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Abstract

The Mitogen-Activated Protein Kinase (MAPK) network consists of tightly interconnected signalling pathways involved in
diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the
involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the
balance between cell proliferation and cell death (cell fate decision) in pathological circumstances remain elusive. Based on
an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling
network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand
their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded
them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder
cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the
combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the
compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations
for different signal combinations and network perturbations were found globally coherent with published data. In silico
experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell
fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder
cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR) over-expression and Fibroblast Growth Factor
Receptor 3 (FGFR3) activating mutations.
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Introduction

Mitogen-activated protein kinase (MAPK) cascades can be

activated by a wide variety of stimuli, such as growth factors and

environmental stresses. They affect diverse cellular activities,

including gene expression, cell cycle machinery, apoptosis and

differentiation.

A recurrent feature of a MAPK cascade is a central three-tiered

core signalling module, consisting of a set of sequentially acting

kinases. MAPK kinase kinases (MAPKKKs) are activated follow-

ing upstream signals. For instance, they can be phosphorylated by

small G-proteins belonging to the Ras/Rho family in response to

extracellular stimuli. Their activation leads to double phosphor-

ylation and activation of downstream MAPK kinases (MAPKKs),

which in turn double phosphorylate MAPKs. Once activated,

MAPKs act on their target substrates, which include other kinases

and transcription factors [1]. To date, three main cascades have

been extensively studied, named after their specific MAPK

components: Extracellular Regulated Kinases (ERK), Jun NH2

Terminal Kinases (JNK), and p38 Kinases (p38). These cascades

are strongly interconnected, forming a complex molecular network

[1–4].

MAPK phosphorylation level is regulated by the opposing

actions of phosphatases. As the effects of MAPK signalling have

been shown to depend on the magnitude and duration of kinase

activation, phosphatase action might play an important functional

role [5]. Moreover, scaffold proteins bring together the compo-

nents of a MAPK cascade and protect them from activation by

irrelevant stimuli, as well as from negative regulators (such as

phosphatases) [6].

The involvement of MAPK cascades in major cellular processes

has been widely documented [1,7,8]. However, the wide range of

stimuli and the large number of processes regulated, coupled with

the complexity of the network, raises the fundamental and debated

question of how MAPK signalling specificity is achieved [9].

Several interrelated mechanisms have been proposed: opposing

action of phosphatases; presence of multiple components with

different roles at each level of the cascade (e.g. different isoforms of

a protein); interaction with scaffold proteins; distinct sub-cellular

localisations of cascade components and/or targets; feedback
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mechanisms; great variety of molecular signals, as well as distinct

durations and strengths; cross-talks among signalling cascades that

are activated simultaneously [4,10]. All these factors contribute to

the complexity of the MAPK network and presumably act

together to determine signalling specificity.

Deregulations of the MAPK cascades are often observed in

cancer [11,12]. Several components of the network have already

been proposed as targets in cancer therapy, such as p38, JNK,

ERK, MEK, RAF, RAS, and DUSP1 [12–23], but the intricacy of

the underlying mechanisms still hinders the conception of effective

drugs [24]. A deeper understanding of the regulatory mechanisms

involved is crucial to clarify the roles of MAPKs in cancer onset

and development, as well as to delineate therapeutic strategies.

During the last decades, mathematical modelling has been

widely used to study different aspects of the MAPK cascades [25]

(Table S1). Quantitative models (based on Ordinary Differential

Equations – ODE) have been proposed to explain the main

dynamical properties of the MAPK cascades in relation with their

particular structural features (double phosphorylation events,

phosphatase effects, feedback loops, role of scaffold proteins,

etc.) [26–32]. Other modelling studies investigated the behaviour

of specific cascades (mainly ERK) leading to MAPK activation in

response to external stimuli [33–42]. More recently, comprehen-

sive qualitative dynamical models have been developed. Samaga et

al. [43] built a large logical model of the signalling network

(including MAPKs) responding to Epidermal Growth Factor

Receptor (EGFR) stimuli, which was largely derived from the

reaction map published by Oda et al. [44]. This model accurately

covers the early response of the MAPK cascades to signalling

stimuli, with a particular reference to primary and transformed

hepatocytes. Also focusing on cancer (in particular, epithelial

tumours), the logical model proposed by Poltz and Naumann

recapitulates the response of a cell to DNA damaging agents (DNA

repair versus apoptotic cell death), and was used to identify

candidate target molecules to design novel therapies [45].

In this study, we aimed at better understanding how MAPK

signalling deregulations can interfere with tissue homeostasis,

leading to imbalance between cell proliferation, on the one hand,

and cell growth arrest, possibly followed by apoptotic cell death,

on the other hand. The choice between these phenotypes (cell fate

decision) is of vital importance in cancer progression: transformed

cells receive external and/or autocrine growth stimuli pushing

towards cell proliferation (i.e. tumour growth); but they also

receive external and/or internal anti-proliferative signals, which

coupled with apoptotic stimuli trigger transformed cell clearance

from the organism [46]. Our goal was to build a predictive

dynamical model able (i) to recapitulate the response of the entire

MAPK network to selected stimuli, along with its specific

contribution to cell fate decision, and (ii) to assess novel hypotheses

about poorly documented mechanisms involved in specific cancer

cell types. We focused on urinary bladder cancer, where MAPK

network deregulations have been associated with specific pheno-

types.

Bladder cancer is the fourth most common cancer among men

in Europe and America. Two main types of early stage bladder

carcinoma have been delineated so far: (i) non-invasive papillary

carcinomas (Ta) are usually mildly aggressive and rarely progress

towards higher stages, whereas (ii) carcinomas in situ (Cis) often

develop into invasive tumours (T1 to T4 stages) [47]. Activating

mutations of Fibroblast Growth Factor Receptor 3 (FGFR3) have

been found in 70–75% of Ta tumours, but they are absent in Cis

and less frequent (15–20%) in invasive tumours [47,48].

Oncogenic FGFR3 gene fusions have also been recently

identified in a small percentage of invasive bladder tumours

[49]. In contrast, over-expression of EGFR has been recurrently

associated with higher probability of tumour progression [50].

The mechanisms underlying the cellular response of cancer cells

to these signalling stimuli are still poorly understood. Alterations

of p53 and retinoblastoma (RB) pathways are presumably

involved in tumour progression [51]. These pathways are major

controllers of the cell cycle, and the MAPK network presumably

regulates their activation by responding to growth factor stimuli.

For instance, ERK phosphorylation leads to MYC activation,

which can inhibit cell cycle progression through the p14/p53

pathway [52], or activate Cyclin/CDK complexes leading to RB

phosphorylation and subsequent E2F-dependent gene transcrip-

tion [51].

