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Abstract

The interaction among multiple microbial strains affects the spread of infectious diseases

and the efficacy of interventions. Genomic tools have made it increasingly easy to observe

pathogenic strains diversity, but the best interpretation of such diversity has remained diffi-

cult because of relationships with host and environmental factors. Here, we focus on host-

to-host contact behavior and study how it changes populations of pathogens in a minimal

model of multi-strain interaction. We simulated a population of identical strains competing

by mutual exclusion and spreading on a dynamical network of hosts according to a stochas-

tic susceptible-infectious-susceptible model. We computed ecological indicators of diversity

and dominance in strain populations for a collection of networks illustrating various proper-

ties found in real-world examples. Heterogeneities in the number of contacts among hosts

were found to reduce diversity and increase dominance by making the repartition of strains

among infected hosts more uneven, while strong community structure among hosts

increased strain diversity. We found that the introduction of strains associated with hosts

entering and leaving the system led to the highest pathogenic richness at intermediate turn-

over levels. These results were finally illustrated using the spread of Staphylococcus aureus

in a long-term health-care facility where close proximity interactions and strain carriage

were collected simultaneously. We found that network structural and temporal properties

could account for a large part of the variability observed in strain diversity. These results

show how stochasticity and network structure affect the population ecology of pathogens

and warn against interpreting observations as unambiguous evidence of epidemiological dif-

ferences between strains.

Author summary

Pathogens are structured in multiple strains that interact and co-circulate on the same

host population. This ecological diversity affects, in many cases, the spread dynamics and

the efficacy of vaccination and antibiotic treatment. Thus understanding its biological and

host-behavioral drivers is crucial for outbreak assessment and for explaining trends of
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new-strain emergence. We used stochastic modeling and network theory to quantify the

role of host contact behavior on strain richness and dominance. We systematically com-

pared multi-strain spread on different network models displaying properties observed in

real-world contact patterns. We then analyzed the real-case example of Staphylococcus
aureus spread in a hospital, leveraging on a combined dataset of carriage and close prox-

imity interactions. We found that contact dynamics has a profound impact on a strain

population. Contact heterogeneity, for instance, reduces strain diversity by reducing the

number of circulating strains and leading few strains to dominate over the others. These

results have important implications in disease ecology and in the epidemiological inter-

pretation of biological data.

Introduction

Interactions between strains of the same pathogen play a central role in how they spread in

host populations. [1–7]. In Streptococcus pneumoniae and Staphylococcus aureus, for instance,

several dozen strains can be characterized for which differences in transmissibility, virulence

and duration of colonization have been reported in some cases [8, 9]. Strain diversity may also

affect the efficacy of prophylactic control measures such as vaccination or treatment. Indeed,

strains may be associated with different antibiotic resistance profiles [3, 5, 10, 11], and devel-

oped vaccines may only target a subset of strains [2, 3, 12]. With the increasing availability of

genotypic information, it has become easy to describe the ecology of population of pathogens

and to monitor patterns of extinction and dominance of pathogen variants [13–17]. However,

the reasons for multi-strain coexistence patterns (e.g. coexistence between resistant and sensi-

tive strains) or dominance of certain strains (e.g. in response to the selection pressure induced

by treatment and preventive measures) remain elusive. One may invoke selection due to differ-

ent pathogen characteristics, but also environmental and host population characteristics, lead-

ing to differences in host behavior, settings and spatial structure may affect the ecology of

strains [14–19]. In particular, human-to-human contacts play a central role in infectious dis-

ease transmission [20]. This is increasingly well described thanks to extensive high-resolution

data—including mobility patterns [21–23], sexual encounters [24], close proximity interac-

tions in schools [25, 26], workplaces [27], hospitals [16, 28–31], etc.—that enable basing epide-

miological assessment on contact data with real-life complexity [32, 33]. For instance, the

frequency of contacts can be highly heterogeneous leading more active individuals to be at

once more vulnerable to infections and acting as super-spreaders after infection [24, 33–35].

Organizational structure of certain settings (school classes, hospital wards, etc.) and other spa-

tial proximity constraints lead to the formation of communities that can delay epidemic spread

[36, 37]. Individual turnover in the host population is also described as a key factor in control-

ling an epidemic [20, 38]. It is likely that, since they impact the spread of single pathogens,

the same characteristics could affect the dynamics in multi-strain populations. It was shown,

indeed, that network structure impacts transmission with two interacting strains [39–46], the

evolution of epidemiological traits [47–49] and the effect of cross-immunity [50, 51]. Yet in

these cases, complex biological mechanisms—such as mutation, variations in transmissibility

and infectious period, cross immunity—were used to differentiate between pathogens, thereby

making the role of network characteristics difficult to assess in its own right.

For this reason, we focused on the dynamical pattern of human contacts and examined

whether it contributes to shaping the population ecology of interacting strains under minimal

epidemiological assumptions regarding transmission. We described a neutral situation where

Host contacts shape strain diversity
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all strains have the same epidemiological traits and compete via mutual exclusion (concurrent

infection with multiple strains is assumed to be impossible) in a Susceptible-Infected-Suscepti-

ble (SIS) framework. We studied the spread of pathogens in a host population during a limited

time window, disregarding long-term evolution dynamics of pathogens. More precisely, new

strains were introduced through host turnover rather than de novo mutation or recombination

in pathogens. We quantified the effect of network properties on the ecological diversity in

strain populations with richness and dominance indicators. We assessed in turn heterogene-

ities in contact frequency, community structure and host turnover by comparing simulation

results obtained with network models exhibiting a specific feature. We then interpreted S.
aureus carriage in patients of a long-term care facility in the light of these results.

