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ARTICLE

Hepatocyte-specific loss of GPS2 in mice reduces
non-alcoholic steatohepatitis via activation of
PPARα
Ning Liang1, Anastasius Damdimopoulos1, Saioa Goñi1, Zhiqiang Huang1, Lise-Lotte Vedin 2,

Tomas Jakobsson2, Marco Giudici1, Osman Ahmed 2, Matteo Pedrelli2, Serena Barilla1, Fawaz Alzaid 3,

Arturo Mendoza4, Tarja Schröder2, Raoul Kuiper2, Paolo Parini2,5,6, Anthony Hollenberg4, Philippe Lefebvre 7,

Sven Francque 8,9, Luc Van Gaal9,10, Bart Staels7, Nicolas Venteclef3, Eckardt Treuter1 & Rongrong Fan1

Obesity triggers the development of non-alcoholic fatty liver disease (NAFLD), which

involves alterations of regulatory transcription networks and epigenomes in hepatocytes.

Here we demonstrate that G protein pathway suppressor 2 (GPS2), a subunit of the nuclear

receptor corepressor (NCOR) and histone deacetylase 3 (HDAC3) complex, has a central

role in these alterations and accelerates the progression of NAFLD towards non-alcoholic

steatohepatitis (NASH). Hepatocyte-specific Gps2 knockout in mice alleviates the develop-

ment of diet-induced steatosis and fibrosis and causes activation of lipid catabolic genes.

Integrative cistrome, epigenome and transcriptome analysis identifies the lipid-sensing per-

oxisome proliferator-activated receptor α (PPARα, NR1C1) as a direct GPS2 target. Liver gene

expression data from human patients reveal that Gps2 expression positively correlates with a

NASH/fibrosis gene signature. Collectively, our data suggest that the GPS2-PPARα part-

nership in hepatocytes coordinates the progression of NAFLD in mice and in humans and

thus might be of therapeutic interest.
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Non-alcoholic fatty liver disease (NAFLD) is a chronic liver
metabolic disorder which affects up to 30% of the adult
population1. The severity of NAFLD ranges from simple

steatosis to more severe stages of non-alcoholic steatohepatitis
(NASH), characterized by liver inflammation, cell ballooning, and
apoptosis1,2. Multiple factors such as lipotoxicity, insulin resis-
tance, and inflammation act in parallel to trigger the disease
development1–3. Progress in understanding the role of promoting
factors during disease development has revealed putative ther-
apeutic targets including transcription factors (TFs), such as
farnesoid X receptors (FXRs)4, liver X receptors (LXRs)5, thyroid
hormone receptor (TR) β6, and peroxisome proliferator-activated
receptors (PPARs)7. Further targets are lipid-modulating and
glucose-modulating enzymes, such as diglyceride acyltransferase
(DGAT)8, Acetyl-CoA carboxylase (ACC)9, fatty acid synthase
(FASN)10, AMP-activated protein kinase (AMPK)11, and meta-
bolic hormones, such as incretins12 and fibroblast growth factors
(FGFs)13,14. Although gene expression (transcriptome) analysis
during NAFLD progression15,16 has identified a variety of dif-
ferentially expressed marker genes, it has remained difficult to
demonstrate whether differential expression is also the cause of
disease progression in humans. NASH therapy remains challen-
ging, in part due to the lack of understanding of the underlying
molecular events that control those changes1–3.

Genetically modified mice and genome-wide sequencing
approaches have revealed an intrinsic relationship between tran-
scriptomes (gene expression patterns) and epigenomes (chromatin
modifications) that is directly linked to the action of diverse
coregulators2,17–19. In contrast to well-studied TFs, the (patho-)
physiological role of coregulators and epigenome alterations for
the development of fatty liver disease remains to be explored.
Notably, alterations in the expression and function of the histone
deacetylase 3 (HDAC3) corepressor complex in macrophages and
adipocytes have been linked to metabolic-inflammatory diseases,
such as obesity and type 2 diabetes in humans20–22. In addition to
HDAC3, structural core subunits of the complex include nuclear
receptor corepressor (NCOR) (also NCOR1, N-CoR), silencing
mediator of retinoid and TRs (SMRT, also NCOR2), and G pro-
tein pathway suppressor 2 (GPS2), all three of which have been
originally identified as nuclear receptor-binding proteins, and the
transducing beta-like proteins TBL1 and TBLR1 serving as cor-
egulator exchange factors21,23–25. Previous studies have demon-
strated that removal of NCOR, SMRT, and HDAC3 from
hepatocytes in knockout (KO) mice results in increased steatosis
due to disturbed lipid metabolic pathways and circadian signaling
governed by TRs26,27, LXRs28, and Rev-Erbs29. PPAR-dependent
genes were increased in the Ncor and Smrt KO models, supporting
a role of these subunits in PPAR repression consistent with
additional studies28,30,31. However, increased fatty acid oxidation
upon removal of these subunits was not sufficient to reverse the
steatosis phenotype driven by other nuclear receptor-dependent
pathways including lipogenesis. One explanation could be that
lipogenesis is necessary for the generation of endogenous PPARα
ligands32. Surprisingly, TBL1 deficiency in hepatocytes resulted in
reduced fatty acid oxidation, pointing at a PPARα-activating
function of TBL1 independent of the corepressor complex33. The
specific KO phenotypes of different subunits of what is thought to
be the same corepressor complex suggests multiple target TFs to
be affected, resulting in the modulation of in part opposing
metabolic liver pathways, such as fatty acid oxidation versus
lipogenesis. These data also raise the intriguing possibility that
metabolic liver pathways that protect against NAFLD/NASH are
controlled by a different corepressor subunit or sub-complex, the
identity of which remains to be explored.

In this study, we discover a role of the GPS2 subunit in the
progression of NAFLD/NASH in both mice and humans by

combining the study of liver-specific Gps2 KO (LKO) mice with
correlative analysis of human transcriptome datasets15,16.
Through diet-induced mouse models of fatty liver disease along
with next-generation sequencing analysis we provide evidence
that Gps2 ablation improved liver steatosis and fibrosis, which
correlated with the selective activation of lipid catabolic genes. By
analyzing cistrome (GPS2 ChIP-seq), epigenome (H3K27ac,
H3K4me3 ChIP-seq), and transcriptome (RNA-seq), we identi-
fied PPARα as a direct GPS2 target TF and verified the interplay
of the two factors in single and double KO mice. Our analysis
further reveals that GPS2 in hepatocytes functionally cooperates
with NCOR but not with SMRT to repress PPARα. As these data
collectively suggest that GPS2 promotes the progression of fatty
liver disease via antagonizing PPARα, the selective therapeutic
modulation of GPS2–PPARα interactions could be of interest for
future disease interventions.

