Tissue microstructure information from T, relaxometry and
diffusion MRI can identify multiple sclerosis lesions undergoing
blood-brain barrier breakdown
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Gd enhancing lesion detection

Motivation

* @Gd retention observed in brain tissues after
prolonged usage.

* Leads to MRI signal change

* High risks when patients have renal complications.

* Highly valuable clinical information.

* Greater caution on repeated usage.

Objective
* Method to identify Gd enhancing lesions without Gd
injection.
e But from tissue microstructure information.

T, relaxometry and diffusion MRI (dMRI)

* Compare statistics of T, relaxometry and dMRI

markers of Gd enhancing and non-enhancing lesions.

* A model to predict Gd enhancing lesions.

* Test case evaluations
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Multi-compartment T, relaxometry model (MCT2)
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* Three compartments per voxel.

 MCT2 markers: Obtain fractional representation

of each compartment in a voxel.

e Parametric model where each compartment is

considered a gaussian PDF whose parameters are
fixed.

* Refer: Chatterjee, S., et al., MICCAI, 2018, (pp. 63-71).
Springer, Cham.

* Implementation available at:

https://github.com/Inria-Visages/Anima-Public



https://github.com/Inria-Visages/Anima-Public

Multi-compartment diffusion model (MCDiff)

e Ball and Zeppelin model [Panagiotaki E., et al, 2012]

* Three fascicles. Fixed radial diffusivity.

* An isotropic gaussian PDF for free water.

N=3
p(x) = fuprw(x) + Z a;pi(x) where fu+ 2 ;a; =1
i=1



Multi-compartment features

MCDiff

e Short T2 water fraction e Free water fraction
e Medium T2 water fraction e Fractional anisotropy*
e High T2 water fraction e Apparent diffusion

coefficient™
e Axial diffusivity*

*compartmental weighted average



Dataset

* T, relaxometry data: * Diffusion MRI data:
* Echo time =13.8ms e Echo time = 94ms
* No. of echoes =7 e 30 directions on a single shell
b-value = 1000s/mm?
e TR = 4530ms * TR=9.3sec
 Voxel resolution = 1.3x1.3x3.0mm3 * Voxel resolution = 2x2x2mm?

 Total acquisition time < 14 mins
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Comparison of markers between groups
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Classification module

Test Set
P11 (L)
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Compensating for
label imbalance

L- samples are randomly
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trainingset such that
L- and E+ samples
are in 3:2 ratio.

Training Phase
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Hyperparamater
optimization
Parameters optimized:
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Classification performance
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The perfromance metrics are computed assuming
E+ is denoted by label '1' and L- is denoted by label '0'

(a) Training phase performance

Voting score for the test case lesions
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Discussion

* The MCT2 and MCDiff features are able to identify MS lesions
undergoing BBB from the others as these features provide
information on demyelination, edema formation and axonal damage
in the lesion affected brain tissues.

* We proposed a prediction framework to identify these lesions using
statistics of MCT2 and MCDiff biomarkers values in a lesion and
demonstrated its potential on a test case.

Multi-compartment model implementation available at: https://github.com/Inria-Visages/Anima-Public



https://github.com/Inria-Visages/Anima-Public
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