Results

Multi-strain spread on dynamical networks

We simulated the stochastic spread of multiple strains on a dynamical contact network of indi-

viduals (nodes of the network). Individuals can be either susceptible or infected with a single

strain at a given time, and, for each strain, β and μ indicate the transmission and the recovery

rate respectively. We assumed turnover of individuals, who enter the system with rate λin, and

associated injection of previously unseen strains, carried by incoming individuals with proba-

bility ps. We considered synthetic network models, each displaying a specific structural feature,

as well as a real network reconstructed from close-proximity-interaction data collected in a

hospital facility. We calibrated all network models to the same average quantities—average

population size �V , fraction of active nodes �a, average degree �k and strength of the community

repartition pIN, when applicable—that were chosen to correspond with the hospital network

used in the application. Epidemiological parameters were motivated by the duration of S.
aureus carriage in patients. A larger range of values was explored in some cases to address

their impact on the dynamics. We analyze the structure of strain population at the dynamic

equilibrium by computing, for each network model, ecological diversity measures, including

species richness and evenness/dominance indices [52, 53]. All details about network models,

numerical simulations and ecological indicators are described in the Materials and methods

section.

Effects of contact heterogeneity

In order to probe the effect of contact heterogeneity on strain ecology we compared a homoge-

neous model (HOM) in which all nodes have the same activity potential, i.e. they have equal

rate of activation to establish contacts, with a heterogeneous model (HET), akin to the activity-

driven model described in [34], where the activity potential is different across nodes and is

drawn from a power-law distribution.

Fig 1 shows the results of numerical simulations comparing HOM and HET models. Sam-

ple epidemic trajectories are reported in Fig 1A. Here every strain is indicated with its own

color to display its dynamics resulting from the interaction with the other strains. Fig 1B–1D

shows summary statistics in varying strain transmissibility β. The prevalence presents a well-

known behavior for both static and dynamic networks (Fig 1B): contact heterogeneities lower

the transmissibility threshold above which total prevalence is significantly above zero, thus

allowing the spread of pathogens with low transmissibility. At the same time, however, hetero-

geneities hamper the epidemic spread when β is large, reducing the equilibrium prevalence

[35]. Fig 1C shows the average richness, i.e. the number of distinct strains co-circulating. For

low values of βHET displays larger richness values compared to HOM. This trend reverses as

Host contacts shape strain diversity
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Fig 1. Effect of contact heterogeneity on strain richness. Comparison between a homogeneous (HOM) and a heterogeneous (HET) network. In HOM all nodes

have the same activity rate aH = 0.285 and the network average degree is �k ¼ 0:89. In HET the activity rate of each node is drawn randomly from a power-law

distribution with support (�, 1] and the same average value as in HOM. Lower values of the power-law exponent γ correspond to a higher contact heterogeneity. The

average degree is the same as in HOM. We chose a population of �V ¼ 306 individuals, average length of stay τ = 10 days, probability of strain injection per incoming

individual ps = 0.079, and recovery rate μ = 0.00192 (see Materials and methods). (A) Sample time series of strain abundance for HOM and HET with γ = 0.7. Each

time series is represented with a different color. All abundances are stacked together, so that plot’s height represents prevalence. Here β = 0.02. (B) Average prevalence

vs β, and (C) average richness vs β. Two levels of heterogeneity are here considered for HET. For the sake of visualization, the shaded area corresponding to the

standard deviation is shown only for HOM. Median and confidence intervals are reported in S1 Fig of the supporting information. (D) Average prevalence vs richness.

Dashed lines are shown as a guide to the eye, highlighting variation in richness induced by network topology.

https://doi.org/10.1371/journal.pcbi.1006530.g001

Host contacts shape strain diversity
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β increases, and the richness is lower in HET consistently with the lower level of prevalence.

The relation between richness and prevalence, however, is not straightforward. For instance,

the reduction in richness for high β values is important even for the case with limited contact

heterogeneity, when prevalence is barely affected. The scaling between prevalence and richness

is not linear as β varies (Fig 1D), and the relation between the two quantities varies appreciably

among contact networks. In correspondence of a fixed value of prevalence, heterogeneous net-

works have lower richness—e.g. a prevalence value of�0.8 corresponds to�20% lower rich-

ness in HET with respect to HOM, as highlighted in Fig 1D.

This fact can be explained by the dynamical properties of epidemics on heterogeneous net-

works. Active nodes, involved in a larger number of contacts, get infected more frequently

[35]. Also, a randomly chosen node is likely surrounded by active nodes [33]. As a conse-

quence, injected strains often find their propagation blocked by active infected nodes. In this

way, contact heterogeneities enhance the competition induced by mutual exclusion and ham-

per the wide-spread of emerging strains, similarly to what was found in [46]. This mechanism

is further confirmed by looking at the persistence time of strains (S2 Fig in the supporting

information). Above the epidemic threshold, it is on average shorter in heterogeneous net-

works than in homogeneous ones. The distributions are however more skewed in heteroge-

neous networks, indicating that more strains are going extinct rapidly, while a few others can

survive for a long time in the population.

If on the one hand hubs accelerate the extinction of certain strains, on the other they act as

super-spreaders, amplifying the propagation of other strains. We find that this impacts pro-

foundly the distribution of strains’ abundances, i.e. the strain-specific prevalence. Fig 2A

shows that the latter is broader for the HET network, with the most abundant strain reaching

a larger proportion of cases. This situation is synthesized by the Berger-Parker index, that

quantifies the level of unevenness or dominance of a given ecological system [52, 53]. This is

defined as the relative abundance of the most abundant strain (see Materials and methods sec-

tion). Fig 2B shows that Berger-Parker index increases with β for all networks. This is expected

since at low β strains’ transmission chains are short and barely interact, while they interfere

more at higher values of transmission potential. The Berger-Parker index is always higher in a

Fig 2. Effect of contact heterogeneity on strain dominance. (A) Distribution of strains’ relative abundance, i.e. the frequency of strains infecting a given fraction of

the total prevalence, for HOM (blue), HET with γ = 2.5 (red), and HET with γ = 0.7 (green). Here β = 0.02. (B) Berger-Parker index, i.e. the relative abundance of the

most abundant strain, as a function of β. For the sake of visualization, the shaded area corresponding to the standard deviation is shown only for HOM. Median and

confidence intervals are reported in S1 Fig of the supporting information. (C) Berger-Parker index vs richness. Parameters are the same as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006530.g002

Host contacts shape strain diversity
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heterogeneous network, even when the comparison is made at fixed values of richness (Fig

2C). An alternative indicator, the Shannon evenness, shows a similar behavior as displayed in

S3 Fig.

