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Abstract
The nucleocapsid protein (NCp7) of the Human immunodeficiency virus type 1 (HIV-1) is a

small basic protein containing two zinc fingers. About 2000 NCp7 molecules coat the geno-

mic RNA in the HIV-1 virion. After infection of a target cell, the viral core enters into the cyto-

plasm, where NCp7 chaperones the reverse transcription of the genomic RNA into the

proviral DNA. As a consequence of their much lower affinity for double-stranded DNA as

compared to single-stranded RNAs, NCp7 molecules are thought to be released in the cyto-

plasm and the nucleus of infected cells in the late steps of reverse transcription. Yet, little is

known on the cellular distribution of the released NCp7 molecules and on their possible in-

teractions with cell components. Hence, the aim of this study was to identify potential cellu-

lar partners of NCp7 and to monitor its intracellular distribution and dynamics by means of

confocal fluorescence microscopy, fluorescence lifetime imaging microscopy, fluorescence

recovery after photobleaching, fluorescence correlation and cross-correlation spectrosco-

py, and raster imaging correlation spectroscopy. HeLa cells transfected with eGFP-labeled

NCp7 were used as a model system. We found that NCp7-eGFP localizes mainly in the cy-

toplasm and the nucleoli, where it binds to cellular RNAs, and notably to ribosomal RNAs

which are the most abundant. The binding of NCp7 to ribosomes was further substantiated

by the intracellular co-diffusion of NCp7 with the ribosomal protein 26, a component of the

large ribosomal subunit. Finally, gradient centrifugation experiments demonstrate a direct

association of NCp7 with purified 80S ribosomes. Thus, our data suggest that NCp7 mole-

cules released in newly infected cells may primarily bind to ribosomes, where they may

exert a new potential role in HIV-1 infection.

Introduction
The nucleocapsid protein (NCp7) of the human immunodeficiency virus type 1 (HIV-1) is a
small basic protein resulting from the cleavage of the Gag polyprotein precursor by the viral
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protease. The mature form of NCp7 contains 55 amino acids forming two highly conserved
CCHC zinc-finger motifs connected by a short flexible linker and flanked by unfolded N- and
C-terminal basic domains (Fig. 1A) [1,2]. In their zinc bound form, the two zinc fingers exhibit
similar folding and are in close proximity [2–4].

NCp7 is endowed with key functions in the early and late phases of HIV-1 replication [5–
12]. These functions rely on its chaperone properties, which direct the rearrangement of nu-
cleic acids (NAs) into their most thermodynamically stable conformation [13–16]. Within the
reverse transcription complex (RTC), NCs are thought to be required for the initiation and the
two obligatory strand transfer reactions of viral DNA synthesis by the RT enzyme [8,17–24]. In
the nucleus, NCp7 may assist the integrase-mediated integration of the viral DNA into the host

Fig 1. Intracellular distribution of NCp7-eGFP. (A) Amino acid sequence of NCp7. Confocal images of HeLa cells expressing transiently eGFP (B) or
NCp7-eGFP (C, D). Comparison with the localization of DNA labeled by 1.6 μMHoechst 33342, (C) and RNA labeled by 1 μMPyronin Y. The cyan color of
the merge panel in (C) indicates colocalization of NCp7 with DNA in the nucleus. The nearly uniform yellow color of the merge panel in (D) indicates a strong
colocalization of NCp7 with RNA all over the cell.

doi:10.1371/journal.pone.0116921.g001
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cell DNA [25,26]. Later, during virus assembly, the nucleocapsid domain of the Gag polypro-
tein is responsible for the selection and packaging of the genomic RNA into assembling virions
[7,27–29]. Last, in the mature virus the genomic RNA dimer undergoes condensation and is
coated and protected by about 2000 molecules of NCp7 in the nucleocapsid substructure
[30–33].

Though the mechanism of the chaperoning functions of NCp7 has been widely studied, its
trafficking and interactions with cellular components during the early stages of infection are
unclear. Once viral DNA synthesis is completed, the RTC becomes the so-called preintegration
complex (PIC), which is the integration-competent HIV-1 complex that drives integration of
the viral DNA into the host cell DNA. However, the exact composition of the PIC and notably
its content in NCp7 as well as the timing of the viral capsid uncoating are debated (for review,
see [34]). Based on the much lower affinity of NCp7 for double-stranded DNA than for single-
stranded RNAs [17,35,36], it was hypothesized that NCp7 molecules are progressively released
during viral DNA synthesis [35,37]. In support of this hypothesis, immunolabeling of NCp7 in
H9 cells acutely infected with HIV-1, revealed a diffuse cytoplasmic localization of the protein
4 hours post infection as well as a nuclear localization 18 hours post infection, suggesting that
the released NCp7 molecules may diffuse in the cytoplasm and the nucleus [38]. Moreover,
NCp7 was also detected in the nucleus 8 hours post infection in infected P4 cells [39]. Due to
the large number of NCp7 molecules initially present in the infecting viruses, a significant frac-
tion might be released in the cytoplasm and in the nucleus of the infected cells. It remains that
the fate and possible role of these released NCp7 molecules are still unknown.

In this context, in order to characterize the possible intracellular distribution of these re-
leased NCp7 molecules and to identify their potential interactants, we used HeLa cells trans-
fected with eGFP-labeled NCp7 as a model. Using a combination of advanced quantitative
fluorescence microscopy techniques, we found that NCp7 was distributed in the cytoplasm and
the nucleoli where it mainly binds to ribosomal RNAs. Moreover, direct monitoring and map-
ping of the dynamics of NCp7 and ribosomal proteins further confirmed that NCp7 can bind
to ribosomes. Finally, the binding of NCp7 to purified 80S ribosomes was directly demonstrat-
ed by gradient centrifugation experiments.

Materials and Methods

1. Constructs
The NC domain of Gag was PCR amplified from the Gag-TC plasmid kindly provided by D.
Ott [40]. The PCR product was purified using a PCR purification kit (Macherey Nagel GmbH,
Germany), digested with BamH1 and then ligated in pEGFP-N1 to produce NC-eGFP. The in-
tegrity of all constructs was confirmed by DNA sequencing (GATC Biotech, Germany).

