incubation time was 3 hrs. Root tip spreads and immunostaining was sub-

sequently performed as described earlier in Friesner et al [130]. γH2AX immunostaining was

conducted with a rabbit anti-γH2AX antibody (1:600), provided by Dr. Charles White, and a

goat Alexa Fluor488 anti-rabbit antibody (Life Technologies, Carlsbad, CA, USA) was used as

secondary antibody in a 1:300 dilution. For the observation of RAD51, we used a rat anti-

RAD51 antibody, provided by Dr. Peter Schlögelhofer, in a 1:500 dilution together with a Cy3

anti-rat antibody (Thermo Fisher Scientific; Cat.# A-10522) at 1:300. Imaging was done with a

Leica TCS SP8 inverted confocal microscope at 40X magnification. The excitation light for the

fluorophores was emitted by a diode 405 nm laser, an argon laser at 488 nm and a DPSS laser

(561 nm).

Expression analysis

RNA was extracted from 10-day-old Arabidopsis seedlings or inflorescence material using the

RNeasy Plant Mini Kit from Qiagene according to the instructions of the manufacturer.

cDNA synthesis was performed using a Transcriptor First-Strand cDNA Synthesis kit for

RT-PCR according to the manufacturer’s instructions (Roche). The cDNA produced was used

in semi-quantitative PCR experiments to test for presence of mRNA. Quantitative PCR was

performed with a Roche LightCycler 480 SYBR Green I Master with 0.5 μM specific primers

and 0.1 μg of first-strand cDNAs. PCR reactions were conducted with the LightCycler 480

Real-Time PCR System (Roche) under the following conditions: 95˚C for 5 min; 45 cycles of

95˚C for 10 sec, 60˚C for 10 sec and 72˚C for 15 sec. Cq calling was done using the second
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derivative maximum method. Target-specific efficiencies were calculated as the mean of all

reaction-specific efficiencies for a given target. Reaction-specific efficiencies were deduced

using LinRegPCR 2015.2 [131,132]. Data were quality-controlled, normalized against at least

three reference genes, and statistically evaluated using qbasePLUS 3.0 [133]. Primers used for

genotyping, semi-quantitative RT-PCR and qRT-PCR are listed in S6 Table.

Accession numbers

Sequence data for genes characterized in this article can be found in the EMBL/GenBank data

libraries under accession numbers AT3G12280 (RBR1), AT3G20490 (KNO1), AT1G04650

(FLIP), AT5G46740 (UBP21) and AT2G45460.

The RBR1-ChIP-seq data generated in this publication have been deposited in NCBI’s

Gene Expression Omnibus [77] and are accessible through GEO Series accession number

GSE108741.

The mutant lines used in this study were provided by the Nottingham Arabidopsis Stock

Centre (NASC [134]) and the Versailles Arabidopsis Stock Center (http://publiclines.

versailles.inra.fr). They are part of the SALK line collection [135] or the FLAG line collection

(http://publiclines.versailles.inra.fr), respectively.

AT3G20490 (SALK_023330C is kno1-1, SALK_023527 is kno1-2)

AT1G04650 (SALK_037387C is flip-2, SALK_119229C is flip-3)–note, that we renamed our

mutant lines to be congruent with the numbering used by Fernandes et al. [84].

AT5G46740 (SALK_205928C is ubp21-1, SALK_201584C is ubp21-2)

AT2G45460 (SALK_142111C is at2g45460-1, FLAG_519A08/EHGTV204T3 is at2g45460-2).

Supporting information

S1 Fig. RBR1-ChIP workflow and quality control results. (A) Workflow of an Arabidopsis
ChIP protocol optimized for proteins like RBR1, i.e. indirectly bound to DNA. (B) Flow

cytometry profiles of propidium iodide-stained nuclei from MMd2 culture cells 3 (3D) and 7

days (7D) after inoculation. 3D cultures were used for the RBR1-ChIP experiment since flow

cytometry showed a higher number of cells in 4n, i.e. more cells progressing through S-phase,

indicative of proliferation. (C) ChIP-qPCR results for the previously confirmed E2Fa and

RBR1 targetsMCM5, ORC3 as well as RBR1 (E2F-consensus site) and negative controls, i.e.

CDKA;1 as well as 5’- and 3’ locations of the RBR1_E2F-consensus site. ChIP was performed

using an anti-RBR1 or an anti-E2Fa antibody, respectively. Bars show the average of enrich-

ment of IP vs. input of three biological replicates and its standard deviation. (D) Genomic

representation of the RBR1 locus and the corresponding qPCR fragments analyzed in (C). One

bar equals 100nt length, transcripts are shown as boxes and exons as blue arrows, marking the

direction of the transcript. The E2F-consensus site is indicated by an orange circle.

(PDF)

S2 Fig. Integrative Genomics Viewer (IGV) visualization of representative RBR1-ChIP-seq

results. (A) Examples for RBR1-ChIP signals associated with genes (MCM5, PCNA1, RBR1,

KNO1). (B) Examples for RBR1-ChIP signals over transposable elements (AT3TE91990 (Sim-
pleguy 1), AT2TE23725 (Simplehat 2), AT5TE47555 (Simplehat 1)). (C) No significant RBR1

signal was detected upstream of the mitotic gene KNOLLE (KN). WTTSSCSS sites are indi-

cated.