Both EGFR and FGFR3 pathways can activate the MAPK

cascades. Although the two signalling pathways largely overlap,

the presence of specificity factors might contribute to tune the final

cellular response. To tackle these questions, we first compiled

published data to build a comprehensive generic reaction map

using CellDesigner software [53–55]. This map takes into account

signals propagating from major stimuli, such as growth factors,

cytokines, stress, leading to the activation of MAPKs and their

downstream targets, and consequently to cell fate decision. We

considered three main cell fates: proliferation, apoptosis, growth

arrest.

Next, we used the resulting reaction map to design a

qualitative dynamical model with GINsim software [56,57],

which relies on a logical formalism [58–60]. To cope with the

relatively high number of components, we applied a semi-

automatic model reduction procedure to lower the computa-

tional cost of dynamical analyses, without losing the main

dynamical properties of the system. We then performed logical

simulations to check the behaviour of the model in specific

documented situations, as well as to predict the behaviour in

novel situations. We further investigated the role of positive and

negative regulatory circuits in cell fate decision. Altogether, these

analyses provided novel insights into the mechanisms differen-

tiating the response of urinary bladder cancer cells to EGFR

versus FGFR3 stimuli.

Author Summary

Depending on environmental conditions, strongly inter-
twined cellular signalling pathways are activated, involving
activation/inactivation of proteins and genes in response
to external and/or internal stimuli. Alterations of some
components of these pathways can lead to wrong cell
behaviours. For instance, cancer-related deregulations lead
to high proliferation of malignant cells enabling sustained
tumour growth. Understanding the precise mechanisms
underlying these pathways is necessary to delineate
efficient therapeutical approaches for each specific tumour
type. We particularly focused on the Mitogen-Activated
Protein Kinase (MAPK) signalling network, whose involve-
ment in cancer is well established, although the precise
conditions leading to its positive or negative influence on
cell proliferation are still poorly understood. We tackled
this problem by first collecting sparse published biological
information into a comprehensive map describing the
MAPK network in terms of stylised chemical reactions. This
information source was then used to build a dynamical
Boolean model recapitulating network responses to
characteristic stimuli observed in selected bladder cancers.
Systematic model simulations further allowed us to link
specific network components and interactions with prolif-
erative/anti-proliferative cell responses.

Modelling of MAPK Influence on Cell Fate Decision

PLOS Computational Biology | www.ploscompbiol.org 2 October 2013 | Volume 9 | Issue 10 | e1003286



Methods

Logical modelling
We built our dynamical model using the logical formalism

originally proposed by Thomas [58,59]. Implemented in GINsim,

our logical modelling approach initially requires the delineation of

a regulatory graph, where each vertex (node) represents a model

component and each arc (signed, directed edge) represents an

interaction (activation or inhibition) between two components.

Here, all components are associated with Boolean variables,

meaning that they can take two possible levels, 0 or 1, denoting the

absence/inactivation or the presence/activition of the modelled

entities (protein activation level, gene expression level, activation of

a cellular process, etc.). The model definition is completed by

assigning a logical rule to each component. This logical rule

specifies the target value of the component depending on the

presence/absence of its regulators, using the classical Boolean

operators AND, OR and NOT.

Logical simulations
The dynamical behaviour of the model can be computed

starting from any initial state, step by step, updating the current

state according to the logical formulae (logical simulations) [60].

Updating policy. Two updating policies are mainly used.

According to the synchronous policy, all components are updated

simultaneously at each step; consequently, each state has at most

one successor. In contrast, according to the asynchronous policy,

only one variable can be updated at each step and all the possible

successors of a state are computed. Mixed policies based on the

notion of priority classes can also be defined using GINsim [61],

where subsets of components are ranked. At each step, highest

rank variables are then updated in a synchronous or asynchronous

way.

In this work, we have used the fully asynchronous updating

policy, which usually generates more realistic behaviours [58].

State transition graphs and attractors. The dynamics of a

logical model can be represented in terms of a state transition

graph (STG), in which nodes denote different states of the system

(represented by a Boolean vector encompassing the values of all

the components), whereas arcs represent enabled transitions

between pairs of states. Of particular interest are the states

forming attractors, i.e. (groups of) states from which the system

cannot escape, which represent potential asymptotical behaviours.

Attractors can be ranged into two main classes:

– stable states, corresponding to fixed points (i.e. states without

successors);

– cyclic attractors, corresponding to terminal cycles or to more

complex terminal strongly connected components, comprising

several intertwined cycles.

Leaning on a representation of the logical rules in terms of

Multi-valued Decision Diagrams (MDD), an algorithm enables the

computation of all the stable states of a logical model (indepen-

dently of the initial conditions) [62]. The efficiency of the

algorithm (which does not require to compute the state transition

graph) makes this tool particularly useful when dealing with large

logical models. However, other means are needed to assess the

reachability of the stable states from specific initial states, or yet to

identify cyclic attractors.

Deeper dynamical analyses imply the computation of the state

transition graph. GINsim user can define a set of initial states and

an updating strategy; the software then computes the state

transition graph, highlighting stable states and cyclic attractors.

GINsim further eases the definition of perturbations, which are

simulated by forcing the level of a subset of components to fixed

values (or value intervals). For instance, in the Boolean case, we

can reproduce a loss-of-function by setting a component to 0,

whatever the levels of its regulators, whereas a gain-of-function can

be simulated by forcing the corresponding component to 1. More

subtle perturbations can be simulated by rewriting relevant logical

rules.

As the size of the model considered increases, we are facing the

well known problem of the exponential growth of the state

transition graph. To cope with this problem, we used two methods

that amount to compress the model before simulation or to

compress the resulting state transition graph on the fly. These two

methods are briefly described hereafter, along with a complemen-

tary method enabling the identification of regulatory circuits

playing crucial dynamical roles.

Model reduction
To deal with large models, GINsim enables their reduction by

‘‘hiding’’ selected components [63]. In practice, the user selects the

components to hide, and the software hides each of them

iteratively, while recomputing the logical rules of their targets.

Provided that no functional regulatory circuit is eliminated in the

process, this reduction preserves all attractors. For example, the

stable states are all conserved, in the sense that each stable state of

the reduced model is the projection (on the reduced state space) of

a stable state of the original model [63]. This tool is particularly

useful when the high dimensionality impedes the computation of

the full STG.