2. Cell Culture and DNA transfections
HeLa cells were cultured on 35 mm glass coverslips (μ-Dish IBIDI, Germany) in Dulbecco's
modified Eagle medium supplemented with 10% fetal calf serum (Invitrogen Corporation,
France) at 37°C in a 5% CO2 atmosphere. Transfection was performed with jetPEI (PolyPlus
transfection, France) according to supplier's recommendations. All experiments were done be-
tween 16–24 hours post DNA transfection.

The Hoechst 33342, Pyronin Y, Sytox Orange and RNase were purchased at Sigma Aldrich.
Staining of nucleic acids was performed by incubating live HeLa cells for 30 minutes with either
Hoechst 33342 (1.6 μM) or Pyronin Y (1 μM). For the RICS experiments, the Pyronin Y con-
centration was 10 nM and the incubation time was reduced to 5 minutes. Due to the high con-
centrations of RNAs in cells and the rather high binding affinity of Pyronin Y for RNAs [41],
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only marginal amounts of Pyronin Y molecules are expected to diffuse in their free form in the
cells. For Sytox Orange staining, cells were fixed for 15 minutes with 4% PFA solution, then
permeabilized using 1% saponin and incubated for 30 minutes with 2.5 μM Sytox Orange. To
digest the cellular RNAs, cells were treated for 30 minutes at 37°C by a mixture of RNaseA and
RNase T1 (Ambion Rnase cocktail, Life Technologies, France) added at 25 U/mL and 100 U/mL,
respectively.

3. Linear sucrose density gradient analysis
Human 80S ribosomes were purified from HeLa cells as previously reported [42] and incubated
with NCp7 for 30 minutes at 4°C. The mixture was loaded on 15–30% sucrose density gradi-
ents prepared in buffer A (20 mM Tris-HCl pH 7.5, 2 mMMg(OAc)2, 150 mM KCl) and cen-
trifuged at 25 000 rpm for 10.5 hours using a SW41 rotor. The gradients were fractionated and
fractions corresponding to the peak of 80S ribosomes were precipitated with cold acetone. Pro-
teins in the fractions were separated by SDS-PAGE and probed by western blotting using spe-
cific antibodies against NCp7 (polyclonal antibody kindly provided by R. Gorelick), RPS7
(abcam ab57637) and RPL26 (abcam ab59567), and peroxidase-labeled secondary antibody.
NCp7, RPS7 and RPL26-specific bands were visualized by luminescence.

4. Confocal microscopy and Raster Image Correlation Spectroscopy
Confocal microscopy and Raster Image Correlation Spectroscopy (RICS) experiments were
performed on a Leica SP2 microscope equipped with a 63× oil immersion objective (NA = 1.2).
eGFP fluorescence was excited with a 488 nm argon laser line and the emitted fluorescence
(500–550 nm) was detected by a PMT detector. The RICS analysis was performed using the
SimFCS software developed by the Laboratory for Fluorescence Dynamics (http://www.lfd.uci.
edu). For each cell, a stack of 50 images (256×256 pixels with a pixel size of 50 nm) was ac-
quired at 400 Hz (2.5 ms between the lines) with a pixel dwell time of 4.8 μs. Moving average
subtraction was performed to remove the contribution of slow moving structures and cellular
displacements [43]. The average spatial correlation was fitted by a three dimensional diffusion
model. A 50 nM solution of eGFP in water was used for calibrating the focal volume, assuming
that its diffusion constant D is 90 μm2/s [43].

5. Fluorescence correlation spectroscopy
FCS measurements were performed on a home-built multiphoton microscope based on an in-
verted microscope (IX70, Olympus, Japan) [44,45]. The excitation light at 900 nm was provid-
ed by a mode-locked Ti:Sapphire laser (Tsunami, Spectra Physics, CA) or a broad band Insight
Deep See laser (Spectra Physics, CA) delivering femtosecond pulses at 80 MHz frequency. The
laser beam was focused by a 60× (NA = 1.2) water immersion objective (Olympus, Japan).
Emitted fluorescence was filtered using a short-pass filter with a cutoff wavelength of 680 nm
(F75–680; AHF, Germany) and a band pass filter of 520/17 nm (F37–520; AHF, Germany).
The fluorescence was directed to a fiber-coupled APD (SPCM-AQR-14-FC; Perkin Elmer,
CA), and the normalized autocorrelation function was calculated on-line with a hardware cor-
relator (ALV5000, ALV GmbH, Germany).

The focal volume was measured prior to experiments using a 50 nM solution of tetra-
methylrhodamine (TMR) with a known diffusion coefficient (D = 592 μm2/s at 37°C) [46]. For
each condition, measurements were performed in the cytoplasm and the nucleus of 16 different
cells. For each measurement, 50 acquisitions of 5 seconds duration were realized and the auto-
correlation curves were calculated. Five averages of ten autocorrelation curves were calculated
and analyzed independently by the Quickfit software [47], using the anomalous diffusion

Cellular Dynamics and Interactions of HIV-1 Nucleocapsid Protein

PLOS ONE | DOI:10.1371/journal.pone.0116921 February 27, 2015 4 / 23

http://www.lfd.uci.edu/
http://www.lfd.uci.edu/


model:
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where Veff and<C> represent the effective focal volume and the average concentration of
fluorescent molecules, respectively while r0 and zz correspond to the lateral and axial dimen-
sions of the focal volume, respectively. τD corresponds to the transit time and α is a coefficient
related to the anomalous diffusion. The size of the beam waist in the focal plane was deter-
mined by a calibration measurement and the diffusion coefficients were calculated from the
transit time values:

D ¼ o2
XY

4tD
ð2Þ

Noticeably, Equation 2 only rigorously applies in the case of free diffusion [48]. Nevertheless,
for the sake of comparison, apparent diffusion constants were calculated with the same equa-
tion in case of anomalous diffusion [49].