The fraction of strains going extinct also depends on stochastic effects in a finite size popu-

lation. We indeed found that increasing network size, when temporal and topological proper-

ties were the same, led to an increase in both persistence time and richness (S4 Fig). This

shows that interference among transmission chains is reduced in larger populations. However,

the relative abundance distribution remained similar, showing that it is primarily affected by

the nodes’ activity distribution (S5 Fig).

Eventually, we tested whether additional mechanisms of strain injection were leading to dif-

ferent results. In S6 Fig we assumed new strains to infect susceptible nodes already present in

the system with rate qs, mimicking in this way transmissions originating from an external

source, as it can happen in real cases. The plot of S6 Fig shows the same qualitative behavior

described here.

Effect of community structure

We considered a community model (COM) with nC communities in which all nodes are as

active as in HOM, but direct a fraction pIN of their links within their community and the rest

to nodes in the remaining nC − 1 communities. The closer pIN is to 1, the stronger the reparti-

tion in communities is.

Fig 3A and 3B shows that a network with communities displays a higher richness for large

β; even when community structure barely affects prevalence (Fig 3B). However, the effect is

important only when communities are fairly isolated (pIN = 0.99) and the injection from the

outside is not so frequent—otherwise the effect is masked by strain injection which occurs uni-

formly across communities. In particular, for the values of pIN = 0.78 and ps = 0.079, chosen to

match the hospital application, the difference with the homogeneous case is very small. The

limited role of community structure is also confirmed by the fact that once this feature is

combined with heterogeneous activation—in a model with the activation scheme of HET

and the stub-matching of COM—the latter property has the dominant effect and the richness

decreases (S1 Fig).

The relation between richness and prevalence remains the same when adding the injection

of new strains due to the transmission from an external source. This mechanism further

increases the richness. When β is high and the fraction of infected nodes is close to one, how-

ever, such a mechanism is hindered by the fact that susceptible nodes, that can get infected

from the external source, are rare (see S6 Fig). This is why richness starts to decrease for high

values of β.

We tested the consequences of communities in strain dominance by plotting the Berger-

Parker index in Fig 3C. For low β, the behavior of the Berger-Parker index follows the trend in

richness. The initial decrease in this indicator is due to the increase in richness, that occurs at

constant prevalence and is thus associated to a decrease in the average abundance [54]—green

curve corresponding to pIN = 0.99 and ps = 0.01. At larger values of β, instead, increased com-

petition levels induced higher dominance levels.

The increase in strain diversity is due to the reduced competition among strains introduced

in different communities. When coupling among communities is low, indeed, strains may

spend the majority of time within the community they were injected in, thus avoiding strains

injected in other communities. Fig 3D confirms this hypothesis by showing the Inverse Partici-

pation Ratio (IPR) [55] that quantifies uniformity in the repartition of abundance across com-

munities. Values close to zero indicate uniform repartition, while, conversely, values close to 1

Host contacts shape strain diversity
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Fig 3. Impact of community structure. (A) Richness vs β for HOM (blue), COM with pIN = 0.78 (red), and COM with pIN = 0.99 (green). For both COM models we

have set nC = 6. Solid lines correspond to ps = 0.01, while dashed lines correspond to ps = 0.079. Solid lines refer to the right y-axis, while dashed ones to the left y-axis.

For the sake of visualization, the shaded area corresponding to the standard deviation is shown only for HOM. Median and confidence intervals are reported in S1

Fig of the supporting information. (B) Prevalence vs richness and (C) Berger-Parker index vs richness, for ps = 0.01. (D) Average IPR for both ps = 0.01 (white

background) and ps = 0.079 (gray background). Here β = 0.02. Squares correspond to IPR obtained from total prevalence while circles correspond to IPR obtained

from strains’ abundances. A value of the IPR close to 1 indicates localization over one community. Here no injection due to transmission from an external source is

assumed (qs = 0). The effect of this second mechanism is shown in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1006530.g003

Host contacts shape strain diversity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006530 May 21, 2019 7 / 23

https://doi.org/10.1371/journal.pcbi.1006530.g003
https://doi.org/10.1371/journal.pcbi.1006530


indicate that, on average, a strain is confined within a single community for most of the time

(more details are reported in the Materials and methods section). The strength of the commu-

nity structure does not affect the repartition of the total prevalence (squares in the plot), how-

ever it alters the average IPR value computed from the abundance of single strains, thus strains

become more localized as pIN increases. Notice that a certain degree of localization is present

also in the homogeneous network, due to those strains causing very few generations before

going extinct.

As a sensitivity analysis we tested whether the main results obtained so far are the same in a

more realistic situation where additional heterogeneous properties of nodes are accounted for.

We consider the case in which infectious duration varies across individuals, as happens for S.
aureus colonization. S7 Fig shows that the inclusion of three classes differing in recovery rate

reduces richness and increases the Berger-Parker index with respect to the homogeneous

recovery. However, the effects discussed so far—e.g. reduction and amplification of richness in

HET and COM, respectively—are still present.

Effect of turnover of individuals

Node turnover represents another important property of a network that may impact the eco-

logical dynamics of strains for two reasons: incoming individuals contribute to richness by

injecting new strains; on the other hand, the removal from the population of infected nodes

breaks transmission chains and hampers the persistence of strains. The result of the interplay

between these two mechanisms is summarized by the plot of richness as a function of β and

node length of stay, τ,—Fig 4A. The figure, obtained with the HOM model, shows two distinct

regimes. In the former case, richness decreases as τ increases, because replacement of individu-

als becomes slower and injections less frequent. In the high β regime, instead, the average

richness at fixed β does not depend monotonically on the node turnover but it is instead maxi-

mized at intermediate τ. Interestingly, the optimal value of τ decreases as β increases. This

Fig 4. Effects of node length of stay on strain diversity. (A) Average richness and (B) Average Berger-Parker index for simulations on HOM model. Contour plots

are shown in both figures. While exploring τ we also set the value of the average network size �V to 306, thus the injection rate can be computed by the relation

lin ¼
�V=t. For each value of β we highlight in panel (A) the value of the length of stay corresponding to the maximum richness (white asterisks) together with the

analytical prediction (white line) obtained by using Eq (1). Here μ = 0.00192, �k ¼ 0:89, aH = 0.28.