Hierarchical transition graph representation
The analysis of the paths from initial states to attractors can be

done directly on the STG when it is small (tens of states), but

becomes quickly intractable as the size of STG increases. To cope

with this difficulty, we use a novel feature of GINsim, which

iteratively clusters the state transition graph into groups of states

(components or hyper-nodes) sharing the same set of successors

[64]. The resulting hierarchical state transition graph (HTG)

displays all the reachable attractors (components at the bottom of

the graph), while the other clusters of states represent their basins

of attractions (including strict basins with a single outgoing arc

targeting a specific attractor, or non-strict basins grouping states

that can reach a specific set of HTG components). HTG

computation is done on the fly, i.e. without having to store the

whole STG, which often leads to strong memory and CPU usage

shrinking. Furthermore, this functionality eases the identification

of the key commutations (changes of component levels) underlying

irreversible choices between the different reachable attractors.

Altogether, the HTG representation is very compact (often much

more compact than the more classical graph of strongly connected

components, as HTG further compacts linear/non circular

pathways) and very informative regarding the organisation of the

original STG.

Regulatory circuit analysis
René Thomas proposed generic rules linking the presence of

regulatory circuits (simple oriented regulatory cycles) in biological

networks with dynamical properties. The first rule states that the

existence of a positive circuit (involving an even number of

negative regulatory interactions) is a necessary condition for multi-

stationarity. The second rule states that the existence of a negative

regulatory circuit (involving an odd number of negative regulatory

interactions) is a necessary condition for the generation of

sustained oscillations [65]. More recently, Remy et al. [66]

Modelling of MAPK Influence on Cell Fate Decision
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translated these rules into theorems in the case of asynchronous

Boolean dynamical systems (which is the case of our MAPK

model).

However, when embedded in a more complex network, specific

constraints on the values of the external components acting on

circuit components have to be fulfilled in order to allow a

regulatory circuit to produce the expected behaviour (‘‘circuit

functionality constraints’’) [67]. The concept of circuit function-

ality has been formalised for logical models and implemented into

GINsim [62].

GINsim allows to compute all the functional positive and

negative circuits of a model. For each of them, the software also

provides the corresponding functionality context, defined as a set

of constraints on the values of its external regulators. This tool

enables the identification of the regulatory circuits playing key

dynamical roles within a complex network.

Results

MAPK reaction map
Based on published data, we have built and annotated a

comprehensive reaction map using CellDesigner (supplementary

Dataset S1). This map encompasses 232 species (proteins, genes,

complexes, other molecules) and 167 reactions involved in the

three most extensively documented MAPK cascades (ERK, JNK,

p38). The CellDesigner version of the map (XML format) is

provided as supplementary Dataset S2. The MAPK map has been

further integrated into the Atlas of Cancer Signalling Networks

developed by the group of Emmanuel Barillot at Institut Curie in

Paris (https://acsn.curie.fr), where it can be explored using a web

browser.

Our reaction map takes into account signals propagating from

different major stimuli, such as growth factors, cytokines, stress,

which lead to the activation of MAPKs and their downstream

targets. It covers feedbacks and cross-talks among the MAPK

cascades, as well as the roles of the best documented phosphatases

and scaffold proteins. The main cellular compartments are also

represented (plasma membrane, cytoplasm, nucleus, mitochon-

dria, endosomes, etc.), showing the localisation of reactions within

the cell. When compartmentalisation has not been fully char-

acterised yet, reactions have been provisionally assigned to the

cytoplasm. Proteins are coloured to emphasise relevant families.

Figure 1 shows a map excerpt reporting two different mechanisms

of ERK activation (see map annotations for more details).

We considered two compartments named ‘‘Genes’’ and

‘‘Phenotypes’’ at the bottom of the map, which include

representative genes activated by the MAPK cascades, as well as

phenotypes (proliferation, apoptosis, growth arrest) enabled by

selected readouts.

We considered information concerning different human and

mouse cell types, implying that the MAPK map should be

considered as generic. Indeed, at this stage, information is lacking

to build a detailed map based exclusively on data for a specific cell

type. However, we selected biological events explicitly considered

to be cell type independent. When applicable, information

concerning cell types is provided through links to relevant

database entries (mainly PubMed).

Because the precision of the information retrieved from the

literature varies, our map represents different pathways with

different levels of details. For instance, we could find detailed

information about the scaffold proteins intervening in the ERK

cascade and on the sub-cellular localisation of the correspond-

ing protein complexes; in contrast, such information is still

largely lacking for the JNK and p38 cascades. This is why the

map currently reaches its greatest level of detail for the ERK

cascade.

Furthermore, the level of detail represented could also be

dictated by readability considerations. For instance, the RTK

(receptor tyrosine kinase) component in the map represents several

different receptors (e.g. EGFR, FGFR, VEGFR, etc.): all these

receptors share common features that are related to MAPK

activation. However, their mechanisms of action may differ in

some subtle ways, which are not fundamental for our purpose

here. The detailed representation of all these pathways would have

made the map very difficult to read, and we thus decided to

simplify the graphical representation, while keeping track of

relevant variations in the annotations of the corresponding species

or reactions.

The resulting CellDesigner map constitutes a comprehensive

and integrated source of information concerning the roles of the

MAPK network in cell fate decision, taking into account specificity

factors. This map can be directly used by biologists and modellers

to get information about the reported phenomena. It can also be

used for visualisation of high-throughput data (e.g. by automat-

ically colouring components based on expression levels) derived

from different cell conditions, for example in order to identify

differentially expressed components. This can also give insights

into cell type-dependent mechanisms.

MAPK logical model
Hereafter, we focus on the impact of the MAPK network in

urinary bladder cancer, with particular emphasis on the differen-

tial behaviour between EGFR over-expression and FGFR3

activating mutation.

Scope of the MAPK logical model. In order to study the

response of the MAPK network to specific stimuli, and its

influence on cell fate decision, we built a dynamical model

covering the mechanisms reported in the MAPK map. We derived

a regulatory graph using the MAPK reaction map as an

information source, as detailed in supplementary Text S1. In

particular, we considered the following subset of stimuli in our

model: EGFR stimulus, FGFR3 stimulus, TGFbR stimulus, and

DNA damage. With reference to the latter stimulus, please notice

that we did not consider explicitly here the DNA repair process

following DNA damage, but we only account for the triggering of

growth arrest and apoptosis following sustained DNA damage

[68]. In our dynamical model, DNA damage thus corresponds to

sustained stress or to the effects of therapies involving DNA-

damaging agents.