Fluorescence cross-correlation spectroscopy (FCCS) measurements in live cells were per-
formed on the same setup, according to the recommendations of Bacia et al [50]. An excitation
of 1020 nm was provided by a femtosecond laser (Insight, Spectra Physics, CA) source. Fluo-
rescence emission was collected and separated from excitation by a first dichroic (SP 720 nm,
Semrock, NY). A second dichroic (LP 585, Chroma, VT) was used to split the emission in
green (BP 525–39, Semrock, NY) and red (BP 660–52, Semrock, NY) channels. The filters were
selected to minimize the bleed-through of eGFP and mCherry emission between the two chan-
nels. The bleed-through was quantified with cells expressing eGFP or mCherry alone. Power
intensity was adjusted to optimize the count rate and minimize the noise and saturation effects
for cells transfected with eGFP alone, mCherry alone, eGFP-mCherry fusion protein and with
eGFP and mCherry, simultaneously. The calibration of the focal volume at 1020 nm was per-
formed prior to experiments using a 50 nM solution of eGFP preliminary characterized at
930 nm by FCS measurements. FCS and FCCS correlation curves were obtained by averaging
60 measurements of 5 s for five different cells. Curves were calculated and analyzed indepen-
dently by the Quickfit software [47], using the anomalous diffusion model (1). Values of the
FCCS parameters were extracted with the Global FCCS Fit plugin of the Quickfit software.

6. Fluorescence lifetime imaging microscopy (FLIM)
Time-correlated single-photon counting FLIM was performed on the same two-photon micro-
scope as described for FCS, using an excitation wavelength of 900 nm. Imaging was carried out
with a laser scanning system using two fast galvo mirrors (Model 6210, Cambridge technology,
MA), operating in the descanned fluorescence collection mode. The fluorescence was directed
to a fiber coupled APD (SPCM-AQR-14-FC, Perkin Elmer, CA), which was connected to a
time-correlated single photon counting (TCSPC) module (SPC830, Becker & Hickl, Germany),
operating in the reversed start-stop mode. Typically, the samples were scanned continuously
for about 80 s to achieve appropriate photon statistics to determine the fluorescence decays.
Data were analyzed using a software (SPCImage V2.8, Becker & Hickl, Germany), which uses
an iterative reconvolution method to recover the lifetimes from the fluorescence decays. The
FRET efficiency reflecting the distance between the two chromophores was calculated
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according to:

E ¼ R6
0

R6
0 þ r6

¼ 1� tDA
tD

ð3Þ

where R0 is the Förster radius, r the distance between donor and acceptor, τDA is the lifetime of
the donor in the presence of the acceptor, and τD is the lifetime of the donor in the absence of
the acceptor.

7. Fluorescence Recovery After Photobleaching (FRAP)
FRAP experiments were performed on an iMIC microscope (Till Photonics, Germany)
equipped with a Cobolt Dual Calypso Laser 491/532 nm (Sweden) and a 60× TIRFM (1.45 NA)
objective (Olympus, Japan). Fluorescence images were acquired on an EMCCD camera (Andor
Tech, Ireland). To avoid possible artifacts of overexpression, only cells expressing low but de-
tectable amounts of protein were chosen for analysis. Briefly, five images were acquired in an
epifluorescence configuration before bleach. Photobleaching was done on a selected area in
confocal mode by a 488 nm (30% of intensity) laser scanning 30 lines during 30 ms. Recovery
was followed in epi configuration at 50 frames per second acquisition rate during 5–10 seconds.
For each time point, the intensity of the bleached region was corrected for the bleaching due to
the illumination during imaging and the fluorescence intensity was normalized to the pre-
bleached intensity. FRAP recovery curves were generated and fitted using the Offline Analysis
(Till Photonics, Germany). The normalized curves were fitted by a double exponential rise
model:

FðtÞ ¼ A1ð1� e�t=t1Þ þ A2ð1� e�t=t2Þ ð4Þ
where A1 and A2 represent the amplitudes and τ1 and τ2 the decay times of the two compo-
nents. The bleached surface S and the values of the recovery halftimes t1/2 were used to calculate
the diffusion coefficients:

D ¼ S
4t1=2

ð5Þ

For all measurements, cells were maintained at 37°C.

Results

1. Intracellular localization and binding partners of NCp7-eGFP
Fig. 1 shows typical HeLa cells expressing either eGFP (Fig. 1B) or NCp7-eGFP (Fig. 1C, D).
Unlike eGFP which is homogenously distributed all over the intracellular volume, NCp7-eGFP
is preferentially localized in the cytoplasm and the nucleoli of the transfected cells. NCp7-eGFP
is also observed in the nucleoplasm, but at a smaller intensity than in the other compartments.
The distribution differences between NCp7-eGFP and eGFP clearly indicate that the localiza-
tion of the former is mainly driven by NCp7. A nucleolar localization of NC proteins has been
reported for HIV-1 and Rous Sarcoma virus in chicken, mouse and human cells and seems to
be a common feature among retroviruses [51]. NC proteins may be retained in the nucleoli
through their binding to cellular proteins or RNAs [51]. Moreover, the accumulation of NCp7-
eGFP in the nucleoli suggests that it can cross the nuclear envelope, either by diffusion or by an
active transport. In the cytoplasm, the distribution is diffuse, indicating that NCp7 does not
bind to any specific cytosolic structure or compartment.
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Since the biological role of NCp7 is mainly related to its interactions with nucleic acids, we
compared its intracellular distribution with that of cellular DNAs and RNAs. Fig. 1C reports
cells expressing transiently NCp7-eGFP labeled with Hoechst 33342, a dye that binds specifi-
cally to the minor groove of DNAmolecules. As expected, we observed a strong signal in the
nucleus, due to the high concentration of cellular DNA in this compartment. This pattern does
not correspond to the NCp7-eGFP cellular distribution, though from the merge figure, it can
be seen that NCp7-eGFP and the Hoechst dye colocalize in the nucleus. Using the RNA specific
dye Pyronin Y [52,53], we observed a nearly perfect match of the intracellular distribution of
this label with NCp7-eGFP (Fig. 1D) that was confirmed by the uniform yellow color of the cell
in the merge panel. This colocalization of NCp7-eGFP with RNA all over the cell suggests that
cellular RNAs are the major targets of NCp7-eGFP expressed in HeLa cells. DNA molecules in
the nucleoplasm may also be binding partners for NCp7-eGFP, but both the lower accumula-
tion of NCp7-eGFP in the nucleoplasm as compared to the nucleoli and cytoplasm, and the
only partial colocalization of NCp7-eGFP with Hoechst suggest that DNA represent a less fa-
vored target as compared to RNA. This was expected, since NCp7 exhibits preferential binding
to RNAs [17,36], so that binding to cellular RNAs in the nucleoli and cytoplasm is more likely
than binding to DNA in the nucleoplasm.