https://doi.org/10.1371/journal.pcbi.1006530.g004

Host contacts shape strain diversity
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behavior can be explained by looking at the balance between injection and extinction that

determines the equilibrium value of richness, �NS. This reads [56]:

�NS ¼ linpsTpersðb; tÞ ¼
�V ps

Tpersðb; tÞ

t
; ð1Þ

where λinps is the rate at which new strains are introduced and Tpers is the average persistence

time of a strain. The trade-off between injection and extinction appears as the ratio between

the two time scales, Tpers and τ. In the limit τ! 0 the spread plays no role, even for high β. As

τ increases, newly introduced infectious seeds have a higher probability to spread, thus the

average extinction time initially increases super-linearly with τ (see S8 Fig in the supporting

information) resulting in an increase of richness. However, past a certain value of τ, Tpers

does not grow super-linearly anymore, thus a further increase in τ is detrimental for pathogen

diversity because it is associated to fewer introductions. This general behavior was not altered

by the accounting for introductions by transmissions from an external source as shown in

S6 Fig.

We derive an approximate formula for Tpers considering an emerging strain competing

with a single effective strain formed by all other strains grouped together. This formulation,

enabled by the neutral hypothesis, makes it possible to write the master equation describing

the dynamics and to use the Fokker-Planck approximation to derive persistence times (see

Materials and methods section). Analytical results well reproduce the behavior observed in the

simulations, and, in particular, the value of the length of stay maximizing richness for different

β as shown by the comparison between white stars and continuous line in Fig 4B. The quanti-

tative match for other values of ps is reported in S9 Fig.

Unlike richness, Berger-Parker index always increases monotonically with the length of

stay—Fig 4B. This behavior is due to the correlation of this indicator with average abundance,

similarly to what we discussed in the previous section.

Spread of S. aureus in a hospital setting

We conclude by analyzing the real-case example of the S. aureus spread in a hospital setting

[10, 57]. We used close-proximity-interaction (CPI) data recorded in a long-term health-care

facility during 4 months by the i-Bird study [16, 28, 31]. These describe a high-resolution

dynamical network whose complex structure reflects the hospital organization, the subdivision

in wards and the admission and discharge of patients [58]. Together with the measurements of

contacts, weekly nasal swabs were routinely performed to monitor the S. aureus carriage status

of the participants and to identify the spa-type and the antibiotic resistance profile of the colo-

nizing strains.

The modeling framework considered here well applies to this case. The SIS model is widely

adopted for modeling the S. aureus colonization [59, 60], and the assumption of mutual exclu-

sion is made by the majority of works to model the high level of cross-protection recognized

by both epidemiological and microbiological studies [61, 62]. The dynamic CPI network was

previously shown to be associated with paths of strain propagation [16]. Consistently, we

assumed that transmission is mediated by network links with transmissibility β. In addition,

new strains are introduced in the population carried by incoming patients, or through contacts

with persons not taking part in the study.

Fig 5A shows weekly carriage and its breakdown in different strains. Prevalence and rich-

ness fluctuate around the average values 87,3 ± 6,3 cases and 39,8 ± 2 strains, respectively.

Simulation results are reported in Fig 5B, that displays the impact of transmission and intro-

duction rate on richness and prevalence. When qs is low we find a positive trend between

Host contacts shape strain diversity
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Fig 5. S. aureus population structure on hospital network. (A) Weekly carriage data measured during the i-Bird experiment. Each S. aureus strain’s abundance time

series is represented by a different color. All time series have been stacked as in Fig 1A. (B) Prevalence vs. richness from simulations on the hospital network for

different β and different rates of introduction, here tuned by the parameter qs. Blue dashed lines represent the average empirical values. (C) Prevalence vs richness for

hospital contact data (blue dots) and RAND null model (grey dots). In RAND contacts are randomized by preserving the first and the last contact of every individual.

Markers’ size in (B) and (C) is proportional to the value of β. The hospital curve corresponds to the curve in (B) with blue-contour markers. (D) Weekly value of

Berger-Parker index in carriage data (squares) along with the same quantity from the simulations. The shaded areas indicate the average plus/minus the standard

deviation obtained from 1000 stochastic runs. For each network, parameter values are the ones that reproduce empirical prevalence and richness. Duration of

colonization is assumed here to be 35 days [63]. Alternative values of this parameter led to the same qualitative results (S10 Fig).

https://doi.org/10.1371/journal.pcbi.1006530.g005
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richness and prevalence, consistently with the synthetic case. For larger values of qs the trend

appears instead different. As transmissibility increases, richness initially grows with prevalence

and then decreases after a certain point. This behavior is the same as observed in S6 Fig and

stems from the reduction of susceptible nodes, that causes a decline in the expected injection

rate—see Materials and methods section.

To quantify the effect of contact patterns on S. aureus population ecology we compared

simulation results with the ones on a network null model. Specifically, we built the RAND null

model that randomizes contacts while preserving just the first and the last contact of every

individual. The randomization preserves node turnover, the number of active nodes and links

and destroys contact heterogeneities and community structure along with other correlations.

Fig 5C shows the comparison for different transmissibility values. The effect of the network is

consistent with the theoretical results described for a heterogeneous network, i.e. smaller rich-

ness values correspond to the same prevalence in the real network compared to the homoge-

neous one. We then quantified the level of dominance of the multi-strain distribution by

means of the Berger-Parker index. We chose for each network the values of qs and β that better

reproduce empirical richness and prevalence and, interestingly, we found that, for the two

cases, same average richness and prevalence correspond to different levels of Berger-Parker

index. The Berger-Parker index obtained with the real network is the highest and the one that

better matches the empirical values—i.e. the empirical values are within one standard devia-

tion of the mean for almost all weeks. Based on this result we argue that contact heterogene-

ities, along with the other properties of the contact network, contribute to the increased

dominance of certain strains.