The regulatory graph shown in Figure 2 covers the activation of

MAPK targets that influence the choice between proliferation,

growth arrest, and apoptosis. In particular, we consider MYC and

p70 (in the absence of p21) as markers of cell cycle enablement,

p21 as a marker of growth arrest, FOXO3 and p53 as markers of

apoptosis, whereas ERK and/or BCL2 indicate apoptosis

disablement. To ease the interpretation of phenotypes, we defined

three output nodes denoting proliferation, growth arrest, and

apoptosis, respectively. These nodes represent enablement/

disablement of the corresponding processes, depending on the

MAPK network state, but not necessarily all requirements for this

phenotype. For instance, when proliferation is enabled (by the

interplay of MYC, p70 and p21), we assume that Cyclin/CDK

complexes are activated. In this context, the node ‘‘Proliferation’’

denotes entry into the cell cycle and does not account for

alterations of later stages of the cell cycle. Similar considerations

are applicable for the other phenotypes modelled. This simplifi-

cation is justified by our focus on the specific contributions of the

MAPK network to cell fate decision.

Modelling of MAPK Influence on Cell Fate Decision
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Each of the 52 components of the regulatory graph is modelled

by a Boolean variable along with a logical rule (Table S2)

specifying how the component activity depends on its regulators.

Reduced model versions. To cope with the relatively high

dimension (52 components) of our model, we took advantage of

the model reduction function implemented in GINsim (see

Methods). Indeed, it is difficult to perform simulations with the

original model version, as it entails 252 states. The choice of

components to hide depends on the simulation performed. For

instance, if we plan to simulate a p53 loss-of-function and observe

its effects on p21, we better conserve p53 (otherwise we cannot

define the perturbed version) and p21 (otherwise, we cannot

explicitly observe its value). However, as we wanted to test several

situations, almost half of the MAPK model components were

needed to be observable. Consequently, we designed several

reduced versions of the original MAPK model, each of which

dedicated to a subset of simulations. This strategy enabled us to

drastically reduce the computational cost of our in silico

experiments (the dimension of the reduced models ranged from

16 to 18 components).

Altogether, we defined three different reduced model versions,

whose component lists are reported in supplementary Table S3.

These definitions are enclosed in the comprehensive model file

(supplementary Dataset S4) and enable the generation of reduced

versions according to simulation needs. Figure 3 shows the

regulatory graph corresponding to one reduced version, namely,

‘‘red1’’. Supplementary Dataset S3 lists the simulations performed

for each reduced version. The three model reductions were found

equivalent in terms of attractors and main dynamical properties.

Briefly, reduction ‘‘red1’’ was used to obtain the results discussed

in the sections ‘‘Coherence with well established bladder cancer

deregulations’’ and ‘‘Predictions generated with the MAPK logical

model’’, while reductions ‘‘red2’’ and ‘‘red3’’ were used to obtain

the results discussed in the section ‘‘Coherence with additional

cancer-related facts’’.

Coherence of the logical model behaviour with
published data

The logical rules assigned to model components were inferred

from information about a broad range of experiments and cellular

conditions. To check the coherence of the global behaviour of the

resulting model with current biological knowledge, we systemat-

ically compared its dynamical properties with published data

concerning different tumoural cell types, with particular attention

to bladder cancer. More specifically, we first assessed the

dynamical behaviour of the model under well established

perturbations observed in the bladder cancer subtypes of interest.

We further checked the coherence of the model behaviour with an

additional list of biological facts, not necessarily involved in

bladder cancer. These analyses were carried out by performing

asynchronous simulations for selected initial conditions (initial

states, input signals, potentially in the presence of perturbations),

and observing the attractors reached by the system.

Figure 1. Molecular map for ERK regulation and sub-cellular localisation. After RAS activation, ERK cascade can be recruited and activated
on plasma membrane with the help of KRS1 scaffold protein (upper part of the figure); activated ERK is then released (in complex with MEK and KSR1)
into the cytoplasm, where it can activate some of its cytoplasmic targets (e.g. PLA2G4A protein). Alternatively, activated receptor complex can
translocate to late endosomes (left part of the figure), where ERK cascade can be triggered with the help of MP1 scaffold protein; in this case,
activated ERK monomers are released into the cytoplasm, from where they can translocate into the nucleus and exert other effects (e.g. induction of
DUSP1 phosphatase). This map is a small fraction of the detailed MAPK network built with the software CellDesigner (www.celldesigner.org) and
provided in png and cell formats (supplementary Datasets S1 and S2).
doi:10.1371/journal.pcbi.1003286.g001

Modelling of MAPK Influence on Cell Fate Decision
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In practice, the entire process from reaction map construction

to model simulations is iterative, requiring several rounds of

literature searches and in silico experiments. Whenever the model

disagreed with established facts, we went back to the literature to

seek complementary information and refined our modelling

hypotheses. The reaction map and the logical model where

systematically and consistently completed with relevant informa-

tion during this process.

Coherence with well established bladder cancer

deregulations. As we build our model around the comparison

between EGFR over-expression and FGFR3 activating mutation

in bladder cancer, our first simulations were dedicated to the

assessment of the model behaviour in these circumstances.

Figure 4a reports a simplified view of the model dynamics

following EGFR over-expression, obtained by setting EGFR to 1

throughout the simulation, in the absence of additional stimuli (see

supplementary Dataset S3 for precise simulation settings). In

response to EGFR over-expression, the asynchronous state

transition graph encompasses two sets of trajectories: one

characterised by p53 activation and ERK silencing, leading to

an apoptotic stable state (i.e. Apoptosis = Growth_Arrest = 1,

Proliferation = 0); the other characterised by p53 silencing and

ERK activation, leading to a PI3K/AKT-dependent proliferation

stable state (i.e. Apoptosis = Growth_Arrest = 0, Proliferation = 1)

(cf. simulation provided in the supplementary Text S2).

Alterations in the p53 pathway have been associated with more

aggressive and invasive bladder cancers [50]. The fundamental

role of p53 in the model can be observed by simulating a p53

loss-of-function (second row of Figure 4c). In this case, the

proliferative attractor is kept, while the apoptotic attractor is lost.

In contrast, still in presence of EGFR over-expression, when the

system is also subjected to persistent DNA damage (third row of

Figure 4c), we obtain a single apoptotic attractor. This behaviour

is in agreement with the fact that when damage is moderate (i.e.

absence of DNA damage stimulus), the cell is still able to escape

apoptotic cell death by down-regulating p53 signalling (i.e.

possible switch between the two attractors of Figure 4a), but p53

eventually induces apoptosis in cells subjected to extensive DNA

damage [69].