Results
Hepatocyte Gps2 depletion improves MCD-induced fibrosis in
mice. We first explored the function of GPS2 in vivo using
hepatocyte-specific Gps2 LKO mice (Fig. 1a). QPCR and western
blot was performed to ensure the tissue-specific KO of Gps2
(Supplementary Fig. 1a–c). Gps2 LKO mice started to show
reduced body weight comparing with WT mice at the age of
14 months old (Supplementary Fig. 1d). Gps2 LKO triglyceride in
the very low-density lipoproteins (VLDL) fraction presented
more than 50% reduction compared to WT mice, along with the
total serum triglyceride level (Supplementary Fig. 1e). Lipoprotein
triglyceride metabolism is tightly regulated via hepatic production
and hydroxylation, but we found that serum (LPL) and hepatic
lipoprotein lipase (HL) activities (Supplementary Fig. 1f) were
similar between the two groups, suggesting decreased hepatic
VLDL production rather than increased lipase activity. Intrigu-
ingly, Gps2 LKO mice showed more than 50% increase in ketone
body production in both fed and fasted state, suggesting a higher
level of lipid oxidation in the LKO mice (Fig. 1b). This was fur-
ther supported by enhanced oxygen consumption rate (OCR) in
GPS2 knockdown AML12 cells both in basal and fatty acid
abundant conditions (Fig. 1c). Notably, serum lipoprotein and
intra-hepatic cholesterol levels were similar between WT and
LKO mice (Supplementary Fig. 1g, h).

We further challenged the mice for 4 weeks with a fibrogenic
methionine-deficient and choline-deficient diet (MCD). Both
WT and LKO mice showed more than 30% of body weight loss
yet no comparable difference between the two groups during
the MCD feeding (Supplementary Fig. 1i). Liver expression of
Gps2 and Tbl1, but not of Ncor or Smrt, was increased upon
MCD feeding for 2 and 4 weeks (Supplementary Fig. 1j). After
4 weeks MCD feeding, LKO mice showed a significant
reduction of serum aspartate transaminase (AST) and alanine
transaminase (ALT) activity, suggesting alleviated liver damage
(Fig. 1d, e). Hematoxylin and eosin (HE) staining indicated
reduced liver steatosis in LKO mice after MCD feeding (Fig. 1f),
consistent with reduced liver triglyceride content (Fig. 1g).
Serum lipoprotein triglyceride was not changed in MCD-fed
mice (Supplementary Fig. 1k). Liver cholesterol levels were also
not changed by Gps2 ablation (Supplementary Fig. 1l). Con-
sistently, Sirius red staining of the MCD-fed WT and LKO mice
showed improved liver fibrosis in the LKO group upon MCD
feeding (Fig. 1h, i), confirmed by hydroxyproline analysis
(Fig. 1j).

As lipid-induced fibrosis progression is also highly related to
liver inflammation34, we treated mice with lipopolysaccharide
(LPS) and tested the pro-inflammatory gene expression in the
livers (Supplementary Fig. 1m). While Il1b, Il6, Tnfα, Ccl2 and
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Fig. 1 Hepatocyte Gps2 depletion in mice improves MCD-induced fibrosis. a Flowchart representing the Gps2 floxed mice generation and LKO strategy.
b Fed and fasted ketone body analysis, fed n= 5, fasted n= 11, one-way ANOVA followed by Tukey’s test. c Mitochondrial respiration reflected by OCR
levels in BSA or BSA-palmitate treated control (shLuc) and GPS2 knockdown (shGPS2) AML12 cell lines (left panel) and area under the curve calculations
(right panel), n= 13, one-way ANOVA followed by Tukey’s test. (d) Serum ALT and (e) AST activity in chow diet (CD) and MCD-treated WT and LKO
mice, n= 4 in CD and n= 8 in MCD, one-way ANOVA followed by Tukey’s test. (f) H&E staining; (g) liver triglyceride, n= 6 in WT CD, n= 7 in LKO CD,
n= 7 in WT MCD and n= 5 in LKO MCD; (h) surius red staining; (i) liver sirius red staining quantification, n= 8 in WT CD, n= 6 in LKO CD, n= 8 in WT
MCD, n= 13 in LKO MCD; (j) liver hydroxyproline test, n= 4 in CD groups, n= 6 in WT MCD, n= 7 in LKO MCD; (k) F4/80 staining; (l) F4/80 staining
quantification, n= 8 in WT CD, n= 6 in LKO CD, n= 5 in WTMCD, n= 6 in LKOMCD; and (m) qPCR analysis of gene expression, n= 5–7 in each groups,
one-way ANOVA followed by Tukey’s test. All data are represented as mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09524-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1684 | https://doi.org/10.1038/s41467-019-09524-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Ccl7 were all induced by LPS, they showed no difference between
the WT and LKO groups.

However, F4/80 staining demonstrated reduced macrophage
infiltration in MCD-fed LKO mice compared with WT mice
(Fig. 1k, l). QPCR analysis in CD and MCD mice showed reduced
fibrotic and inflammation markers, along with increased fatty
acid catabolic genes (Fig. 1m).

Lastly, genes related to lipid metabolism were already up-
regulated in LKO mice under basal conditions, while fibrosis
markers remained unchanged (Supplementary Fig. 1n). These
data collectively suggest that loss of GPS2 in hepatocytes regulates
inflammation and fibrosis indirectly via regulating fatty acid
metabolism.