(PDF)

S3 Fig. RBR1 binding in relation to origins of replication. (A) Domains identified as origins

of replication by Costas et al. [44] were compared to RBR1-bound domains (only domains
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identified in both RBR1-ChIP replicates were used for comparison). (B) RBR1-marked genes

show a small but statistically significant overlap with genes marked by origins of replication

(P(X> = 66) = 3.24E-05) while this is not the case for RBR1-marked TEs ((C), P(X> = 1) =

0.452).

(PDF)

S4 Fig. Motif alignments. Motif alignments using the TOMTOM software [138]. The P values

given indicate the probability that a random motif of the same width as the target (lower

motif) would have an optimal alignment with a match score as good or better than the target’s.

(A) TE-motif 1 aligned to the E2F consensus WTTSSCSS, P value = 1.11e-02. (B) Gene-motif

1 aligned to the GAGA-element [63], P value = 5.84e-03. (C) Gene-motif 2 aligned to TE-

motif 1, P value = 9.78e-05. (D) Gene-motif 2 aligned to E2F-consensus WTTSSCSS, P

value = 1.94e-02. (E) Gene-motif 3 aligned to translocon1-motif (TL1 [65]), P value 1-91e-04.

(F) Gene-motif 4 aligned to the abscisic acid response element (ABRE [66,67]), P value =

9.71e-05. (G) Gene-motif 4 aligned to the G-box [64], P value = 8.20e-03. (H) Gene-motif 5

aligned to the telobox [64], P value = 3.05e-04. (I) Gene-motif 6 aligned to the MSA-core [72],

P value = 6.46e-03.

(PDF)

S5 Fig. Overlap of RBR1 targets with genes related to replication, cell cycle, replication,

DNA repair and chromatin. Venn diagrams showing overlap of RBR1-marked genes with

genes involved in (A) replication, (B) cell cycle, (C) DNA repair and (D) chromatin. In each

case, the overlap is highly significant.

Overlap of RBR1-ChIP with

GO:0006260 (Replication): P(X> = 61) = 1.37E-56

Core replication (Shultz): P(X> = 45) = 5.16E-57

GO:0007049 (Cell cycle): P(X> = 125) = 4.15E-79

Core cell cycle (Vandepoele): P(X> = 24) = 8.18E-22

GO:0006281 (DNA repair): P(X> = 70) = 6.00E-47

DNA repair (Dohmann/Britt/Girard): P(X> = 51) = 1.27E-35

GO:0006325 (Chromatin organization): P(X> = 48) = 1.23E-20

ChromDB/manual collection: P(X> = 65) = 5.49E-24

See S2 Table for gene lists and references used in these comparisons.

(PDF)

S6 Fig. Overlap of RBR1 and E2F target genes. RBR1-bound genes were compared with E2F

targets identified by different techniques. In addition, the number of genes having an E2F-

binding site within 400 bp upstream of the START codon (upstream of the gene for non-pro-

tein coding genes) is indicated in each comparison. Overlap of RBR1-bound genes with (A)

E2Fa-bound genes identified by ChIP, ChAP and TChAP (Verkest et al. [56], P(X> = 644) =

0�), (B-C) genes upregulated in E2FaDP overexpressing lines (Vandepoele et al. [48], P(X> =

180) = 1.76E -154; Naouar et al. [55], P(X> = 286) = 1.07E-214), and (D) genes identified by

E2Fa DAP-seq (O’Malley et al. [57], P(X> = 143) = 2.84E-46).

Transcriptional upregulation was monitored using the Arabidopsis Ath1-chip (B) or the tiling

GeneChip (C). For comparison, RBR1-ChIP data were therefore reduced to genes present on

the Ath1-Chip or GeneChip, respectively.
�P values marked by an asterisk (�) were below the calculation limits of the software (highly

significant).
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S7 Fig. RBR1 distribution near E2Fa and MYB3R3 sites. (A) RBR1-ChIP fragments were

mapped with respect to the center of E2Fa-binding sites identified by ChIP, ChAP and TChAP

[56]. (B) RBR1-ChIP fragments were mapped with respect to the center of MYB3R3 binding

sites identified by ChIP [17].

(PDF)

S8 Fig. Characteristics of genes bound by MYB3R3 only, RBR1 only or both MYB3R3 and

RBR1. (A) Overlap of genes upregulated in leaves of 15 day oldmyb3r1/3/5 triple mutants

with MYB3R3-bound genes (Kobayashi et al. [17], P(X> = 16) = 5.88E-16) and RBR1 targets

(P(X> = 7) = 0.005626782). Transcriptional upregulation was monitored using the Arabidop-
sis tiling GeneChip genome array. For comparison, RBR1-ChIP data were therefore reduced to

genes present on the GeneChip.

(B) GO-term enrichment analysis of genes that show binding by MYB3R3 and RBR1 together

(overlap), by RBR1 only and by MYB3R3 only.