A similar response is also predicted in the case of TGFBR

stimulus, in line with the typical anti-proliferative role played by

this pathway [70]. In this respect, TGFBR has also been shown to

induce proliferation in tumours, in some circumstances, but the

conditions (especially in relation with MAPK network) under

which this occurs are still poorly understood [70]. Strong

activation of PI3K/AKT pathway has also been associated with

enhanced bladder tumour proliferation [50]. Accordingly, in our

model, PI3K/AKT gain-of-functions counteract p53 pathway

effects (fifth row of Figure 4c), impairing the apoptotic phenotype.

Two other important loss-of-function known to be associated

with poorer prognosis in bladder cancers have been simulated.

Deletions of either PTEN or p14 in our model are associated with

a more aggressive phenotype (sixth and seventh row of Figure 4c).

The former is a tumour suppressor shown to inhibit AKT

Figure 2. Regulatory graph of the MAPK logical model. Each node denotes a model component. Model inputs, phenotypes and MAPK
proteins (ERK, p38, JNK) are denoted in pink, blue and orange, respectively. Green arrows and red T-arrows denote positive and negative regulations,
respectively. A comprehensive documentation is provided in the Table S4, which includes a summary of all modelling assumptions, references
(PubMed links) and the specification of the logical rule associated with each component. The source file is further provided as supplementary Dataset
S4, which can be opened, edited, analysed and simulated with the softare GINsim (www://www.ginsim.org/beta).
doi:10.1371/journal.pcbi.1003286.g002
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expression [71]. The latter is induced by MYC and is able to

enhance p53 activity by inhibiting MDM2 [51]. According to our

model, p14 loss-of-function abrogates apoptosis, which accounts

for the observed dual role of MYC [72]: on the one hand, MYC

contributes to proliferation (MYC is a read-out for proliferation in

the model); on the other hand, it is involved in p53-dependent

apoptosis.

The behaviour of our model in the case of FGFR3 activating

mutation is depicted in Figure 4b (cf. Text S2 for a complete

simulation). We find again the ‘‘p53 versus ERK’’ pattern

accounting for the fundamental role of p53 in cell fate decision.

Interestingly, the non-apoptotic branch of the asynchronous state

transition graph is now characterised by two different behaviours.

On the one hand, similarly to EGFR over-expression, when PI3K

is active, the system will eventually reach a proliferative attractor.

On the other hand, a p53-independent PI3K/AKT pathway leads

to an attractor characterised by all phenotypes set to 0, that we

interpret as ‘‘no cell fate decision taken’’ at the level of MAPK

network. This is coherent with the contention that FGFR3

mutations, mainly characterising non-invasive bladder carcino-

mas, relatively mildly induce proliferation due to the action of

ERK cascade [47,51,73]. Indeed, the coexistence of these

outcomes (proliferation versus no cell fate decision) tentatively

explain the less aggressive phenotype generally observed in

FGFR3-mutated bladder carcinomas, in comparison with urothe-

lial tumours over-expressing EGFR (associated only with a

proliferative attractor). The underlying mechanisms are further

analysed below. By and large, the simulations of FGFR3 mutation

correctly recapitulate the effects of the major bladder cancer

deregulations listed in Figure 4c (left column), producing results

that are qualitatively coherent with those described for EGFR

over-expression.

Coherence with additional cancer-related facts. To

further assess the consistency of the behaviour of our model with

current knowledge, we selected a list of established facts regarding

the effects of perturbations on (human/mouse) cancer cells, not

necessarily bladder-related. Based on this list, we defined a series of

in silico experiments, combining relevant initial states and virtual

perturbations (loss-of-functions and/or gain-of-functions of select-

ed model components, as defined in Methods).

This analysis mainly consisted in cross-checking the attractors

obtained in our simulations with the qualitative information

retrieved from the literature, without focusing on the full dynamics

of the system.

A summary of the results obtained is provided in Table 1 (for

more details, see the supplementary Dataset S3). Additionally, all

the simulations performed can be easily reproduced using the

model files available as supplementary Dataset S4. Briefly, the

involvement of MAPKs in cell fate decision was assessed through

perturbations of relevant components. The model accounts for the

pro-apoptotic role of p38 and JNK, as well as for the promotion of

growth arrest by p38, and for the proliferative role of ERK. The

model also recapitulates the p21-mediated tumour suppressor

function of p53, along with the impairment of this function due to

epigenetic silencing of GADD45. Additionally, we were also able

to reproduce (i) the positive effects of EGFR/FGFR3/RAS/RAF

over-expressions on ERK activation; (ii) the negative effects of

HSP90-inhibitors on cell proliferation; (iii) the role of ERK against

anti-proliferative TGFb signalling; and (iv) the role of JNK against

RAS-induced proliferation. These simulations cover the most

Figure 3. Regulatory graph of a reduced version of the MAPK model. The regulatory graph corresponds to the ‘‘red1’’ reduced model
version (cf. supplementary Table S3, column 1). To obtain this version, the preservation of pink and blue nodes was imposed, along with that of
{EGFR, FGFR3, p53, p14, PI3K, AKT, PTEN, ERK}, in order to investigate the effects of perturbations affecting these components. The remaining nodes
{FRS2, MSK} were maintained by the reduction algorithm because of the occurrence of auto-regulatory loops during the reduction process. Green
arrows and red T-arrows denote positive and negative regulations, respectively, whereas blue arrows denote dual interactions.
doi:10.1371/journal.pcbi.1003286.g003
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Figure 4. Coherence of the logical model with well established bladder cancer deregulations. a) Simplified representation of the model
dynamics following EGFR over-expression (EGFR = 1 throughout the simulation and all inputs set to 0 throughout the simulation). If p53 is activated
first (right branch), an apoptotic attractor is reached, characterised by inactivation of ERK and AKT. If ERK and PI3K are activated first (left branch), then
p53 is inactivated and AKT is activated, leading to a proliferative attractor. b) Simplified representation of the model dynamics following FGFR3
activating mutation (FGFR3 = 1 and all inputs set to 0 throughout the simulation). When p53 is activated first (right branch), an apoptotic attractor is
reached, characterised by inactivation of ERK and AKT. If ERK is activated first (left and central branches), then p53 is inactivated. When PI3K is also
activated (central), a proliferative attractor is reached, characterised by activated AKT. In contrast, when PI3K is not activated (left), the cell fails to
make a clear decision at the level of the MAPK network. c) Attractors reached by the model in presence of receptor alterations, coupled with
additional common deregulations observed in bladder cancer. Coloured circles denote the phenotypes characterising the attractors reached in each
situation (we used the same colour code as in panels a and b, while empty spaces denote the loss of the corresponding branch in the state transition
graph). Identifiers in rectangles (e.g.. r3, r4, etc.) point to simulation results reported in more details in Dataset S3 and Text S2.
doi:10.1371/journal.pcbi.1003286.g004
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salient behaviours of the model, showing a remarkable coherence

with published data.