Gps2 LKO improves liver steatosis and insulin resistance. We
further explored the role of hepatocyte GPS2 in obesity-induced
liver steatosis and insulin resistance. We first analyzed the phe-
notypes of mice upon chow diet feeding. Two-month-old chow
diet-fed mice showed comparable blood glucose levels (Supple-
mentary Fig. 2a), LKO mice had reduced fed and fasted (12 h
fasting) blood glucose after 12 months (Supplementary Fig. 2b)
and 16 months (Supplementary Fig. 2c). Fed insulin levels in both
2 months old (Supplementary Fig. 2d) and 16 months old
(Supplementary Fig. 2e) mice were reduced as well, suggesting
improved glucose control in LKO mice. Consistently, oral glucose
tolerance test (OGTT, upon 12 h fasting) and insulin tolerance
test (ITT, upon 4 h fasting) in 2 months old (Supplementary
Fig. 2f, g) and 16 months old mice (Supplementary Fig. 2h, i)
showed improved glucose control. We next proceeded to chal-
lenge the mice with high fat diet (HFD). Sixteen weeks of HFD
increased Gps2 expression (Supplementary Fig. 2j). We found
that HFD-induced body weight gain was significantly lower in
LKO mice (Fig. 2a), while food and water intake remained similar
(Supplementary Fig. 2k, l). The subcutaneous fat was lower in
LKO mice (Supplementary Fig. 2m). HFD-induced blood glucose
levels were also significantly lower in LKO mice (Fig. 2b)
although insulin levels were comparable (Fig. 2c). The OGTT and
ITT test showed improved glucose control in HFD-fed LKO mice
(Fig. 2d, e). Serum VLDL and total triglyceride levels (upon 4 h
fasting), and HDL and total cholesterol levels were reduced in
HFD LKO mice (Fig. 2f, Supplementary Fig. 2n). HE staining
showed improved liver steatosis in LKO mice (Fig. 2g), confirmed
by liver triglyceride analysis (Fig. 2h), although liver cholesterol
level remained unchanged (Supplementary Fig. 2o). F4/80 stain-
ing showed slightly increased macrophage infiltration upon HFD
treatment in WT mice (Fig. 2i, j), which was reduced in LKO
mice (Fig. 2i, j). Gene expression analysis revealed reduced
lipogenesis gene expression and increased fatty acid oxidation
gene expression in the LKO mice liver (Fig. 2k). Il6 and Tnfa were
reduced in LKO mice as well (Fig. 2k). In contrast, HFD did not
significantly induce fibrotic markers in the liver in both WT and
LKO mice (Supplementary Fig. 2p).

Taken together, the results suggest that hepatocyte Gps2 KO
reduces body weight and plays a key role in modulating both lipid
metabolism and glucose homeostasis in obese mice.

PPARα is a direct target of GPS2 in hepatocytes. We continued
to investigate underlying mechanisms involved in the regulatory
role of GPS2 in the liver. We first identified GPS2 signature genes
from WT and LKO livers in chow diet fed mice using RNA-seq
(Fig. 3a). KEGG pathway analysis revealed enrichment of up-
regulated genes in multiple metabolic pathways with PPAR
pathways appeared in top enriched signaling pathways (Fig. 3b).
Given the dominant role of PPARα in liver lipid oxidation35, we
identified PPARα target genes in mouse livers using available

transcriptome datasets36 (GSE73298 and GSE73299, Supple-
mentary Fig. 3a), followed by a comparison of GPS2-regulated
liver transcriptomes with both global (Supplementary Fig. 3b)
and liver-specific Pparα KO mice (Supplementary Fig. 3c). We
found that around 20% of the PPARα target genes were regulated
by GPS2 in both groups of comparisons, and among these more
than 80% were repressed by GPS2 (Supplementary Fig. 3b, c). We
additionally compared the PPARα target genes concluded from a
previous report37. Among 121 target genes, 52 (including
Cyp4a14, Pdk4, Fgf21) were up-regulated in Gps2 LKO livers, 27
were down-regulated and 42 remained unchanged (Supplemen-
tary Fig. 3d, e). Intriguingly, LXR agonist GW3965 treatment did
not induce significant differences between WT and LKO mice
(Supplementary Fig. 3f), suggesting GPS2 selectivity towards
PPARα.

We next tested liver gene expression in fasted (Fig. 3c) and
GW7647-treated mice (Fig. 3d). The results show that LKO mice
had enhanced target gene responses to both treatments (Fig. 3c,
d). We then determined the liver GPS2 cistrome using ChIP-seq.
In agreement with the transcriptome data, TF binding motif
analysis revealed PPAR-binding sites among the top GPS2-
occupied sites (Fig. 3e). Co-immunoprecipitation assays revealed
that interaction with PPARα was dependent on the GPS2 region
aa 100–155 (Fig. 3f), part of the previously characterized nuclear
receptor-binding domain38.

To demonstrate the requirement of PPARα for GPS2
repression of lipid metabolic genes, we generated Gps2 and
Pparα double KO (PGKO) mice by cross-breeding the two single
KO strains (Fig. 3g). PGKO and Pparα KO (PKO) mice had
similar body weight (Supplementary Fig. 4a), liver weight
(Supplementary Fig. 4b), liver cholesterol, and triglyceride levels
(Supplementary Fig. 4c, d). Notably, qPCR showed that Gps2
ablation did not induce the PPARα target genes Pdk4, Cyp4a14,
Fgf21 in PGKO livers that lack PPARα (Fig. 3g). Lipid oxidation
seen in Gps2 LKO versus WT mice was not observed in PGKO
versus PKO mice, as indicated by unchanged fed and fasted
ketone body generation (Fig. 3h), suggesting that GPS2 repression
of lipid oxidation was dependent on PPARα. Blood glucose
(Supplementary Fig. 4e) and insulin levels (Supplementary Fig. 4f)
were also not changed between the two groups. Above all, serum
lipoprotein and triglyceride levels remained significantly
increased in PKO mice, but were unchanged by Gps2 depletion
(Supplementary Fig. 4g).

Collectively, these data identify PPARα as a major target TF for
GPS2 in the liver.

GPS2 requires PPARα to modulate the hepatic epigenome. To
define the GPS2-dependent cistrome and epigenome in mouse
liver, we performed ChIP-seq of GPS2 along with H3K27ac and
H3K4me3 in WT and LKO mice (Fig. 4a). Alignment of the
ChIP-seq peak heatmaps of H3K27ac, H3K4me3, and H3K4me1
(GSE29218)39 with GPS2 revealed the presence of GPS2 in both
active promoter and enhancer regions (Fig. 4a), which was con-
firmed by GPS2 peak distribution analysis (Supplementary
Fig. 4h). Comparison of the GPS2-dependent transcriptome and
epigenome revealed that transcriptional and epigenetic activation
at GPS2-sensitive gene loci were highly coordinated (Supple-
mentary Fig. 4i–n). Both H3K27ac and H3K4me3 levels are
higher in LKO up-regulated (GPS2-repressed) genes compared to
unchanged (GPS2-resistant) genes. Likewise, downregulated gene
loci had lower H3K27ac and H3K4me3 levels (Supplementary
Fig. 4i, j). Correlation analysis of GPS2-sensitive genes showed
significant correlation with both H3K27ac and H3K4me3 levels
(Supplementary Fig. 4k, l), marking direct GPS2-mediated gene
regulation via those promoters and enhancers (Supplementary
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Fig. 4m, n), as represented for repression in the Pdk4 and
Cyp4a14 loci (Fig. 4b, c).