Discussion

Multiple biological and environmental factors concur in shaping pathogen diversity. We

focused here on the host contact network and we used a minimal transmission model to assess

the impact of this ingredient on strain population ecology, quantifying the effects of three

main network properties, i.e. heterogeneous activity potential, presence of communities and

turnover of individuals. Results show that the structure and dynamics of contacts can alter pro-

foundly strains’ co-circulation. Contact heterogeneities were found to shape the distribution

of strains’ abundances. Highly active nodes are known to play an important role in outbreak

dynamics by acting as super-spreaders [33]. At the same time, however, they were found to

enhance the interference between the transmission chains of different strains, thus hindering

the spread of an emerging variant [46]. Here we showed that the combination of these two

dynamical mechanisms reduces the richness and increases the level of heterogeneity in strains’

abundances. In particular, hubs could allow strains with no biological advantage to generate a

large number of cases and outcompete other equally fit strains. This mechanism may poten-

tially bias the interpretation of biological data. Dynamical models that do not properly account

for contact structure could overestimate the difference in strains’ epidemiological traits in the

attempt to explain observed fluctuations in strain abundance induced in reality by super-

spreading events. Moreover, these models could provide biased assessment of transmission vs.

introduction rates.

The presence of communities causes the separation of strains and mitigates the effect of

competition thus enhancing co-existence. A similar behavior was already pointed out before

[46, 51, 59, 64], e.g. for the spread of S. pneumoniae, as induced by age assortativity [64], for

the case of S. aureus where distinct settings were considered [59], and for a population of

antigenic distinct strains in presence of cross-immunity [51]. We found that the impact of

community structure is not so strong, and it is likely minor when individuals of different
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communities have frequent contacts. No appreciable variation was observed, indeed, for pIN =

0.78, chosen to match the inter-ward coupling of the hospital network. Similar results can be

expected for school classes or workplace departments presenting a similar level of community

mixing. The effect on richness becomes appreciable for low community coupling (e.g. pIN =

0.99 in Fig 3). This is consistent with a certain degree of diversity observed among strains

belonging to separated communities, as it is the case of different hospitals [15].

Eventually, the analysis of turnover of individuals revealed major effects on strain diversity,

when this mechanism is also the main driver of the introduction of strains in the population.

When transmissibility is low richness decreases with host length of stay. When transmissibility

is above the epidemic threshold we showed the existence of an optimal value of the length of

stay that maximizes strain richness as a result of the interplay between two competing time

scales, namely the typical inter-introduction time and the average persistence time of a strain.

This provides insights for the spread of bacterial infections in transmission settings, such as

hospitals or farms, that are of particular relevance for the spread of antimicrobial resistance

and that are characterized by a rapid host turnover [15, 31, 65]. For the case of hospitals, for

instance, they suggest that variations in patients’ length of stay, as induced by a change of pol-

icy, could have appreciable effects on the population structure of nosocomial pathogens.

We adopted a neutral model to better disentangle the relative role of the different network

properties. A wide disease-ecology literature addressed the consequences of neutral hypotheses

on multi-strain balance in order to provide a benchmark for interpreting the observed co-

existence patterns and gauging the effect of selective forces potentially at play [11, 18, 66, 67].

Many of these works addressed, for instance, the co-existence between susceptible and resis-

tant strains of S. pneumoniae [11, 66]. However, this assumption was rarely adopted in net-

work models, that consider for the majority strains with different epidemiological traits with

the aim of describing pathogen selection and evolution [47–49, 68]. Strains were assumed to

have the same infection parameters in [50, 51], where the role of community structure and

clustering was analyzed in conjunction with cross-immunity. With respect to these works, the

minimal transmission model used here enabled a transparent comprehension of the role of the

network. Multiple identical SIS processes can be mapped, in fact, on a single SIS process, in

such a way that the wide literature of single SIS processes allows for a better understanding of

the behavior recovered in the simulations [32, 33]. Strains can be also grouped in two macro-

strains. This strategy allowed us to adopt the viewpoint of an emerging strain and study its

competition with the others seen as a unique macro-strain. The associated master equation

and Fokker-Planck approximation allowed computing the average extinction time, capturing

the key aspects of the dynamics. In a future work this theoretical framework could be extended

to consider other network topologies. It could, for instance, be coupled with the activity-block

approximation to describe heterogeneous networks. Additional numerical analyses, based on

a similar transmission model, could also address other properties known to alter spreading

dynamics, such as heterogeneous inter-contact time distribution or topological and temporal

correlations.

As a case study, we analyzed the spread of S. aureus in a hospital taking advantage of the

simultaneous availability of contact and carriage information [16]. The temporal and topologi-

cal features of the network lead to a lower prevalence and richness with respect to the homoge-

neous mixing (although the effect was quite small). In addition, similar prevalence and

richness values are associated to different dominance levels in different networks—i.e. differ-

ent values of the Berger-Parker index—with the real network leading to a higher dominance as

observed in reality. This behavior can be explained by the theoretical results and can be attrib-

uted essentially to the effect of contact heterogeneities, considering that the community struc-

ture does not have appreciable effects for this network, as discussed above. The importance of
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accounting for host contacts and hospital organization in the assessment of bacterial spread

and designing interventions has been recognized by several studies [16, 28–31, 63]. Here we

show that this element may be critical also for understanding the population ecology of the

bacterium. It is important to note however that, while the realistic network provides results

that are closer to the data, this ingredient explains only part of the heterogeneity observed in

the abundance. This shows that the contact network is a relevant factor, but other factors

should be considered as well. The approach used here is intentionally simplified, as we focused

on the main dynamical consequences of the contact network. Clearly, more detailed models

can be designed to reproduce more closely the data. A certain degree of variation in the epide-

miological traits could be at play, as for example the fitness cost of resistance [8]. Role of hosts

in the network (e.g. patients vs. health-care workers), and heterogeneities in health conditions,

antibiotic treatment and hygiene practices are also known to affect duration of carriage and

chance of transmission [16, 28, 31, 63]. Eventually, we must consider that the comparison of

model output with carriage data is also affected by the limitation of the dataset itself, already

described in [16]. In particular, the weekly swabs may leave transient colonization undetected.