Predictions generated with the MAPK logical model
Having shown that our MAPK model is consistent with

published data, we designed additional simulations to explore

novel mechanistic hypotheses.

ERK-related feedback mechanisms. So far, we have

described the behaviour of our model in presence of tumoural

deregulations of growth factor receptors. Let us consider now what

happens when the expression of such receptors is not altered (i.e.

unperturbed logical rules for either EGFR or FGFR3 variables), in

presence of sustained growth factor stimulation (i.e. either

EGFR_stimulus or FGFR3_stimulus set to 1 throughout the

simulations). The attractor reached from normal EGFR stimulation

is characterised by oscillations (between 0 and 1) of the values of

EGFR, ERK and p53, thus leading to oscillations of phenotype

variables, in particular for ‘‘Proliferation’’ (Dataset S3 – r1). This

behaviour contrasts with the well defined phenotypes obtained

following EGFR over-expression (Figure 4a). It can be interpreted

as the impossibility to obtain sustained activation (or inactivation) of

the considered actors in presence of sustained growth factor stimuli.

In other words, ERK oscillations in our state transition graph

correspond to the transient ERK activation in the ODE-based

model from Orton et al. [38]. Similar results are obtained for

FGFR3 stimulation (Figure 4b and Dataset S3 – r2), in agreement

with literature [74].

The main negative feedbacks underlying such responses are

acting directly on the receptors (Figure 2): one accounting for

GRB2-dependent ubiquitination and degradation of the receptors

Table 1. Coherence of model simulations with published experimental evidence.

Reduction Simulation Biological data Model behaviour

red2 r17, r18 * RAF or RAS over-expressions can lead to constitutive
activation of ERK. [11]

In absence of inputs, constitutive activity of any one among
RAF or RAS can lead to permanent ERK activation,
associated with proliferation.

red2 r19 * HSP90-inhibitor disrupts RAF, AKT and EGFR, leading to
successful cancer treatment [86].

Concomitant RAF, AKT, EGFR deletions abrogate the
proliferative stable states observed in the unperturbed
model, both in the case of EGFR over-expression (obvious –
simulation not performed) and in the case of FGFR3
activating mutation.

red2 r20, r21, r22, r23 * Patients with p53-altered/p21-negative tumors
demonstrated a higher rate of recurrence and worse
survival compared with those with p53-altered/
p21-positive tumors [87].

Following either EGFR over-expression or FGFR3 activating
mutation, concomitant p21 and p53 loss-of-functions
correspond to a phenotype characterised by apoptosis
escape (Apoptosis = Growth_Arrest = 0), with the possibility
to attain proliferation. Association of p53 loss-of-function
and p21 gain-of-function leads to growth arrest attractors,
all characterised by no proliferation.

red3 r25 p38 and JNK play important roles in stress responses,
such as cell cycle arrest and apoptosis [7,69].

In presence of either DNA_damage or TGFBR_stimulus,
growth arrest/apoptosis stable states are all lost in the p38/
JNK-deleted model.

red3 r26 p38 and JNK, especially in the absence of mitogenic
stimuli, have been shown to induce apoptotic cell
death [7,69].

When p38/JNK are constitutively active, apoptotic attractors
(Growth_Arrest = Apoptosis = 1, Proliferation = 0) are
obtained in the absence of other stimuli.

red3 r27 p38 plays its tumour suppressive role by promoting
apoptosis and inhibiting cell cycle progression [11].

Under JNK constitutive activation, p38 loss-of-function
determines loss of apoptotic attractors obtained in r26.

red3 r28 JNK may contribute to the apoptotic elimination of
transformed cells by promoting apoptosis [11,88].

Under p38 constitutive activation and JNK loss-of-function,
all apoptotic attractors obtained in r26 become growth
arrest attractors (Growth_Arrest = 1, Apoptosis = 0,
Proliferation = 0), thus determining loss of apoptotic
attractors obtained in r26.

red3 r29 Epigenetic gene silencing of GADD45 family members
has been frequently observed in several types of human
cancers [69].

In presence of DNA_damage (main GADD45 activator),
Growth_Arrest and Apoptosis components permanently
oscillate when GADD45 is silenced, suggesting less
propensity to cell death. Apoptotic stable states are still
reached in presence of TGFBR_stimulus

red3 r30 ERK increases transcription of the cyclin genes and
facilitates the formation of active Cyc/CDK complexes,
leading to cell proliferation [89].

ERK gain-of-function always leads to proliferative attractors
(Proliferation = 1, Growth_Arrest = Apoptosis = 0), in the
absence of other stimuli.

red3 r31 ERK disrupts the anti-proliferative effects of TGFb [11]. Whereas TGFBR_stimulus leads to an apoptotic stable state
(r24), coupling of TGFBR_stimulus with ERK gain-of-function
only leads to permanent growth arrest (Growth_Arrest = 1,
Apoptosis = 0).

red3 r32 JNK might reduce RAS-dependent tumour formation by
inhibiting proliferation and promoting apoptosis [88].

In absence of other stimuli, JNK constitutive activation
completely abrogates RAS-dependent proliferation
following RAS over-expression (r18). Instead, apoptotic
attractors are always reached.

Asterisks denote facts explicitly related to bladder cancer, whereas unmarked entries correspond to generic or loosely specified mechanisms. Full simulation results can
be found in Dataset S3, with the help of the identifiers provided in the first two columns.
doi:10.1371/journal.pcbi.1003286.t001
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[75]; the other accounting for PKC-mediated negative effects

[74,76]. Concomitant disruptions of these feedbacks in our model

lead to simulation results equivalent to those obtained with

receptor gain-of-function (cf. Figure 2 and Table S2), whereas

disruption of any other downstream negative feedback does not

qualitatively influence the outcome (data not shown). This is also

in agreement with the results obtained by Orton et al., who

proposed that the degradation of receptors (e.g. rather than SOS

inhibition by RSK) could be the main mechanism determining a

transient activation of ERK pathway in response to growth factors.

Role of Sprouty-mediated feedbacks. According to our

model simulations (Figure 4a), when EGFR is over-expressed (e.g.

in the presence of an autocrine signal), in the absence of p53

activation, the outcome is proliferation. In contrast, when FGFR3

stimulus is present, two possible outcomes are observed in the

absence of p53: a proliferative stable state and a non-proliferative

stable state, the later with all phenotype variables set to 0.