We further compared the ChIP-seq profiles of GPS2 and
PPARα in mouse livers. GPS2 and PPARα were co-localized in

the Pdk4 and Cyp4a14 loci (Fig. 4d, e, GSE61817)40. Globally,
around 85% of the GPS2 peaks were overlapped with PPARα-
binding sites (Fig. 4f). Moreover, GPS2 ablation increased
H3K27ac in Pdk4 and Cyp4a14 promoter/enhancer loci, which
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was not observed in PGKO versus PKO mice (Fig. 4g), suggesting
that PPARα is required for GPS2-mediated epigenomic repres-
sion at those gene loci.

GPS2 cooperates with NCOR in hepatocytes. The apparent
PPARα-selectivity of GPS2 repression was surprising as it was not
seen in the comparable liver KO models for other complex sub-
units. Thus, we next investigated whether GPS2 functions within
the corepressor complex to modulate liver gene expression. We
first compared the chromatin recruitment of NCOR and SMRT

with GPS2 in mouse livers. Cistrome analysis revealed that all
three subunits shared more than 50% of all binding sites in the
liver genome (Supplementary Fig. 5a, b, GSE26345 and
GSE51045)29,41. Gps2 LKO livers shared overlapping tran-
scriptome signatures with both Ncor and Smrt LKO livers26,41

(Supplementary Fig. 5c, d). However, KEGG pathway analysis of
the genes co-repressed by GPS2 and NCOR revealed PPAR sig-
naling in the top list, along with liver metabolic pathways (Sup-
plementary Fig. 5e), which was not observed for the genes co-
repressed by GPS2 and SMRT (Supplementary Fig. 5f). At the
epigenome level, H3K27ac levels were similarly increased in Gps2
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LKO and in Ncor LKO livers, but not in Smrt LKO livers, at the
Pdk4 and Cyp4a14 loci (Fig. 5a, b). Intriguingly, binding of GPS2
and NCOR was reduced in Pparα KO livers at the Pdk4 and
Cyp4a14 loci (Fig. 5c, d, Supplementary Fig. 5g) while SMRT
binding was not affected (Supplementary Fig. 5h). In addition,
GPS2 recruitment to these loci relied on NCOR but not on SMRT
and was abolished in Ncor LKO livers (Fig. 5c, d, Supplementary
Fig. 5g, i). The recruitment changes were not limited to above
genes since global analysis of GPS2 ChIP-seq revealed reduced
average binding in GPS2/NCOR or GPS2/PPARα co-localized
loci in Ncor LKO or Pparα KO versus WT livers, respectively
(Fig. 5e). Consistently, there were far more GPS2 peaks that were
reduced comparing with the increased ones in Ncor LKO (Fig. 5f)
or Pparα KO (Fig. 5g) versus WT livers. Similar analysis of
PPARα peaks in Gps2 and Ncor LKO versus WT liver showed
increased average PPARα recruitment (Supplementary Fig. 5j).
The MA plot also revealed more enhanced PPARα binding in
both Ncor and Gps2 LKO livers (Supplementary Fig. 5k, l). In
addition, PPARα recruitment was slightly increased at NCOR-
repressed gene loci (i.e. upregulated in Ncor LKO versus WT
mice), including the Pdk4 and Cyp4a14 loci (Fig. 5c, d, Supple-
mentary Fig. 6a), but showed significant increase at GPS2-
repressed gene loci (Fig. 5c, d, Supplementary Fig. 6b). In con-
trast, NCOR, SMRT, and HDAC3 recruitment was only modestly
changed in Gps2 LKO livers (Fig. 5c, d, Supplementary Fig. 6c).

The interactions of GPS2, NCOR, and PPARα were further
investigated in vitro using co-immunoprecipitations. We found
that full-length GPS2 enhanced the PPARα interaction with
NCOR (Supplementary Fig. 6d), while this was not seen with
truncated GPS2 variants removing the NCOR-interaction domain
(aa 61–94) or the PPARα-interaction domain (aa 100–155). These
data support that the loss of GPS2 in hepatocytes de-stabilizes
interactions of PPARα with the NCOR complex, and that release
of the complex potentially facilitates the binding of RNA
polymerase (Pol II) (Fig. 5c, d).

In sum, the above data suggest that GPS2 repression of PPARα
target genes in hepatocytes involves direct interactions of PPARα
with GPS2 and NCOR, which serves as the primary docking site
of the corepressor complex to chromatin in hepatocytes.

Liver GPS2 expression correlates with NASH and fibrosis in
humans. To determine the clinical relevance of GPS2 in human
disease progression, we compared gene expression levels in both
NASH (Fig. 6 and Supplementary Fig. 6e–j) and NAFLD (Fig. 6
and Supplementary Fig. 6e–j) human subjects from published
transcriptome datasets (GSE83452 and GSE49541)15,16. The
comparative analysis performed in a cohort of 44 control and 104
NASH liver samples identified 193 upregulated and 58 down-
regulated NASH signature genes as concluded in the previous
publication (Fig. 6a). Expression of GPS2 was not different in
different stages of NASH liver (Supplementary Fig. 6e). However,
correlative analysis in the 104 NASH subjects showed a total of
74 genes significantly associated with GPS2 mRNA expression
and 66 were positively correlated (Fig. 6b, Supplementary
Table 2). Among them were fibrogenic genes including TGFB,
TIMP1 (Supplementary Fig. 6f, g), and the inflammation marker
CD68 (Supplementary Fig. 6h). Analysis of the other complex
subunits revealed associations of these signature genes with
NCOR, TBL1, TBLR1, and HDAC3, but notably not with SMRT
(Fig. 6b). To further validate these results, we analyzed another
transcriptome dataset (GSE49541) which contained 73 NAFLD
patients at different fibrosis stages. GPS2 expression was posi-
tively correlated with the fibrogenic gene expression, including
TGFB and TIMP1 (Fig. 6c, d).

Moreover, GPS2 expression was higher in NASH fibrosis
compared to non-fibrosis liver biopsies (Fig. 6e) and was restored
after weight loss in paired obese human subjects after dietary
intervention or gastric bypass surgery (GABY) (Fig. 6f). The GPS2
mRNA was also positively correlated with HbA1c (Supplemen-
tary Fig. 6i). Intriguingly, correlative analysis of GPS2 and PPARA
expression with the 72 GPS2-sensitive and NASH-related genes
in the dataset from 104 human NASH patients showed an overall
opposite correlation (Fig. 6g), while GPS2 and PPARA expression
was not correlated (Supplementary Fig. 6j).

We conclude from above data that liver GPS2 expression and
function could be causatively correlated with the progression of
NAFLD towards NASH via regulating PPARα-coupled liver lipid
metabolism (Fig. 6h).