In order to further evidence the interactions of NCp7 with cellular RNAs and DNAs, Fluo-
rescence Lifetime Imaging Microscopy (FLIM) was performed to monitor the Förster reso-
nance energy transfer (FRET) between NCp7-eGFP and Sytox Orange, a specific marker of
nucleic acids [54]. FRET corresponds to a non radiative energy transfer between a fluorescent
donor and an acceptor when they are less than 8 nm apart. This very short distance implies
that the labeled molecules interact together, so that FRET can be used to evidence intermolecu-
lar interactions [55–57]. In cells, FRET can be followed ideally by the FLIM technique that
measures the fluorescent decay at each pixel of the cell image. From these decays, the fluores-
cence lifetimes (τ) of the FRET donor could be extracted. These lifetimes are absolute parame-
ters that do not depend on the instrumentation or the local concentration of the fluorophores,
so they will be only sensitive to FRET. Therefore, the shortening of the fluorescence lifetime of
the donor by FRET provides a direct evidence for a physical interaction between NCp7-eGFP
and labelled NAs (reviewed in [58]). Sytox Orange was used as a FRET acceptor because its ab-
sorption spectrum overlaps the emission of eGFP. However, as this dye does not diffuse across
the plasma membrane, FLIM measurements were performed on fixed and permeabilized cells.
Noticeably, the permeabilization by saponin caused a slight decrease of the eGFP fluorescence
lifetime from 2.43 ns to 2.2–2.3 ns in both eGFP and NCp7-eGFP expressing cells (S1 Table).
Staining of eGFP-expressing cells with Sytox Orange caused a less than 5% decrease of the
eGFP lifetime in all cell compartments, with the exception of nucleoli, where a 9% decrease was
observed (Fig. 2A and 2B). This decrease likely resulted from the high concentration of Sytox
Orange molecules bound to the densely packed RNA in the nucleoli, so that the probability to
find Sytox Orange molecules close to eGFP molecules gets no more negligible [59]. However,
this decrease in the lifetime is small in comparison with the up to 25% decrease in the NCp7-
eGFP lifetime observed in the presence of Sytox Orange (Fig. 2C and 2D). Since the autofluor-
escence of the cells was found to represent less than 1% of the emission of NCp7-eGFP, this
large decrease in the lifetime can unambiguously be attributed to FRET, confirming a direct in-
teraction between NCp7-eGFP and labelled NAs. Interestingly, the FRET efficiencies observed
in the nucleoli and the cytoplasm (20–25%, Fig. 2D and Table 1) were markedly higher than
the FRET efficiency (13%) in the nucleoplasm, confirming that NCp7-eGFP proteins bind less
efficiently to DNA as compared to RNA.

To further evidence the NCp7/ RNA interactions, cells were subjected to an RNase treat-
ment to solely remove RNAs (Fig. 2E and Table 1). Results show that the FRET efficiencies
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Fig 2. Interaction of NCp7-eGFP with nucleic acids monitored by two-photon FLIM. Fluorescence lifetime color-coded images of eGFP (A, B) and
NCp7-eGFP (C, D, E) in the absence (A, C) or in the presence (B, D, E) of 2.5 μMSytox Orange. In panel E, a mixture of RNaseA and RNase T1 was added
at 25 U/mL and 100 U/mL, respectively. The time-resolved decays were fitted with a mono-exponential function. Excitation wavelength was 900 nm.
Emission of eGFP was selectively collected through a 515/10 nm filter to remove any contribution from Sytox Orange emission.

doi:10.1371/journal.pone.0116921.g002

Table 1. Fluorescence lifetimes and FRET efficiencies for cells expressing eGFP or NCp7-eGFP in the presence of Sytox Orange.

eGFP eGFP NCp7-eGFP NCp7-eGFP % NCp7-eGFP %

+ Sytox Orange + Sytox Orange FRET + Sytox Orange FRET

+ RNAse

τ (ns) τ (ns) τ (ns) τ (ns) τ (ns)

Whole cell 2.26±0.03 2.16±0.01 2.20±0.06 1.75±0.03 20 1.99±0.04 10

Cytoplasm 2.30±0.02 2.20 ± 0.02 2.24±0.07 1.69±0.04 25 1.97±0.03 12

Nucleus 2.20±0.02 2.11± 0.04 2.11±0.05 1.84±0.04 13 1.93±0.05 8.5

Nucleoli 2.20±0.02 2.0 ± 0.02 2.13±0.07 1.70±0.05 20 1.86±0.05 13

The lifetime values were extracted from FLIM color coded images such as in Fig. 2, and given as mean +/- SD for 10–13 cells. FRET efficiencies were

calculated by comparison with the lifetimes of NCp7-eGFP in the corresponding cell compartments. The SD for the FRET values is about 2%. Cells were

fixed with 4% PFA and permeabilized with 1% saponin, as described in Materials and Methods.

doi:10.1371/journal.pone.0116921.t001
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dramatically decreased both in the cytoplasm (from 25% to 12%) and the nucleoli (from 20%
to 13%). Both the high FRET values and their strong decrease upon RNase treatment confirm
that NCp7-eGFP interacts with cellular RNAs in the cytoplasm and the nucleoli. The residual
FRET observed after RNase treatment is probably due to complexes of NCp7 bound to incom-
pletely digested RNA fragments or to DNAs. A small decrease in the FRET efficiency was also
observed in the nucleoplasm (from 13% to 8.5%). Since DNA should not be affected by the
RNase treatment, this FRET decrease may reflect the digestion of nuclear RNAs, such as
mRNAs. Noticeably, the presence of incompletely digested RNAs in the nucleus after RNase
treatment suggested by the significant signal observed in this compartment (Fig. 2E) could be
explained by the rather soft cell permeabilization treatment based on saponin. As previously re-
ported [60], this detergent destabilizes cholesterol containing membranes and is thus not very
efficient for nuclear membrane permeabilization. As a consequence, the RNase molecules may
not efficiently enter into the nucleus and may thus incompletely digest the nuclear and nucleo-
lar RNAs.