General hypotheses involving the interplay between the p53,

RB and ERK pathways have been proposed to explain the

different phenotypes experimentally observed in bladder carcino-

mas [50,73], but the precise mechanisms have not been elucidated

yet. A closer analysis of the regulatory graph shown in Figure 2

reveals several feedbacks. Interestingly, ERK exerts a positive

feedback on EGFR but a negative feedback on FGFR3-activated

FRS2, through Sprouty (SPRY in the model). Intuitively, this

suggests that ERK strengthens EGFR stimulus but weakens

FGFR3 stimulus, potentially explaining the different phenotypes

observed. Additionally, GRB2 exerts a negative feedback on

FRS2, which is in turn specifically activated by FGFR3.

Disruption of EGFR activation by SPRY does not play an

important role in the case of EGFR over-expression (which indeed

corresponds to setting EGFR to 1 independently of its regulators).

FRS2 inhibition by SPRY, but not by GRB2, tentatively plays an

important role in the response of the MAPK network to FGFR3

activating mutation. Indeed, disrupting the latter inhibition

(Figure 5) does not affect significantly the model behaviour. On

the contrary, comparison of Figures 4a–b and Figure 5 indicates

that SPRY-dependent inhibition of FRS2 might be the key to

explain the difference between the responses to EGFR and

FGFR3 stimulations (i.e. in the absence of this inhibition, the

model behaves equivalently in the two cases).

To further clarify these mechanisms, we considered the role of

functional positive circuits, which are known to promote multi-

stable behaviours (cf. Methods). According to our model analysis,

the GAB1-PI3K-GAB1 circuit underlies the coexistence of the two

stable states found in the presence of FGFR3 activating mutation,

but in the absence of p53 activation. We thus propose that this

circuit plays a fundamental role in FGFR3 signalling, constituting

a switch between proliferative and non-proliferative phenotypes.

The underlying mechanisms can be further clarified by a careful

analysis of Figure 2. On the one hand, following FGFR3 stimulus,

when PI3K activation is faster/stronger than ERK activation, cell

proliferation is enabled, because PI3K is definitively activated (due

to the action of GAB1-PI3K-GAB1 positive circuit) and can then

inhibit p21 through the PDK1/AKT pathway. ERK is then also

activated, enhancing proliferation together with PI3K. On the

other hand, upon ERK activation (coming from a rapid GRB2

and/or PKC mediated signalling), if the inhibition of GRB2

through the SPRY/FRS2 feedback is faster/stronger than PI3K

activation, then PI3K cannot be activated anymore. In this

scenario, ERK would rather contribute to disable cell prolifera-

tion.

Our model thus predicts that the strength/rapidity of PI3K

activation versus SPRY-mediated ERK negative feedback could

underly the less aggressive phenotypes observed in FGFR3-

mutated bladder carcinomas.

Figure 5. FGFR3 activating mutation and role of SPRY. Simulations were performed under FGFR3 gain-of-function (FGFR3 = 1 and all inputs set
to 0, throughout the simulations). Simplified model dynamics are shown as in Figure 4a–b. Results are shown for the wild type model (red1 model
reduction), as well as for perturbed model versions obtained by disrupting the inhibition of interest.
doi:10.1371/journal.pcbi.1003286.g005
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MAPK cross-talk mechanisms. Using our logical model,

we further addressed the roles of cross-talks between the different

MAPK cascades, in particular those involving phosphatases.

We first analysed the negative cross-talks from p38/JNK

cascades towards ERK cascade, which involve MEK inhibition

by AP1 and the phosphatase PPP2CA [2]. In the context of either

EGFR over-expression or FGFR3 activating mutation (Figure 6a),

the disruption of these inhibitions mainly lead to the loss of

apoptotic attractors (compare Figure 6a with Figure 4a–b). The

lost attractors are ‘‘replaced’’ by new attractors characterised by

growth arrest alone. These two cross-talks are thus presumably

important for the triggering of apoptotic responses in the presence

of growth factor receptor alterations. Indeed, in the absence of

such cross-talks, p53 pathway is only able to induce growth arrest,

but not apoptosis, precluding a complete anti-proliferative

response. This is also true in the concomitant presence of DNA

damage stimulus (data not shown).

Finally, we examined the roles of p38 and JNK inhibitions by

DUSP1 [77]. Following receptor (either EGFR or FGFR3)

alteration, disruption of any of these two inhibitions results in a

persistent silencing of ERK and a persistent activation of p53, as

well as an activation of PI3K and an inactivation of AKT, which

ultimately lead the system towards an apoptotic attractor (compare

Figure 6b with Figure 4a–b). DUSP1-mediated cross-talks between

the MAPK cascades thus tentatively underly proliferative

responses in presence of growth factor receptor alterations,

presumably via the inhibition of p53 pathway.

Discussion

We have presented a bottom-up modelling approach to gain

insights into the influence of the complex MAPK signalling

network on cancer cell fate decision. We started by collecting

pieces of information from the literature and assembling them into

a detailed reaction map, which served as source of information for

further dynamical modelling. The resulting map is generic,

meaning that it was drawn by using information coming from

different experimental models.

Based on specific biological questions, our dynamical logical

modelling involved the abstraction of relevant information from

the map and the drawing of a qualitative influence network

(regulatory graph). Next, we assigned consistent logical rules to

each component to enable logical simulations. In order to perform

detailed analyses at reasonable computational costs, we derived

reduced model versions preserving the main dynamical properties

of the original model. The reduced versions can be considered as

further abstractions of the MAPK network, explaining its

qualitative behaviour in terms of selected molecular actors.

Despite the fact that we made no use of quantitative data, and

that we finally represented an extremely complex signalling

network through a limited number of Boolean components, we

were able to recapitulate its behaviour for diverse documented

biological conditions. These results set the background to

investigate the roles of poorly documented regulatory mechanisms.

In this modelling study, we particularly focused on bladder

cancer. Importantly, our simulations qualitatively recapitulated

salient phenotypic differences observed in invasive versus non-

invasive carcinomas, and allowed us to formulate reasonable

hypotheses concerning the mechanisms determining such differ-

ences. These hypotheses are readily amenable to experimental

validation.

Our MAPK network model can be considered as a module for

the assembly of more comprehensive cancer-related network.

From this point of view, it will be interesting to merge our model

with other logical models implementing other aspects of cell fate

decision, in particular the model proposed by Calzone et al. [78],

Figure 6. Analysis of MAPK cross-talks by disruptions of specific interactions. a) Effects of the disruptions of the inhibitions of MEK by AP1
and the phosphatase PPP2CA. b) Effects of the disruption of the inhibition of p38 or of JNK by the phosphatase DUSP1. These simulations were
performed after removing the corresponding interactions and blocking the level of the perturbed receptor to level 1 (with all inputs set to 0,
throughout the simulation).
doi:10.1371/journal.pcbi.1003286.g006
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which covers the interplays between NFkB pro-survival pathway,

RIP1-dependent necrosis, and extrinsic/intrinsic apoptosis path-

ways.