Discussion
Our study uncovers a previously unknown role of GPS2 as an
epigenetic modulator which inhibits liver lipid catabolism and
thereby promotes the development of NALFD. Gps2 LKO caused
the activation of promoters and enhancers controlling fatty acid
oxidation genes in hepatocytes, which was dependent on PPARα
activation. As a result of loss of PPARα repression, Gps2 LKO
mice showed alleviated liver steatosis upon HFD feeding and
improved fibrosis upon MCD feeding, due to increased lipid
burning as detected by elevated ketone body levels. Remarkably,
the protective phenotype of the Gps2 LKO mice is unique
amongst hitherto described coregulator KO mouse models in the
context of NAFLD as it is the only model which improved diet-
induced fatty liver disease instead of worsening it (for references,
see Introduction).

This hepatic function of GPS2 appears to be conserved between
mice and humans as GPS2 levels correlate with fibrogenic and
inflammatory gene expression in human NAFLD/NASH livers.
Our study might thus provide hepatocyte-based epigenetic
explanations for the diverse susceptibility in NAFLD/NASH
patients to develop more severe stages of liver fibrosis and ulti-
mately liver cancer, in addition to alterations in other cell types
such as liver-resident immune cells1.

Previous studies in adipocytes20,42 and macrophages21 support
a key role of GPS2 in repressing inflammation, and loss of
GPS2 sensitized these cell-types to develop metabolic stress-
induced inflammation (metaflammation) and insulin resistance,
as shown for adipose tissue21. Importantly, this was not observed
in the Gps2 LKO mice. Gene expression of representative pro-
inflammatory genes was not significantly different between WT
and LKO livers, and injection of LPS led to similar responses, as
shown for Ccl2 and Ccl7, major GPS2 target genes in adipocytes
and macrophages. These results are consistent with previous data
demonstrating that in human hepatocytes GPS2 depletion had no
effect on the inflammatory acute phase response but was essential
for anti-inflammatory trans-repression of this response by
nuclear receptors43.

Our earlier studies in human hepatocyte cell lines suggested a
role of GPS2 in cholesterol metabolism which may influence the
NAFLD phenotype38,44. However, chow diet-fed Gps2 LKO ver-
sus WT mice did not show differences in both serum and hepatic
cholesterol levels despite triglyceride variation. Caution should be
exercised in translating this aspect of the mouse phenotype to
humans, as they differ in lipoprotein metabolism from mice due
to absence of cholesterol ester transfer protein (CETP)45. There
are also human–mouse differences in the regulation of cholesterol
7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the classic
bile acid synthetic pathway, by the nuclear receptors LXR, FXR,
and SHP. While this pathway appears to be regulated by GPS2 in
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human hepatocytes44, the activation of key LXR target genes by
agonist treatment was similar in WT versus LKO mice, suggesting
that liver LXR pathways in mice are not controlled by GPS2.

Despite the evidence that GPS2 likely functions as a core
subunit of the NCOR/SMRT/HDAC3 corepressor complex in
many metabolic tissues and cell types21,26,38,43,44, it may seem
puzzling that the KO phenotypes for individual subunits were
quite distinct with only partial overlap in specific pathways. We

show here that in mouse hepatocytes GPS2 functionally coop-
erates with NCOR to repress PPARα-dependent pathways. This is
in contrast to the situation in adipocytes and macrophages where
GPS2 functionally cooperates with SMRT to repress pro-
inflammatory pathways20,21. While the molecular reasons for
this cell-type selective partnership remain enigmatic, they are not
simply related to the differential expression and/or chromatin-
binding features of NCOR and SMRT. Indeed, our liver cistrome
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analysis reveals that the core subunits GPS2, NCOR, SMRT, and
HDAC3 co-occupy the majority of promoters and enhancers of
GPS2-regulated genes, including PPARα-targets linked to fatty
acid oxidation and to the LKO phenotype. This confirms our
previous notion made in macrophages that the entire complex
seems to be present at chromatin elements, yet this is not suffi-
cient to predict function in the regulation of adjacent genes.
These data collectively validate our recent concept of functionally
distinct corepressor sub-complexes19.

Our new work identifies with GPS2 an additional core subunit
of the complex that also interacts with PPARα and contributes to
the overall repression in vivo. The Co-IP data and the inclusion of
GPS2 mutants add in vitro support that GPS2 utilizes different
domains to bind PPARα vs. NCOR, and that this binding may be
cooperative to increase PPARα interactions with NCOR. This is
fully compatible with a model where cooperative interactions of
two subunits explain why depletion of either NCOR or GPS2
reduces PPARα repression capacity and target gene expression
in vivo.

There is evidence that GPS2 forms a stable core complex with
NCOR/SMRT and TBL/TBLR1, supported by NMR structure
data23 and IP-mass spec data24,46. NCOR has been previously
known to be the main receptor (also PPARα)-binding subunit of
the complex, and our new data do not challenge this view. Indeed,
our ChIP-seq data confirm that most GPS2 interactions with
PPARα at chromatin are lost in Ncor KO hepatocytes, while
NCOR interactions were not abolished in Gps2 KO hepatocytes.
These results indicate that NCOR does not require GPS2 to
interact with PPARα in vivo, thus contrasting the GPS2–NCOR
bridging model suggested for agonist-bound PPARγ47.

However, there is so far no direct evidence whether this cor-
epressor complex core forms stable ternary complexes with
nuclear receptors, including PPARα. The current data rather
suggest that repression in vivo results from dynamic transient
interactions of the corepressor complex with TF targets22. NCOR
and GPS2 are proposed to be largely intrinsically disordered in
nature, which may reflect the involvement in many specific but
relatively low-affinity interactions48.

Regarding the details of the PPARα interactions with GPS2 and
NCOR, there is ample evidence suggesting that both proteins
interact with distinct surfaces at the ligand-binding domain
(LBD). In case of NCOR, the receptor interaction domain (RID)
is largely unstructured but adopts upon interaction a helical
peptide structure (the CORNR box) that interacts with the con-
served cofactor surface at the LBD helices 3–5 (but excludes AF-2
helix 12), see for example, the structure of the PPARα LBD with a
corepressor peptide in the presence of an antagonist30,49,50.
Although there is no structure data for any RID of GPS2, in vitro
assays using receptor mutations and NCOR peptide competition
strongly suggest that GPS2 binds to a surface that is different
from the AF-2/NCOR-binding surface. In particular, the
GPS2 surface seems exposed irrespective of the ligand status,
marking a fundamental difference to the classic coactivator
(LXXLL motif) corepressor (CORNR motif) surfaces38,47. One
interesting in vivo scenario is that activation by endogenous
PPARα agonists may lead to selective disruption of NCOR
interactions, while GPS2 interactions may serve to stabilize the
corepressor complex interactions, contributing to the GPS2 KO
phenotype described here.