(PDF)

S9 Fig. Expression of RBR1 targets in the wildtype and rbr1-2 mutants. qRT-PCR results

showing relative expression of known DDR genes (BRCA1, RAD51) and candidate genes

(AT3G20490 (KNO1), AT1G04650 (FLIP), AT5G46740 (UBP21) and AT2G45460) in wildtype

and rbr1-2mutant seedlings. Significant differences to the wildtype are marked by an asterisk

(p<0.05).

(PDF)

S10 Fig. T-DNA insertion lines of RBR1-targets. Overview of the genomic region of (A)

AT2G45460 (B) AT3G20490 (KNO1), (C) AT1G04650 (FLIP) and (D) AT5G46740 (UBP21).

The location of the T-DNA insertions and the primers to test for mRNA expression are indi-

cated. We tested for full-length as well as transcript before and after the insertion site. While

transcript 5’ of the insertion site was present in all of the cases, in none of the insertion lines,

full length mRNA or transcript 3’ of the insertion site could be detected by RT-PCR. Two inde-

pendent insertion lines were used per gene. Note that the exact position of the T-DNA in

kno1-2 was not determined due to masking of the T-DNA borders by vector backbone and

inverted T-DNA fragments. However, we provide PCR-results from genomic DNA of kno1-2
showing that amplification the UP and DOWN fragments was possible while only the UP-frag-

ment could be amplified from kno1-2mutant cDNA. Primers used in this study are listed in S6

Table.

(PDF)

S11 Fig. Root growth of potential DDR mutants on hydroxyurea. Root growth of the wild-

type and kno1-1, flip-2, ubp21-1 and at2g45460-1mutant lines on hydroxyurea-containing

media (A) Pictures were taken after 6 days of growth. (B) Root length per day. Statistically sig-

nificant differences to the wildtype are indicated by asterisks (p< 0.05).

(PDF)

S12 Fig. Recovery root growth after aluminum treatment. Recovery root growth of the wild-

type and kno1 (at3g20490), flip (at1g04650) and ubp21 (at5g46740), represented by 2 mutant

alleles each, on MS medium after treatment with 1.5mM aluminum for 12 hours. (A) Pictures

after 5 days of recovery growth. (B) Root length per day. Statistically significant differences to

the wildtype are indicated by asterisks (p< 0.05).

(PDF)

S13 Fig. RBR1 bound genes in relation to PRC2 targets. Venn diagrams showing compari-

son of the RBR1-ChIP data with H3K27me3 and FIE ChIP data from different publications
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(Xiao et al. [64]; Deng et al. [99]; Bouyer et al., [98]). Note that the overlap with H3K27me3 is

in all cases significantly smaller than expected by chance.

(A) Overlap of RBR1-ChIP with H3K27me3, 14 d seedlings (Bouyer): P(X< = 79) = 4.58E-14.

(B) Overlap of RBR1-ChIP with H3K27me3, 12 d seedlings (Deng): P(X< = 30) = 2.26E-18

and with FIE, 12 d seedlings (Deng): P(X< = 28) = 0.1122245, P(X> = 28) = 0.9194621.

(C) Overlap of RBR1-ChIP with H3K27me3 in germinating embryos (Xiao): P(X< = 74) =

2.32E-11 and with FIE in germinating embryos (Xiao): P(X< = 40) = 0.04813777, P(X> = 40) =

0.9656176.

(PDF)

S1 Table. RBR1-bound genes and TEs.

(XLSX)

S2 Table. Transcriptional information for RBR1-bound TEs from Oberlin et al. [45].

(XLSX)

S3 Table. Position of TEs with respect to gene features.

(XLSX)

S4 Table. RBR1-bound genes linked to replication, cell cycle, DNA repair and chromatin

(data source for S5 Fig).

(XLSX)

S5 Table. RBR1-bound genes upregulated in different DNA-stress experiments (data

source for Fig 6).

(XLSX)

S6 Table. Primers used in this study.

(XLSX)

S1 Appendix. Motifs in minimal meme format.

(PDF)

S2 Appendix. MCAST analysis (TE-motifs 1–3).

(HTML)
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Project administration: Arp Schnittger.

Genome-wide RBR1 binding sites in Arabidopsis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007797 November 30, 2018 27 / 35

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007797.s021
https://doi.org/10.1371/journal.pgen.1007797


Resources: Arp Schnittger.

Supervision: Arp Schnittger.

Writing – original draft: Maren Heese, Arp Schnittger.

Writing – review & editing: Daniel Bouyer, Maren Heese, Francois Roudier, Arp Schnittger.

References
1. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995; 81: 323–330. https://doi.

org/10.1016/0092-8674(95)90385-2 PMID: 7736585

2. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. Cold Spring Harbor Lab;

2016; 30: 1492–1502. https://doi.org/10.1101/gad.282145.116 PMID: 27401552

3. Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol.

2013; 14: 297–306. https://doi.org/10.1038/nrm3567 PMID: 23594950

4. Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell prolifera-

tion and differentiation through RETINOBLASTOMA-RELATED 1. Curr Opin Plant Biol. 2016; 29: 95–

103. https://doi.org/10.1016/j.pbi.2015.12.003 PMID: 26799131
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