Moreover, while the relevance of CPIs as proxies for epidemiological links has been demon-

strated [16], the transmission through the environment (e.g. in the form of fomites) is also

possible.

The understanding provided here can be relevant for other population settings, temporal

scales and geographical levels. In addition, the modeling framework could be applied to patho-

gens other than S. aureus, such as human papillomavirus, S. pneumoniae and Neisseria menin-
gitidis, for which the strong interest in the study of the strain ecology is justified by the public

health need for understanding and anticipating trends in antibiotic resistance, or the long-

term effect of vaccination [1, 2, 4, 5]. With this respect, if the simple framework introduced

here increases our theoretical comprehension of the multi-strain dynamics, more tailored

models may become necessary according to the specific case. In particular, we have considered

complete mutual exclusion as the only mechanism for competition. In reality, a secondary

inoculation in a host that is already a carrier may give rise to alternative outcomes, such as co-

infection or replacement [69]. In addition, infection or carriage may confer a certain level of

long-lasting strain-specific protection and/or a short-duration transcendent immunity [11,

50]. Eventually mechanisms of mutation and/or recombination are at play and their inclusion

into the model can be important according to the time scale of interest.

Materials and methods

Network models

We provide here details of the generative algorithms used for the contact network models. Net-

work dynamics is implemented in discrete time according to the following rules common to

all models:

Turnover dynamics: new nodes arrive according to a Poisson process with rate λin and

leave after a random time drawn from an exponential probability distribution with average τ.

After a short initial transient, population size is Poisson distributed with average �V ¼ lint.

Upon admission, a node i is assigned with an activity potential ai, i.e. an activation rate, drawn

at random from a given probability distribution P(a). Any node retains this property through-

out its whole lifespan.

Activation Pattern: each node i becomes active with rate ai. It then receives a number of

stubs drawn from a zero-truncated Poisson distribution with parameter κ—we require active

nodes to engage in at least one contact. The average number of stubs, computed among active
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nodes, is thus given by κ/(1 − e−κ), and the average degree can be computed by the latter quan-

tity multiplied by the average activity potential. The active status lasts for a single time step.

Stub-matching: stubs are then matched according to the actual model considered.

We now describe in detail each network model:

HOM: in this model each node has the same probability aH to be active during each time

step; the activity distribution is thus P(a) = δ(a − aH), where δ(x) is the Dirac’s delta function.

Stubs are matched completely at random in order to form links, according to a configuration

model [33]. We discard eventual self-links and multiple links that may occur during the

matching procedure.

HET: here each node i has its own activity rate ai, drawn from a power-law distribution

P(a)/ a−γ, with a 2 (�, 1]. We tune the variance by varying γ—lower γ higher variance. We

then set � to have the average activity �a equal to aH in HOM. Stub-matching procedure is the

same as in HOM. HET model is thus a variant of the activity driven model introduced in [34]

with the difference that here contacts are created only among active individuals.

COM: incoming nodes are assigned to one among nC communities with equal probability—

so that communities have the same size on average—and belong to the same community

throughout their whole lifespan. Stubs are matched according to the community each node

belongs to. Precisely, any stub is matched either with another stub of the same community,

with probability pIN, or with a stub of a different community, with complementary probability.

Here the stub-matching procedure results in a larger number of lost links—to eliminate multi-

ple links and self-loops—compared to HOM and HET, due to the difficulty in matching stubs

within small groups. Thus, the parameter κ has to be adjusted manually to recover the same

average degree as in HOM and HET. Each node has the same activity potential aH as in HOM.

Hospital network and null model

We use a dynamical contact network obtained from CPI data collected during the i-Bird study

in a French hospital. Details of the network are already reported in [16]. Briefly, the dataset

describes contacts occurring between 592 individuals from July to November 2009. The study

involved both patients and health-care workers, distributed in 5 wards, as well as hospital ser-

vice staff. Every participant wore a wireless device designed to broadcast a signal every 30 s

containing information about its ID. Signal strength was tuned so that only devices within a

small distance (around 1.5 m) were able to register a contact. CPIs were finally aggregated

daily, keeping the information about their cumulative duration within each day.

We discard CPIs relative to the first 2 weeks and the last 4 weeks of dataset, corresponding

to a period of adjustments in the measurements and progressive dismissal of the experiment,

respectively. Simulations conducted with the CPIs network were compared with results

obtained with a null model which we refer to as RAND. According to this randomization

scheme the activity of a node is randomized while respecting the constraint that removal and

addition of contacts must not alter the time of the first and the last contact of each node (tS
and tL respectively). Notice that RAND preserves the number of nodes that are present at any

time in the network by preserving their first contact tS and their length of stay tL − tS. Null

models randomizing the latter properties lead to misleading results when node length of stay is

heterogeneous and node turnover occurs [70]. RAND also sets all contact weights equal to the

average weight value.

Spreading simulations

Spreading dynamics is stochastic and is performed in discrete time. At each time step of dura-

tion Δt, we update the state of each node: each infected node transmits the strain it is carrying
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to a susceptible neighbor with probability βΔt and it turns susceptible with probability μΔt.
Notice that due to mutual exclusion, an individual can be infected by a single strain at a time

[71]. Strain injection is given by the combination of two processes: incoming individuals bring

a new strain with probability ps, and susceptible individuals turn infectious with a new strain

with probability qsΔt. The two mechanisms mimic respectively incoming infectious individuals

(e.g. admission of colonized patients) and transmission from an external source (in the hospi-

tal example this corresponds to contacts with individuals that were not participating in the

study). The expected injection rate, which accounts for both introduction mechanisms, is thus

given by i ¼ linps þ
�Sqs, where �S is the average number of susceptible individuals at the equi-

librium. In the theoretical analysis in the main paper we assumed qs = 0 for simplicity, thus

variations in ι were induced by variations in λin and ps. The case qs> 0 was considered in the

supporting information.

Simulations on synthetic networks differ from those on the hospital network in the combi-

nation of the spreading and network dynamics. In the synthetic network case, at each time

step of duration Δt = 1h, both network and spreading dynamics are simulated one after the

other. On average, λinΔt new nodes enter in the population per time step, while existing nodes

can leave with probability Δt/τ. Nodes then form contacts according to the specific generative

network algorithm. Eventually, transmission and recovery are simulated as explained above.