Remarkably, the functional cooperation of GPS2 with NCOR
and its antagonism of PPARα is further supported by the cor-
relation analysis of human NAFLD/NASH liver transcriptomes,
suggesting conservation of the GPS2–NCOR partnership in
driving NAFLD in mice and humans. The proposed link of GPS2
to NCOR in hepatocytes raises questions as to the different
corresponding KO phenotypes. While Gps2 LKO resulted in

improved liver steatosis and reduced lipid accumulation, Ncor
LKO resulted in the opposite26,28. A likely explanation could be
the partially distinct nuclear receptor and target gene selectivity of
each subunit, with NCOR but not GPS2 repressing also LXRα in
addition to PPARα28. As a consequence, lipogenic pathways were
only up-regulated in Ncor LKO mice and likely contributed to the
worsened fatty liver phenotype. Interestingly, the NCOR study
provides some clues for how corepressor complex function, and
in particular the subunit cooperation, might be further regulated
to specify transcriptional outcomes. Nuclear receptor-selectivity
seems regulated by insulin/AKT-mediated S1460 phosphoryla-
tion of NCOR, resulting in de-repression of LXR-dependent
lipogenesis in the fed condition and PPARα-regulated fatty acid
oxidation in the fasting condition [28].

The transcriptome comparison of Gps2 and Ncor LKO mice
supported the different phenotypes, in particular the PPARα-
selective cooperation of NCOR with GPS2. Gene ontology ana-
lysis indicated that PPAR signaling was amongst the top path-
ways of the 30% of genes co-regulated by NCOR and GPS2, while
LXR targets genes linked to lipogenesis were not co-regulated.
Moreover, our analysis revealed interesting differences regarding
the regulation of Fgf21, a major PPARα target gene in liver. Gps2
LKO resulted in an eight-fold increase in Fgf21 expression in the
chow diet condition which was PPARα-dependent, the induction
level almost equivalent to fasting effects, while in Ncor and Smrt
LKO mice Fgf21 de-repression was not observed. The encoded
FGF21 is a master regulator of metabolism which affects multiple
pathways including fatty acid oxidation, and administration to
mice has been shown to improve NAFLD13,51,52. The reason why
Fgf21 is selectively up-regulated in Gps2 but not in Ncor or Smrt
LKO mice is unknown, but there is one report suggesting the
HDAC3 subunit of the complex to be involved53. The study
shows that pharmacological HDAC3 inhibition led to elevated
Fgf21 expression in mouse and human liver cell lines. In addition
to FGF21, most of the pathways and TFs (e.g. Rev-Erbs, Prox1)
affected in Hdac3 LKO mice29,46 were not affected in Gps2 LKO
mice, consistent with the broader target range of HDAC3 along
with its intrinsic de-acetylation activity.

The unique phenotype of Gps2 LKO mice supports the idea
that the GPS2 target range in vivo is limited, as compared to
NCOR, SMRT, and HDAC3 and to other coregulators expressed
in the liver17. This implies that the manipulation of GPS2 func-
tion could be more selective than the manipulation of other
coregulators. In conclusion, our study identifies GPS2 as an
epigenome modifier and PPARα-selective corepressor in hepa-
tocytes whose inhibition has the therapeutic potential to reverse
the progression of NASH toward fibrosis.

Methods
Patients. The patient clinical information and human liver biopsy transcriptome
data are from a previously published Belgium cohort15 collected from overweight
individuals visiting the Obesity Clinic at the Antwerp University Hospital. The
patient information and exclusion criteria were all described previously15. Briefly,
the cohort used in this study is composed of 104 NASH patients with paired liver
biopsies of 35 samples after dietary intervention and 39 samples after GABY
(combined as weight loss group). The fibrosis stage was determined by pathological
analysis of the liver biopsies. BMI (loss), HbA1c, HDL-c, and LDL-c were deter-
mined as described previously15, and the study was approved by the Ethical
Committee of the Antwerp University Hospital (file 6/25/125).

Animals. Gps2flox/flox mice were generated at Ozgene Pty, Ltd. (Bentley DC,
Australia) as previously described21. To generate LKO mice, Gps2flox/flox mice were
crossed with Alb-Cre mice (B6.Cg-Speer6-ps1Tg(Alb-cre)21Mgn/J; Jackson Laboratory
stock no. 003574). Gps2flox/flox mice from the same breedings were used as control
(labeled as WT).

Pparα-deficient C57Bl/6J mice54 (B6;129S4-Pparαtm1Gonz/J; Stock no. 008154)
were obtained from Jackson Laboratory.
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Liver-specific Gps2 and Pparα double KO mice were generated by breeding the
liver Gps2 KO mice with the Pparα-deficient (Gps2flox/flox Alb-Cre+/−Pparα−/−)
mice. Gps2flox/flox Alb-Cre−/−Pparα−/− mice were used as control.

Liver-specific Ncor and Smrt KO mice were generated as previously described26.
All animals were randomly assigned to each experimental group. The

investigator was not blinded to the experimental groups during the study.
All animal experiments were approved by the respective national ethical boards

(Swedish Board of Agriculture, Stockholm South, S28-12, S30-14, S135-12, S29-14,
ID907) and conducted in accordance with the guidelines stated in the International
Guiding Principles for Biomedical Research Involving Animals, developed by the
Council for International Organizations of Medical Sciences (CIOMS). All mice
strains were bred and maintained at the Center for Comparative Medicine at
Karolinska Institutet and University Hospital (PKL, Huddinge, Sweden).

Cell culture studies. HEK293 (ATCC, CRL-1573) and AML12 (ATCC, CRL-2254)
cells were tested for mycoplasma contamination. AML12 cells were authenticated by
testing liver albumin expression before experiments. HEK293 were cultured in
DMEM supplemented with 10% FBS and 1% antibiotics, and AML12 were cultured
in DMEM/F12 high glucose supplemented with 10% FBS, 1% antibiotics, 1% ITS
(10 µg/ml insulin, 5.5 µg/ml transferrin, and 5 ng/ml selenium), and 40 ng/ml
dexamethasone. Both cells were maintained at 37 °C and 5% CO2.