Taken together, the data of Fig. 1 and Fig. 2 indicate that cellular RNAs are likely the major
binding partners of NCp7 in the cytoplasm and nucleoli. This conclusion is consistent with the
observation that HIV-1 particles contain in addition to the genomic RNA, representing about
half of the total RNA, an heterodisperse assortment of cellular RNA species, which are believed
to be encapsidated by the NC domain of Gag, in proportion to their cellular level [61].

2. Intracellular dynamics of NCp7-eGFP
To further characterize NCp7-eGFP in cells, we performed a series of quantitative fluorescence
microscopy experiments in order to explore its intracellular dynamics. In a first step, FRAP
measurements were performed to determine the fraction of NCp7-eGFP molecules that are
mobile in the intracellular environment and to obtain a first estimation of the NCp7-eGFP dif-
fusion rates in comparison to eGFP alone [62].

Approximately 5 μm2 areas in the cytoplasm and in the nucleus of eGFP and NCp7-eGFP
expressing cells were photobleached by a 488 nm laser (Fig. 3A). A time lapse sequence of 5–
10 seconds was acquired just after the bleaching in order to monitor the fluorescence recovery.
Representative experimental curves for eGFP and NCp7-eGFP are shown in Fig. 3B and 3C, re-
spectively. As shown by the distribution of the residuals, a double exponential fit (Equation 4
in Materials and Methods section) was required to adequately fit the recovery curve. This bi-
phasic shape of FRAP curves in the cellular environment is usually interpreted as a conse-
quence of molecular crowding and presence of obstacles [63–65]. The recovery curves show
that the diffusion of eGFP is much faster than that of NCp7-eGFP. The halftime of fluorescence
recovery t1/2 corresponds to 0.07s and 0.32 s for eGFP and NCp7-eGFP, respectively.

The values of t1/2 were used to estimate the diffusion coefficients according to Equation 5 in
Materials and Methods section. It should be noted that it represents only a rough estimation,
due to the experimental conditions (bleaching in confocal mode, observation in epi illumina-
tion) and the oversimplified 2D diffusion model used for fitting. In spite of these limitations,
the intracellular D value (*20 μm2/s, Fig. 4A) determined for eGFP was in good agreement
with the values reported in the literature [66,67]. The diffusion rate constant of NCp7-eGFP
was found to be*4 times slower than that of eGFP. As NCp7 is a relatively small protein
(Fig. 1A), its fusion to eGFP causes only a small increase of the hydrodynamic radius from
2.77 nm for eGFP alone [68] to 3.04 nm for NCp7-eGFP. This increase represents less than
10%, so that the 4-fold difference in the diffusion kinetics of these two proteins likely results
from the interaction of NCp7 with cellular partners.
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Another key information provided by FRAP measurements is the mobile fraction (MF) of
NCp7-eGFP molecules that can be deduced from the fluorescence level reached at equilibrium
after recovery. MF represents the percentage of fluorescent molecules that diffuse and thus ex-
change with the photobleached ones. On the opposite, the proportion of NCp7-eGFP mole-
cules bound to static or slowly moving cellular structures can be deduced from the immobile
fraction (1-MF). As shown in Fig. 4B, the MF of eGFP (representing freely diffusing control
molecule) is about 95% in the cytosol and 87% in the nucleus. Very similar percentages of MF
were obtained for NCp7-eGFP in both the cytoplasmic (87%) and nuclear compartments
(88%), indicating that NCp7-eGFP molecules form mobile complexes with their cellular part-
ners and notably RNAs, and that only a small fraction (if any) of the NCp7-eGFP molecules
are bound to immobile structures.

Fig 3. FRAP experiments in eGFP and NCp7-eGFP expressing cells. (A) Time lapse sequence of typical FRAPmeasurements in the cytoplasm of an
NCp7-eGFP expressing cell. The bleached region is highlighted by the red circle. Normalized fluorescence recovery curves of (B) eGFP and (C) NCp7-eGFP
in the cytoplasm. For both eGFP and NCp7-eGFP, the distribution of residuals indicated a much better fit of the recovery curves with a double exponential as
compared to a single exponential fit.

doi:10.1371/journal.pone.0116921.g003
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To more accurately characterize the intracellular dynamics of NCp7-eGFP, we performed
FCS [69–72] and RICS [43,66,73] measurements. Both methods characterize the translational
diffusion of fluorescent molecules (or molecular complexes). They are based on the analysis of
fluorescence fluctuations during the diffusion of fluorescent molecules through the focal vol-
ume of the microscope. FCS provides information about the diffusion time and mode, the local
concentration, and about the molecular brightness of the diffusing fluorescent species. The in-
tensity profile of the fluorescence signal at different locations in cells expressing eGFP or
NCp7-eGFP was recorded over time and was analyzed by an autocorrelation function (Fig. 5).
The autocorrelation curves were adequately fitted with a 3D anomalous diffusion model with
one population (Equation 1 in Materials and Methods section). The fit was significantly better
than with a free 3D diffusion model with one component, as shown by the residuals (Fig. 5A).
Alternatively, a good fit was also obtained with a free 3D diffusion model with two populations,
corresponding to free and bound NCp7-eGFP molecules (data not shown). In this case, the
fraction of free NCp7-eGFP molecules did not exceed 5%, suggesting that the vast majority of
NCp7-eGFP molecules are bound to cellular components, Moreover, the diffusion constant of
the slow component was found to be very similar to the diffusion coefficient obtained with the
anomalous diffusion model (data not shown).