In order to reconstruct the equilibrium dynamics we run simulations for a sufficiently long

time span, discarding a transient time of 4 � 104 time steps. We verified that the dynamical

properties at the equilibrium are unaffected by initial conditions.

For the hospital example, the network is an external parameter fed into the simulations.

Contacts were aggregated daily keeping the information of their total duration. We used this

information by considering a weighted network with the link weight, wij, representing the

number of contacts of duration 30 s registered during the day between i and j. We then

assumed Δt = 1 day and computed the probability of infection depending on the weight as

1 � ð1 � bdÞ
wij , with δ = 30 s. We initialized the system with the same configuration observed

in the data, i.e. the initial status for each node is set according to S. aureus carriage during the

starting week. Simulation length is bound to the hospital contact network duration.

In order to facilitate the comparison between the synthetic and the real scenarios, parame-

ters of the network models were set based on the properties of the hospital network. The aver-

age size, the average activity potential and the average degree were set equal to the values

estimated from the hospital network, i.e. �V ¼ 306, �a ¼ 0:28, �k ¼ 0:89 respectively. For the

COM model the number of communities (nC = 6) and one of the two explored values of pIN

(pIN = 0.78) were also informed by the data. Additional values of �V and pIN were also tested.

Epidemiological parameters were informed by the data in some cases—ps = 0.079 as computed

from carriage data -, or chosen among plausible values for the S. aureus colonization—i.e. μ−1,

that was set equal to either 21 or 35 days with other values from 14 to 49 days explored in the

supporting information. Values of β were explored systematically. For consistency, values of

rates throughout the manuscript were always expressed per hour.

Analysis of carriage data

Carriage data was obtained from weekly swabs in multiple body areas, including the nares.

Swabs that resulted positive to S. aureus were further examined. Spa-type and antibiotic resis-

tance profiles (MSSA or MRSA) were then determined. In this work we regard two strains as

different if they differ in spa-type and/or antibiotic resistance profile. We considered carriage

data obtained from nasal swabs dismissing other body areas since the anterior nares represent

the most important niche for S. aureus [72].

Host contacts shape strain diversity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006530 May 21, 2019 15 / 23

https://doi.org/10.1371/journal.pcbi.1006530


Ecological measures and other indicators

We described strain population diversity through standard ecological indicators. The abun-

dance of a strain i, Ni, is the strain-associated prevalence. From this quantity we computed the

relative abundance, fi ¼
NiP

i
Ni

, and the relative abundance distribution, being the frequency

of strains with relative abundance f. The Berger-Parker index is the relative abundance of the

dominant strain, i.e. maxi fi.
To analyze repartition of strains across communities we use the Inverse Participation Ratio

(IPR) [55]. The general definition of this quantity is the following. Given a vector~v with l com-

ponents {vi}i=1,. . .,l, all within the range [0, 1], the IPR is given by:

IPR ¼
Xl

i¼1

v4

i : ð2Þ

If all the components are of the order (l−1) then the IPR is small. Instead if one component

vi� 1 then IPR� 1 too, reflecting localization of~v. The IPR for total prevalence is computed

by setting vi equal to the fraction of infected individuals belonging to community i = 1, . . ., l =

nC, while the IPR for a single strain is computed by setting vi equal to the fraction of individuals

infected by that particular strain and belonging to community i. We can extend the IPR com-

putation to HOM case by assigning nodes to different groups as in COM but without affecting

the stub-matching scheme.

Analytical results for the homogeneous network

In order to estimate the value of the length of stay maximizing the average richness for a given

value of β when the contact structure is given by the HOM network we consider a homoge-

neous mixing version of our system.

Due to Eq (1) the calculation of the average richness reduces to the calculation of the aver-

age persistence time. In order to estimate such quantity we focus on a particular strain, labelled

as “strain A”, which is injected at t = 0 and we group all other strains under the label “strain B”.

We are allowed to do so because all strains have identical parameters. We therefore reduce our

initial, multi-strain problem, to a two-strain problem. Since all new strains that will be injected

after t = 0 will be labeled as strain B, it is clear that A is doomed to extinction since there exists

an infinite reservoir of B. The average time to extinction is therefore the average time to extinc-

tion of strain A.

Since HOM network realizes quite well homogeneous mixing conditions we regard our sys-

tem as homogeneously mixed. Within this framework it is sufficient to specify the numbers of

hosts infected by strain A (nA), hosts infected by strain B (nB) and susceptible hosts (ns). The

master equation for the joint probability distribution P(nA, nB, ns) is given by [73]:

_PðnA; nB; nsÞ ¼ b
0 �V � 1ðnA � 1Þðns þ 1ÞPðnA � 1; nB; ns þ 1Þ

þb
0 �V � 1ðnB � 1Þðns þ 1ÞPðnA; nB � 1; ns þ 1Þ

þmðnA þ 1ÞPðnA þ 1; nB; ns � 1Þ þ mðnB þ 1ÞPðnA; nB þ 1; ns � 1Þ

þloutðnA þ 1ÞPðnA þ 1; nB; nsÞ

þloutðnB þ 1ÞPðnA; nB þ 1; nsÞ þ loutðns þ 1ÞPðnA; nB; ns þ 1Þ

þlout
�VpsPðnA; nB � 1; nsÞ þ lout

�V ð1 � psÞPðnA; nB; ns � 1Þ

� ½ðnA þ nBÞðb
0 �V � 1ns þ mÞ þ loutðnA þ nB þ nsÞ þ lout

�V �PðnA; nB; nsÞ;

ð3Þ

Where b
0
¼ b�k. Terms appearing on the right-hand side of the equation represent the
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probability flow associated to each transition event. The first four terms describe, in order, the

infection due to strain A, the infection due to strain B, the recovery from A and the recovery

from B. The remaining terms are then associated to the discharge of either one of the three

types of individuals—infected with A, infected with B and susceptibles—and to the admission

of infected of type B and susceptibles respectively. In order to obtain some approximate solu-

tion to this equation we assume that the average number of individuals nA + nB + ns and the

total prevalence nA + nB do not fluctuate in time and are therefore equal to �V and ið1Þ �V
respectively, where i(1) is given by:

ið1Þ ¼
b
0
� m � lout þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb
0
� m � loutÞ

2
þ 4b

0
loutps

q

2b
0

: ð4Þ

After performing the Van-Kampen size expansion we are left with a Fokker-Planck equa-

tion for the density of A f x ¼ nA
�V

� �
¼ PðnAÞ:

@t f ¼ � @x D1ðxÞfð Þ þ
1

2 �V
@

2

x D2ðxÞfð Þ; ð5Þ

where D1 = β0 (1 − i(1)) x − μ − λout and D2 = β0 (1 − i(1)) x + μ + λout are the so-called drift

and diffusion coefficients respectively.