Seahorse analysis of OCR in AML12 cells. The Cell Mito Stress Test was per-
formed according to the provided protocol. AML12 cells were seeded to the Sea-
horse XFe96 Cell Culture Microplate for 24 h before transduction with adenovirus
shLuc (control) and shGPS2. After 36 h, the cells were changed to Substrate-limited
medium (Seahorse XF Base Medium plus 0.5 mM Glucose, 1.0 mM GlutaMAX, 0.5
mM Carnitine, and 1% FBS, pH 7.4) and incubated for overnight. The cells were
pre-incubated in Fatty Acid Oxidation Assay Buffer (KHB Buffer (111 mM NaCl,
4.7 mM KCl, 1.25 mM CaCl2, 2.0 mM MgSO4, and 1.2 mM NaH2PO4) supple-
mented with 2.5 mM glucose, 0.5 mM carnitine, and 5 mM HEPES, pH 7.4) at 37 °
C for 45 min in a non-CO2 incubator. BSA (control) or BSA–palmitate were added
just prior to starting the assay. After subsequent injecting and mixing of the
compounds (assay concentrations: 2.0 μM oligomycin, 2.0 μM FCCP, and 0.5 μM
Rotenone/antimycin A), the OCR was determined in all wells three times. The
results were normalized with the protein quantity of each corresponding well.

Metabolic studies in mice. 7-8-week-old WT and LKO mice were fed with a 60%
fat diet (HFD, Research Diets, D12492) or with a 10% fat diet (LFD, Research
Diets, D12450) for 12 weeks. To establish a fibrosis model, mice were fed with a
MCD (Research Diets, A02082002B) or with a control diet (Research Diets,
A02082003B) for 4 weeks. During the experiments, body weight was assessed at
different time points. OGTT and ITT were performed in the chow-diet and HFD
feeding mice as previously described21. Corresponding blood glucose levels were
measured at the indicated time points using a glucometer (Accu-Chek Performa,
Roche). Plasma insulin (Mercodia, 10-1247-01), FGF21 (R&D Systems, DF2100),
β-Hydroxybutyrate (Cayman, 700190) and hydroxyproline levels (Sigma,
MAK008) were determined by ELISA.

Liver TG and cholesterol were extracted and measured with a colorimetric
diagnostic kit (WAKO diagnostics) as previously described21. Plasma lipoproteins
were fractionated from 2.5 μl of each sample using a Superose 6 PC 3.2/30 column
(GE Healthcare) followed by online determination of TGs and cholesterols as
previously described21. The lipid concentrations of the different lipoprotein
fractions were calculated after integration of individual chromatograms.

Lipase activity is measured using the assay kit (Sigma Aldrich, MAK046)
according to manufacturer instructions. In brief, 30 min after heparin injection, the
mice were sacrificed and mouse plasma was separated by centrifuging for 10 min,
3000 r.p.m. at 4 °C. Plasma was used to test the lipase activity with (HL activity) or
without 1M NaCl, LPL was determined by substracting HL activity from the total
lipase activity.

Morphometric analyses. The tissue processing and staining were performed in
morphological phenotype analysis (FENO) core facility at Department of
Laboratory Medicine, Karolinska Institute. Briefly, the mice liver tissue samples
were fixed in 3% formaldehyde solution overnight and embedded in paraffin.
Tissue slides were stained with H&E for the evaluation of the tissue morphology,
with Sirius red for collagen-specific staining, or with F4/80 (Abcam, ab6649) for
liver resident macrophages, following standardized protocols. Sirius red and F4/80
positive areas were quantified using imageJ.

All mice used in the studies were male, between 7 and 16 weeks old at the time
of the experiment starting point, and randomized before any experiment was
started. All animal experiments were approved by the respective national ethical
boards (Swedish Board of Agriculture) and conducted in accordance with the
guidelines stated in the International Guiding Principles for Biomedical Research
Involving Animals, developed by the CIOMS. All mice strains were bred and
maintained at the Center for Comparative Medicine at Karolinska Institutet and
University Hospital (PKL, Huddinge, Sweden).

Microarray analysis. Raw-intensity expression files (.CEL files) (GSE83452;
GSE48452; GSE73299; GSE49388; GSE54192) were imported to R and Bio-
conductor using the Oligo package55. The same package was used for quantile
normalization, background correction, and summarization by robust multichip
average preprocessing (RMA). The normalized log2-transformed expression values
were then imported to the Limma56 package for differential-expression analysis by
linear modeling. A paired design was used to remove the batch effect between the
biological replicates. Furthermore, genes with low expression (less than the 95th
quantile of the negative-control probes) were removed. Genes with a P-value of
<0.05, after adjusting for multiple hypothesis testing using the FDR method, were
defined as being differentially expressed.

Correlation matrix was calculated based on expression values in log2 scale of 251
candidate NASH genes15 and GPS2–NCOR–HDAC3 complex components from
104 NASH livers at baseline. Genes whose expression significantly correlated with
GPS2 expression were selected and their correlation with GPS2–NCOR–HDAC3
complex components was plotted as heatmap.

qPCR analysis. Total RNA was extracted from snap-frozen liver tissues using
Trizol Reagent (Thermo Fisher Scientific, 15596-026) and RNeasy RNA Mini Kit
(Qiagen, 74104). Complementary DNAs were synthesized using M-MLV Reverse
Transcriptase (Life Technologies, 28025-021). QPCR was performed using the ABI
Prism 7500 PCR system (Applied Biosystems). 36b4 (gene encoding acidic ribo-
somal phosphoprotein P0, also called Rplp0) were used for normalization to
quantify relative mRNA expression levels. Relative changes in mRNA expression
were calculated using the comparative cycle method (2−ΔΔCt). Primers are listed in
Supplementary Table 1.

RNA-seq. RNA was extracted from mice liver biopsies as described above. RNA
quality was assessed by 2200 TapeStation Instrument (Agilent). PolyA RNA
selection was performed using the Illumina TruSeq RNA Sample Preparation Kit
according to the manufacturer's protocol. RNA-seq libraries were prepared and
sequenced on the Illumina HiSeq 2000 platform at Bioinformatics and Expression
Analysis core facility (BEA, Karolinska Institutet, Sweden). Preprocessed reads
were aligned to the mm9 transcriptome using the HISAT2 program, and Hyper-
geometric Optimization of Motif EnRichment (HOMER, http://homer.salk.edu/
homer) was used to create the tag directory and count tags in all exons. Raw tag
counts were imported in to R and Bioconductor and edgeR package was used to
determine differential gene expression.

ChIP and ChIP-seq sample preparation. ChIP samples were prepared as
described previously21, with minor modifications. Briefly, fresh livers were chopped
into small pieces and crosslinked with 1% formaldehyde (ThermoFisher, 28906) in
PBS for 10 min for histone modifications, or double crosslinked with 2 mM dis-
uccinimidyl glutarate (DSG) for 30 min, followed by 1% formaldehyde for 10 min,
for TFs and GPS2. The reaction was stopped with glycine at a final concentration of
0.125 M for 5 min.