The autocorrelation curves of NCp7-eGFP were then compared with those of the freely dif-
fusing eGFP protein (Fig. 5B). For eGFP, the ratio of its diffusion coefficient (D) in the intracel-
lular environment to the one in water (D0) was found to be 0.306 for the cytosol and 0.280 for
the nucleus, in good agreement with previously reported values in HeLa cells, swiss 3T3 fibro-
blasts and MCKD cells [74–76]. For NCp7-eGFP, its D value in the cytoplasm (4.5 ± 1 μm2/s,
Table 2) was found to be 8 times slower than the eGFP one (34 ± 3 μm2/s). Similarly, a 5.5-fold
difference was observed between the corresponding D values in the nucleus. These large

Fig 4. FRAP-based estimation of diffusion coefficient values (A) andmobile fraction (B) of eGFP and
NCp7-eGFP in the cytoplasm and in the nucleus.

doi:10.1371/journal.pone.0116921.g004
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differences between NCp7-eGFP and eGFP clearly confirmed that NCp7-eGFP molecules dif-
fuse in the cell in the form of complexes of rather large molecular weight as compared to eGFP
molecule. Moreover, the anomalous diffusion coefficient α was found to be close to 1 for eGFP,
which indicates that eGFP molecules diffuse in a regime close to free diffusion both in the cyto-
plasm and the nucleus. For NCp7-eGFP, the average α value is 0.65 ± 0.03 in the cytosol and

Fig 5. FCSmeasurements in eGFP and NCp7-eGFP expressing HeLa cells. (A) Experimental autocorrelation function (blue) of NCp7-eGFP in HeLa
cells fitted with a model for free (green) and anomalous (red) 3D diffusion. The residuals indicate that a better fit was obtained with the anomalous diffusion
model. (B) Comparison of autocorrelation curves for eGFP and NCp7-eGFP diffusion in the cytoplasm of HeLa cells. Fits (solid lines) were performed with the
anomalous diffusion model. (C) Histogram of the brightness analysis for eGFP and NCp7-eGFP (N = 16).

doi:10.1371/journal.pone.0116921.g005

Table 2. Diffusion coefficients (D) and anomalous coefficients (α) inferred from FCS and RICS
measurements of eGFP and NCp7-eGFP expressing cells.

Cytoplasm Nucleus

D (μm2/s) α D (μm2/s) α

FCS eGFP 34 ± 3 0.92 ± 0.08 31 ± 1 0.95 ± 0.09

NCp7-eGFP 4.5 ± 1 0.65 ± 0.03 7 ± 3 0.60 ± 0.09

RICS eGFP 28 ± 3 25.5 ± 2

NCp7-eGFP 3 ± 1 5 ± 2

The D and α values are given as means +/- SD for 800 correlation curves in 16 cells (FCS) and 40

measurements in 10 cells (RICS).

doi:10.1371/journal.pone.0116921.t002
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0.60 ± 0.09 in the nucleus, indicating that the motion of the NCp7-containing complexes is
substantially slowed down either by the obstructed environment [77] or by transient binding
events to cytoplasmic or nuclear components [78].

Moreover, FCS curves allowed us to further determine the brightness of these complexes,
which is obtained by dividing the average number of photons emitted per second by the aver-
age number of fluorescent species diffusing through the focal volume. Comparing this value
with the brightness of the eGFP molecules (considered as monomers) measured in the same
conditions, helped us to determine the number of NCp7-eGFP molecules in the diffusing com-
plexes. Brightness analysis (Fig. 5C) showed that the complexes do not contain more than two
NCp7-eGFP molecules, clearly excluding that the complexes correspond to high molecular
weight NCp7-eGFP aggregates.

Taken together, our data suggest that NCp7-eGFP molecules diffuse in both the nuclear and
the cytoplasmic compartments in the form of large complexes that contain only one or two
NCp7-eGFP molecules.

In order to map the spatial diffusion of NCp7-eGFP, FCS measurements were completed by
RICS measurements. RICS analyses the fluorescence intensity fluctuations between neighbor-
ing pixels by spatially autocorrelating the image in x and y directions [66]. The fluorescence
signal is acquired while the laser beam scans a region of the cell (Fig. 6A), generating a stack of
50–100 images. Afterwards, an average spatial correlation surface of these images is calculated
(Fig. 6B) and fitted with a 3D diffusion model (Fig. 6C) in order to obtain information about
the diffusion and the concentration of fluorescent molecules. Because the pixel dwell time
(*μs) is much shorter than the time period between two lines (*ms), the amplitude of the
spatial correlation surface (SCS) in the x direction reflects fast diffusion processes. Correspond-
ing amplitudes appear in the y direction, when slowly diffusing molecules are present. As ex-
pected, the SCS of the rapidly diffusing eGFP molecules has significant amplitude only in the x
direction, while for NCp7-eGFP, it broadens in the y direction, confirming the slower motion
of the NCp7-containing complexes (Fig. 6B). The main advantage of RICS compared to FCS
for cellular measurements is its lower sensitivity to photobleaching. Since the laser beam is
scanning during the acquisition, the illumination time of the excited molecules is much shorter
compared to FCS (μs versus ms). The average values of diffusion coefficients measured for
eGFP and for NCp7-eGFP by RICS are summarized in Table 2 and are in full agreement with
the FCS data, confirming that NCp7-eGFP molecules bind to its cellular partners within
large complexes.

Another advantage of the RICS approach is the possibility to choose the size of the analyzed
area. The lower size limit of this area is given by the distance travelled by the protein during the
scan and corresponds to 2 μm2 (40x40 pixels) for the fast moving eGFP. Consequently, in a
stack of images of 1024x1024 pixels, we calculated the D values in windows of 64x64 pixels to
draw the diffusion maps of eGFP and NCp7-eGFP in HeLa cells (Fig. 7). For eGFP, the diffu-
sion coefficients are in the range of 20–40 μm2/s, with a large majority of values being com-
prised between 25 and 35 μm2/s, in line with previous reports [67]. The distribution of D
values was rather homogeneous all over the cell, with no obvious deviation for any compart-
ment. For NCp7-eGFP, the overall D values were much lower and differences in the D values
between cell compartments appeared. In the cytoplasm, the diffusion D values were homo-
geneously distributed between 1.5 and 4 μm2/s all over the cytoplasm, thus no specific region
of lower or higher mobility could be evidenced. The diffusion in the nucleus was found to be
faster and more heterogeneous than in the cytoplasm, being comprised between 3.5 and
6.5 μm2/s. Preliminary tracking experiments suggested that these rather high D values in the
nucleoplasm may be related to a directed transport of the NCp7-containg complexes in this
compartment (data not shown). Further studies are in due course to clarify the mechanism of
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this directed motion. In contrast, the D value drops to*0.5 μm2/s in the nucleoli, indicating
that the NCp7-eGFP molecules probably form larger complexes with cell partners in the nucle-
oli than in the nucleoplasm or that the NCp7-containing complexes are further slowed down
by the dense and compact environment of the nucleoli.