According to the theory of stochastic processes [73] the average extinction time Tpers(x0)

(where x0 represents the initial density of strain A) satisfies:

D1ðx0Þ
d

dx0

Tpers þ
1

2 �V
D2ðx0Þ

d2

dx2
0

Tpers ¼ � 1; ð6Þ

with boundary conditions Tpers(0) = 0 and
d

dx0

Tpersðið1ÞÞ ¼ 0. The solution is finally given by:

Tpersðx0Þ ¼
ið1Þ
loutps

Eið� aið1ÞÞðeax0 � 1Þ � eax0Eið� ax0Þ þ lnðax0Þ þ gE½ �; ð7Þ

where Ei(x) is the exponential integral function and γE is Euler-Mascheroni constant. When a

new strain is introduced its prevalence is just 1, therefore we estimate the average extinction

time using Tpersðx0 ¼
�V � 1Þ.

Supporting information

S1 Text. Multi-strain model with heterogeneous recovery classes. This file contains addi-

tional information about simulations with individuals grouped into classes with different

recovery rates.

(PDF)

S1 Fig. Richness and Berger-Parker index as a function of transmissibility for HOM, HET,

COM and COM+HET models. Each model is displayed on a different column. HET is char-

acterized by activity distribution exponent γ = 0.7. COM+HET model is simulated using the

same activation pattern as in HET with γ = 0.7 and the same stub-matching procedure as in

COM. We consider the case pIN = 0.99. The first two rows correspond to ps = 0.01, whereas

the last two to ps = 0.079. For each scenario we show the median (solid line), as well as 50%

and 95% CI (shaded areas).

(PNG)

S2 Fig. Summary indicators of the persistence time distribution as a function of transmis-

sibility for both HOM and HET models. HOM and HET are displayed in blue and green
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respectively. (A), (B) and (C) display distribution’s average, coefficient of variation and skew-

ness, respectively. Other parameters are as in Fig 2 in the main text.

(PNG)

S3 Fig. Shannon evenness for HOM model and two instances of HET model. HOM is

depicted in blue, whereas instances of HET model with activity distribution exponent γ = 2.5

and γ = 0.7 are depicted in orange and green respectively. Shaded blue area represents standard

deviation for HOM. We introduce the relative abundance of the i-th strain: ni ¼ Ni

.P
i Ni,

with Ni the abundance of the strain i (i.e. the number of infected with strain i). Shannon

evenness is defined as the normalized Shannon entropy SðfnigÞ ¼ � N � 1P
i ni lnni, with

N ¼ lnNS. Parameters are the same as in Fig 1 in the main text.

(PNG)

S4 Fig. Impact of network size. Richness (A,B), average persistence time (C,D), prevalence

(E,F) and Berger-Parker index (G,H) as a function of transmissibility for both HOM and HET

models (first and second columns respectively). For each value of �V we compute ps to have the

strain injection rate, �Vps, the same across the different networks. Other parameters are as in

Fig 2 of the main paper. Increasing network size results in a larger number of co-circulating

strains, while the re-scaled prevalence and the Berger-Parker index are almost independent of

�V . Notice that increasing network size does not lead to any qualitative change in the relation

between HOM and HET.

(PNG)

S5 Fig. Relative abundance distribution in varying network size for HOM and HET mod-

els. HOM and HET are depicted in blue and green respectively. For each value of �V we com-

pute ps to have the strain injection rate, �Vps, the same across the different networks. Other

parameters are as in Fig 2 of the main paper.

(PNG)

S6 Fig. Richness for the different network models with transmission from an external source.

The frequency of transmissions from an external source is tuned by qs, which we set here to

0.0002. (A) Richness for HOM model (blue markers) and HET model with activity distribution

exponent γ = 0.7 (green markers). Here ps = 0.079. (B) Richness index for HOM model (blue

markers) and COM model with within-community connection probability pIN = 0.99 (green

markers). Here ps = 0.01. (C) Richness as a function of β and τ for HOM model. Here ps = 0.079.

(PNG)

S7 Fig. Multi-strain dynamics when recovery rate is heterogeneous across individuals.

Here, each node belongs to one out of three classes according to its recovery rate—see descrip-

tion in the dedicated section of this supporting information. We compare HOM (blue), HET

(green), COM (red) models with and without heterogeneity in the recovery rate (triangles and

circles respectively). Panels show prevalence (A), richness (B) and Berger-Parker index (C).

Other parameters are like in Figs 1, 2 and 3 in the main paper (γ = 0.7 for HET and pIN = 0.99

for COM).

(PNG)

S8 Fig. Average persistence time for HOM in varying transmissibility and length of stay.

The quantity is computed from the simulations. The dashed gray line represents a linear trend

as a guide to the eye. Parameters are the same as in Fig 4 in the main text.

(PNG)
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S9 Fig. Comparison between simulations for HOM model and analytical predictions

obtained using the Fokker-Planck framework. Solid lines represent average richness

obtained by using Eqs (1) and (7) from the main text while dots represent simulations results.

Here β = 0.04 while other parameters are the same as in Fig 4 in the main text.

(PNG)

S10 Fig. Prevalence vs richness for several values of the infectious period and using the

CPI network. The value of qs is the same for the curve highlighted in Fig 5B in the main text,

qs = 0.00018. Here dot size is proportional to the magnitude of β.

(PNG)
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