Liver pieces were disaggregated in ice-cold PBS with protease inhibotor using
Dounce Homogenizer first with loose and later with tight pestle (Fisher Science,
FB56691). Nuclei were isolated using lysis buffer 1 (50 mM Hepes–KOH, pH 7.5,
140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% IGEPAL CA-630, and 0.25%
Triton X-100), lysis buffer 2 (10 mM Tris–HCl, pH 8.0, 200 mM NaCl, 1 mM
EDTA, and 0.5 mM EGTA), and lysis buffer 3 (10 mM Tris–HCl, pH 8.0, 100 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, and 0.5% N-
Lauroylsarcosine), and subsequently sonicated for 30 min (30 s ON/30 s OFF) in
the Bioruptor Pico (Diagenode). Protein A Dynabeads (Invitrogen) were incubated
O/N with the antibodies. Each lysate was immunoprecipitated with the following
antibodies: control rabbit IgG (Santa Cruz, sc-2027, 1–5 μg), anti-H3K4me3
(Abcam, ab8580, 1 μg), anti-H3K27ac (Abcam, ab4729, 1 μg), anti-PPARα
(Millipore MAB3890, 5 μg), anti-Polymerase II (Biolegend, 664906, 5 μg), anti-
NCOR (Bethyl laboratories, A301-145A, 4 μg), anti-SMRT (Bethyl laboratories,
A301-147A, 4 μg), anti-HDAC3 (Santa Cruz, sc-11417, 5 μg), and anti-GPS2 (4
μg). Formaldehyde cross-linking was reversed overnight at 65 °C, and the
immunoprecipitated DNA was purified using the QIAquick PCR purification kit
(Qiagen). Primers for the ChIP qPCR are listed in Supplementary Table 1.

To prepare the ChIP-seq samples, the same ChIP protocol was followed, but
using the ChIP DNA Clean and Concentrator Capped Zymo-Spin I (Zymo
Research) purification kit. Two to four ChIPs were pooled during the final step of
the purification to obtain concentrated material.

For library preparation and sequencing, 2–10 ng of ChIPed DNA was processed
using Rubicon ThruPLEX DNA-seq kit (TAKARA) or processed at the EMBL
Genomics Core Facility (Heidelberg, Germany) using standard protocols, and
sequenced in the Illumina HiSeq 2000 (50SE reads, EMBL) or NextSeq 550 (75SE
reads, BEA Core Facility, Karolinska Institutet, Sweden).

ChIP-seq data analysis. The computations were performed on resources provided
by SNIC through Uppsala Multidisciplinary Center for Advanced Computational
Science (UPPMAX) under Project SNIC 2018/8-122. Analysis was performed as
previously described21. Sequencing files (fastq files), provided by the EMBL
Genomics (Heidelberg, Germany) or BEA (Karolinska Institutet, Sweden) Core
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Facility, and raw data from the published ChIP-seq data (PPARα: GSE61817;
H3K4me1: GSE29184; NCOR: GSE26345; SMRT: GSE51045) were aligned to the
NCBI37/mm9 version of the mouse reference genome, using Bowtie57. Peaks were
identified using HOMER package58.

Peak heights were normalized to the total number of uniquely mapped reads
and displayed in integrative genomics viewer (IGV)59 as the number of tags per
10 million tags. The sequences found in GPS2 peaks were subjected to motif
analysis to identify potentially over-represented TF-binding sites using HOMER .
Heat-map clustering of the peaks was performed in Cluster 3.060 using self-
organizing maps, and then visualized in TreeView61. For statistical analysis of the
peaks, raw tag counts were imported into R and Bioconductor and edgeR package
was used to identify potential differential-binding sites62,63.

Western blot analysis. Samples were lysed in RIPA buffer supplemented with
protease and phosphatase inhibitors and were diluted to a concentration of 20 μg of
protein and heated at 98 °C for 10 min. Proteins were separated by SDS–PAGE
electrophoresis and transferred to PVDF membranes (Amersham International).
Blocking reagent (SuperBlock™ T20 (PBS) blocking buffer, Thermo Fisher Scien-
tific) were incubated for 1 h, and primary antibody was incubated overnight at 4 °C
in the blocking solution. The antibodies and their concentrations are the following:
anti-GPS238,43 (generated from Agrisera; 1:3000), anti-β-actin (Abcam, ab8226; 1:
30,000), anti-HDAC3 (Santa Cruz, sc11417; 1:3000), anti-PPARα (Cayman,
101710; 1:3000), anti-HA (BioLegend, 901514; 1:5000), and anti-Flag (Sigma-
Aldrich, F7425; 1:5000). After several washes in PBST (PBS with 0.05% Tween 20),
horseradish peroxidase (HRP)-labeled secondary antibodies (1:5000) were incu-
bated for 1 h at room temperature in PBST. Membranes were developed with ECL
western-blotting substrate (BioRad, 1705061).

Co-immunoprecipitations. HEK293 cells were co-transfected with (1) WT or
truncated pcDNA3-HA-GPS2 and expression plasmids for Flag-tagged PPARα to
mapping the interaction domain of GPS2 and PPARα or (2) WT or truncated HA-
GPS2, HA-PPARα, and Flag-NCOR to determine the affinity of NCOR and PPARα
in the absence and the presence of WT or truncated GPS2. Cells were lysed 48 h
after transfection, and the lysate was incubated with anti-Flag (Sigma-Aldrich,
F7425) coupled to protein A magnetic beads for 3 h, at 4 °C (15 μl beads were pre-
incubated with 2 μg of antibody for 2 h, at 4 °C). Beads were washed with lysis
buffer five times and eluted at 98 °C for 10 min. The eluted sample was loaded in an
acrylamide gel by following the western blot protocol, and blotted with anti-Flag or
anti-HA. Whole-cell lysis was used as input.

Statistical analysis. All the replicate experiments (including cell and mouse-based
experiments) are biological replicates, which were repeated at least two times in the
lab. Sample size was not pre-specified statistically. D'Agostino and Pearson nor-
mality test was used to determine the normal distribution. The variance within
each group of data was compared using F-test (two groups) or Brown–Forsythe test
(more than two groups). All statistical tests were performed using GraphPad Prism
6.0b (GraphPad Software, Inc., La Jolla, CA), and all data are represented as mean
± s.e.m. Statistical tests were assessed after confirming that the data met appro-
priate assumptions (normality, homogenous variance, and independent sampling).
All statistical tests were two-tailed, and p < 0.05 was defined as significant. No
statistical methods were used to predetermine sample size. No samples or animals
were excluded from the analysis.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Gene expression RNA-seq data and ChIP-seq data have been deposited at the NCBI
Gene Expression Omnibus (GEO) accession numbers are GSE113157. The authors
declare that all data supporting the findings of this study are available in figshare with
https://doi.org/10.6084/m9.figshare.7637504. Other data are available from the
corresponding author upon request.
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