As NCp7 molecules were found to be largely associated with RNAs in the cytoplasm (Figs. 1
and 2), we next compared the cytoplasmic diffusion of NCp7-eGFP with the diffusion of cellu-
lar RNAs labeled with Pyronin Y. The average diffusion coefficient of cytoplasmic RNAs
(5.8 +/- 1 μm2/s) is significantly higher than the NCp7-eGFP one (3.2 +/- 0.9 μm2/s), suggest-
ing that NCp7-eGFP does not bind randomly to all cellular RNAs but interacts preferentially
with large RNA molecules and/or with RNA molecules within ribonucleoprotein complexes.
Since ribosomal RNAs represent about 80% of the total RNA in HeLa cells [79], it was tempt-
ing to speculate that NCp7 binds rRNAs in ribosomes. To further test this hypothesis, we
measured the diffusion constant of the ribosomal protein L26 (RpL26), taken as an example.
L26 is located at the surface of the large ribosomal 60S subunit. Interestingly, the D values
(4.0 +/- 1.5 μm2/s) of RpL26-eGFP were close to those of NCp7-eGFP, strengthening the
hypothesis that NCp7-eGFP binds RNAs in ribosomes.

Fig 6. NCp7-eGFP dynamics in HeLa cells monitored by RICS. (A) A series of confocal images of eGFP and NCp7-eGFP expressing cells was acquired.
A 128x128 pixel region was analyzed by calculating the two-dimensional spatial autocorrelation function represented as a spatial correlation surface (B) that
was fitted by a 3D diffusion model (C), revealing the values of the diffusion coefficients and the number of diffusing molecules.

doi:10.1371/journal.pone.0116921.g006
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To further confirm the interaction between NCp7 and ribosomes, FCCS experiences were
performed on HeLa cells co-transfected with RpL26-eGFP and NCp7-mCherry. The FCCS
technique correlates the temporal fluorescence fluctuations coming from two differently la-
beled molecules diffusing through the small sample volume defined in our case by a two-pho-
ton excitation. In the absence of spectral bleed-through, the cross-correlation function is
different from zero only if both labeled proteins diffuse together, which implies that they be-
long to the same complex. A typical FCCS curve recorded on cells co-expressing RpL26-eGFP
and NCp7-mCherry is shown in Fig. 8 (black trace), showing that the two proteins diffuse to-
gether and thus, belong to the same complex. It should be noted that these results show only
that the two proteins are parts of the same ribonucleoprotein complex but not that they directly
interact together. Quantitative analysis of FCCS curves revealed that the complexes containing
both labeled proteins diffuse with a diffusion constant of 4 (+/- 3) μm2/s, fully consistent with
the diffusion constants of the NCp7-eGFP and RpL26-eGFP proteins measured by RICS. Fur-
thermore, comparative analysis of the FCCS curve (Fig. 8, black curve) with the autocorrelation
curves of NCp7-mCherry (Fig. 8, red curve) and RpL26-eGFP (Fig. 8, green curve) shows that
between 40 to 70% of NCp7-mCherry molecules cross-correlate with RpL26-eGFP. Thus, the
FCCS data clearly indicate that NCp7 and RpL26 diffuse together in the cytoplasm within the
same ribosomal complex.

Finally, we performed gradient centrifugation experiments to directly assess whether NCp7
associates with purified 80S ribosome (Fig. 9). Purified human ribosomes were incubated in
the absence or in the presence of purified NCp7 and submitted to fractionation experiments on
a linear 15–30% sucrose gradient. The central peak fractions (Fig. 9A) were collected and ana-
lyzed by western blot. Antibodies directed against RpS7 and RpL26 proteins, present in the
small and large ribosomal subunit, respectively were used to detect the ribosomes, while NCp7

Fig 7. Confocal images (A, C) and RICS-based diffusion maps (B, D) of eGFP and NCp7-eGFP in HeLa
cells. The color coded images (B, D) represent the values of the diffusion coefficients measured in the cell.
The blue colors at the cell borders are artifacts, due to averaging with the exterior of the cells. Confocal
images for the same cells (A, C) are given to identify the cell compartments and contour.

doi:10.1371/journal.pone.0116921.g007
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was detected with a polyclonal antibody. A strong cosedimentation of NCp7 and ribosomal
proteins (Fig. 9B, compare lanes 3 to lanes 1 and 2) was observed when NCp7 was incubated
with the ribosomes prior to centrifugation, demonstrating a clear association of NCp7 with the
80S ribosome.

Discussion
NCp7 is a nucleic acid chaperone protein with key functions in the early and late phases of
HIV-1 replication. Its implications in the reverse transcription process are extensively docu-
mented (for reviews, see [12,17,22,80]), but only little is known on NC's fate following the com-
pletion of viral DNA synthesis. A model was recently proposed in which due to its lower
affinity for dsDNA as compared to ssDNA and vRNA, a large fraction of NCp7 is believed to
be released in the cytoplasm during viral DNA synthesis by RT, so that only a small fraction of
NCp7 molecules remains associated with the PIC to activate viral DNA integration by the IN
enzyme [35,37]. This model is supported by the fact that NCp7 is present at a low level in the
nucleus of newly infected cells and barely detectable in the PIC by biochemical techniques
[25,38,39,81]. The intracellular distribution and biological role of NCp7 molecules released
from the incoming viral particles in newly infected cells are yet totally unknown. In an attempt

Fig 8. FCCSmeasurements on HeLa cells expressing RpL26-eGFP and NCp7-mCherry. The green, red and black curves denote the autocorrelation
curve of RpL26-eGFP in the green channel, the autocorrelation curve of NCp7-mCherry in the red channel, and the cross-correlation curve between the two
channels, respectively. As a negative control, the blue curve corresponds to the cross-correlation between eGFP and mCherry proteins co-expressed in
HeLa cells. The close to zero value of the FCCS curve of the negative control not only shows that the two fluorescent proteins do not diffuse together, but also
that there is marginal spectral bleed-through between the green and red channels. The solid lines correspond to the fit of the curves to the anomalous 3 D
diffusion model. Diffusion constants of 5.6 (+/- 0.7) μm2/s, 6 (+/- 3) μm2/s and 4 (+/- 3) μm2/s were obtained for RpL26-eGFP (green), NCp7-mCherry (red)
and the RPL26-eGFP/NCp7-mCherry complex (black), respectively.

doi:10.1371/journal.pone.0116921.g008
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to explore the fate and possible roles of NCp7 dissociating from the incoming virions, we used
a model system based on the expression of eGFP-labeled NCp7 in HeLa cells to study by a
combination of fluorescence microscopy techniques the intracellular distribution and dynam-
ics of labeled NCp7, in order to identify its possible intracellular ligands.

Confocal microscopy (Fig. 1) showed that eGFP-NCp7 mainly localizes in the cytoplasm
and the nucleoli. The presence of NCp7 in the nucleoli and to a lower extent in the nucleo-
plasm, is in line with the nuclear localization of NCp7 after infection [38,39] and the possible
chaperoning role of NCp7 in vDNA integration by the viral integrase [32,82–84]. In agreement
with the data reported by Lochmann et al. [51], our results show also that NCp7 can enter into
the nucleus independently of the PIC. Colocalization studies further revealed a nearly perfect
match of the intracellular distribution of NCp7 and cellular RNAs. In addition, the high FRET
efficiency observed by FLIM between Sytox Orange labeled nucleic acids and NCp7-eGFP to-
gether with the large drop of this FRET efficiency upon RNase treatment (Fig. 2) clearly

Fig 9. NCp7 cosediments with 80S ribosomes. (A) Sucrose gradient fractionation profile of purified 80S
ribosomes (0.9 μM) incubated with NCp7 (13.3μM). Ribosome/NCp7 ratio was about 1/15. The peak
fractions (8–9) were precipitated and further analyzed by western blot. (B) Western blot of fractions 8–9 from
sucrose gradient fractionations performed with only NCp7 peptide (lanes 1); only 80S ribosomes (lanes 2);
and 80S ribosomes and NCp7, together (lanes 3). NCp7 and ribosomal proteins were detected with
polyclonal NCp7 and RpS7 antibodies, and monoclonal RpL26 antibodies. As a control, 90 nM of NCp7
peptide was loaded (4).

doi:10.1371/journal.pone.0116921.g009
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indicate that NCp7 directly interacts with cellular RNAs both in the cytoplasm and the nucle-
oli. Thus, cellular RNAs appear to be the major intracellular ligand of NCp7. This high tropism
for cellular RNAs may well explain why about half of the total virion RNA consists of cellular
RNA species, probably packaged via the NC domain of Gag [61]. The binding of NCp7 to cel-
lular RNAs is likely poorly specific since analysis of the composition of the cell RNA species in
the virions revealed that they were roughly in proportion to their level in the cell [61].

The significantly lower amount of NCp7 and lower FRET efficiency in the nucleoplasm, to-
gether with the lower sensitivity of the FRET efficiency upon RNase treatment further suggest
that NCp7 can also bind to double-stranded DNAs in the nucleus, but less efficiently than to
RNAs. This conclusion is in line with the significantly lower affinity for double-stranded
DNAs in comparison with single stranded RNA and DNA sequences [17,36]. FRAP (Fig. 4)
and FCS (Fig. 5, Table 2) experiments further showed that the intracellular concentration of
free NCp7-eGFP was negligible and that nearly all NCp7-eGFP molecules diffused in the form
of complexes of rather high molecular weight. Moreover, most of these complexes were found
to be mobile, being able to diffuse, while only a limited fraction of these complexes were associ-
ated with slowly moving or immobile structures. Interestingly, only one or two molecules of
NCp7 per complex were found. This clearly excludes any cooperative binding of NCp7 to its
cellular partners and strengthens the hypothesis that NCp7 may bind rather uniformly to RNA
molecules in the cell. This low amount of proteins in the complexes may be explained by the
high concentration of RNAs in the cell and the fact that in all experiments, we used cells dis-
playing low to moderate expression of NCp7-eGFP. Moreover, the absence of cooperative
binding of NCp7 to RNAs is in agreement with in vitromeasurements showing, at best, a mod-
erate cooperative binding of NCp7 to model RNAs [85,86]. Finally, RICS (Figs. 6–7) and FCCS
experiments (Fig. 8) together with sucrose gradient fractionation data (Fig. 9) indicated that
NCp7 was associated, in the cytoplasm, with ribosomes, probably via a binding with rRNAs, as
the latter represent about 80% of all RNA in HeLa cells [79]. Therefore, as a non specific RNA
binding protein, NCp7 will have a strong probability to bind to rRNAs. In addition, a number
of ribosomal proteins including RpL26 were identified as NCp7 potential cellular partners in
screens based on affinity tagging purification combined with mass spectrometry [87], clearly
indicating that they potentially constitute with rRNA, additional binding sites for NCp7 in the
ribosomes. Thus, ribosomes appear to be a major target for NCp7. Along this line, the mobile
and immobile fractions of complexes seen by FRAP in the cytoplasm may tentatively be
attributed to free and membrane-bound ribosomes, while the high concentration of NCp7 in
the nucleoli may be related to the high molecular weight precursors of ribosomes in this com-
partment. Moreover, the binding of NCp7 to these high molecular weight precursors in the
crowded environment of the nucleoli may well explain the low diffusion coefficients observed
in this compartment. Since in the ribosome biogenesis, the ribosome precursors need to shuttle
through the nucleoplasm to reach the cytoplasm, the complexes of NCp7 with these ribosome
precursors may belong to the RNase-sensitive population of complexes seen by FRET/FLIM in
the nucleoplasm.

In conclusion, our data indicate that NCp7 expressed in HeLa cells shows a binding tropism
for RNAs, notably for rRNAs in ribosomes. It can thus be proposed that NCp7 leaving the
RTC during and/or after viral DNA synthesis by RT in newly infected cells will first bind to ri-
bosomes. As a consequence, NCp7 may influence protein synthesis, thus contributing to the in-
fection process. Experiments are in progress to further characterize the interactions of NCp7
with ribosomes and ribosomal proteins, in order to tackle the new potential role of NCp7 in
HIV-1 infection and replication.
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