In the Introduction, we highlighted the importance of specificity

factors in determining signal specificity of the MAPK network and

took this into consideration in the construction of the reaction

map. However, given the heterogeneity of available information

among the different MAPK cascades, we could not include all

these factors in our logical model. Nonetheless, we considered

some of them, including several feedbacks, cross-talks, phospha-

tases and input stimuli. These allowed us to focus on interesting

aspects and identify mechanisms potentially underlying the

different responses of bladder cancer cells to different growth

factor receptors (EGFR versus FGFR3).

The role of SPRY-dependent down-regulation of FGFR3

signalling seems to be determinant for the decision between

proliferative and non-proliferative response. Moreover, the model

also suggests that the presence of PI3K/AKT, but not ERK,

positively correlates with the presence of a proliferative phenotype.

Nevertheless, ERK-related mechanisms (fastness/strength of ERK

activation and activation of SPRY) seem to be determinant for

driving the switch.

Such different responses provide a striking example of how

signals transduced by largely overlapping pathways can produce

opposite effects. To explain this behaviour, we analysed the roles

of specific model circuits, which are presumably extremely

important in the phenotype choice. Our data further highlight

the contribution of cross-talks among the MAPK cascades to cell

fate decision. Other specificity factors, including scaffold proteins

and sub-cellular localisation, should also be taken into consider-

ation in the near future, as novel data on these factors will be

gathered. This will require a regular updating of our MAPK

reaction map, by including new findings related to cell fate

decision.

We interpreted the p53-independent response of the MAPK

network to FGFR3 stimulus as a sort of balance between

proliferative and non-proliferative phenotype. A decreased rate

of cell proliferation might indeed explain the less aggressive

phenotypes frequently observed in FGFR3-mutated bladder

carcinomas, in comparison with EGFR over-expression cases.

Interestingly, this behaviour can be further related with opposite

effects of FGFR3 activation in other cell types. In particular,

activating FGFR3 mutations have been associated with growth

arrest in chondrocytes, whereas they enhance proliferation and/or

transformation in several cancer types and skin disorders (e.g.

bladder cancer, multiple myeloma, seborrheic keratosis, etc.) [79].

Tentatively, proper modifications (e.g. concerning the introduction

of STAT-dependent pathways and tuning of AKT response to

growth factors [80]) may enable our MAPK model to account for

these observations.

Finally, we are currently assessing a potential proliferative role

of p38 in FGFR3-mutated bladder carcinomas (unpublished

preliminary data), which might lead to further model refinement.

To wrap up, the present study demonstrates how Boolean

modelling can recapitulate salient dynamical properties of an

extremely complex biological network. As further details are

uncovered, our logical model could be refined and eventually

translated into a more quantitative framework (e.g. using ODEs or

stochastic equations). In a first step towards more quantitative

simulations, a continuous time Boolean framework could be used

to explicitly represent time dependencies [81]. Tentatively, this

approach would allow us to recapitulate more precisely the

differential effects of transient versus sustained ERK activation

[33,37,82].

Combining the delineation of a detailed reaction map and that

of a predictive logical model, this study can serve as a basis to

develop (semi-)automatic tools to derive logical models from

reaction maps. Indeed, the manual derivation of a logical model

from a complex reaction map presents risks of misinterpretations

of either map symbols or map annotations. Errors are particularly

likely to happen when the model is not built by the author of the

map. In this respect, recent rule-based languages used to derive

more quantitative models could be used to systematically derive

predictive logical models, although potentially at the cost of

additional efforts to build reaction maps in a more rigorous fashion

[83–85].

Supporting Information

Dataset S1 MAPK reaction map. The png (map) and txt

(annotations) files were directly exported from the corresponding

CellDesigner file (Dataset S2). Map components are coloured to

emphasise relevant classes of proteins. The default protein colour

is light green, whereas the default gene colour is yellow. MAPK

cascades are coloured with different blue gradations (from light to

dark blue going down the cascade). Scaffold proteins are coloured

in darker green; phosphatases are coloured in red. Complete

graphical notations can be found at www.celldesigner.org.

(ZIP)

Dataset S2 CellDesigner file (xml format) of the MAPK reaction

map. Species and reactions are annotated and identifiers of the

corresponding sources of information (PubMed IDs) are provided.

(XML)

Dataset S3 Summary of the results of the main simulations

performed in this work. The xls file includes three sheets,

erresponding to a model reduction. For each simulation, we

report here the simulation ID (referenced in the main text and in

the model files provided in Dataset S4), the perturbations

performed (e.g. ‘‘EGFRgain; p53loss’’ indicates that EGFR was

set to 1 and p53 was set to 0 throughout the simulation), the inputs

considered and the initials states (asterisks denote all possible

combinations of initial states). The attractor types (along with the

number of corresponding states within parentheses, in the case of

cyclic attractors) are further reported, as well as the corresponding

component values in the attractor: 1 or 0 for stable values; asterisks

for oscillating values.

(XLS)

Dataset S4 GINsim model files. For each model version (the

original large model, and the three reduced versions), a file is

provided in the format (zginml) that can be opened with the

software GINsim (http://ginsim.org/beta). Simulation parameters

have been encoded to ease the reproduction of the experiments

referenced in the main text.

(ZIP)

Table S1 Selected MAPK modelling studies.

(PDF)

Table S2 Logical rules for the MAPK comprehensive model.

& = AND; | = OR; ! = NOT. More details about modelling

assumptions and references are provided in Table S4 (model

documentation).

(PDF)

Table S3 Reduced MAPK models. We considered three

alternative reductions of the MAPK model (columns), each

preserving the input and phenotype components. Additional

components (Selected observables) were kept depending on the

simulations performed. The last row lists components that were
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conserved because they turned out to be auto-regulated at some

point during the reduction procedure. Such auto-regulations arise

from the compression of longer circuits.

(PDF)

Table S4 MAPK model documentation. Following a brief

general description, all the components of the MAPK model

(comprehensive version) are reported, along with their corre-

sponding logical rules and annotations, including modelling

hypotheses and links to the main sources of information (PubMed

and HGNC databases).

(PDF)

Text S1 Supplementary text encompassing two sections. The

first one describes how we derived the logical model from the

reaction map. The second one demonstrates how we checked that

all cyclic attractors obtained for the MAPK model reductions

indeed correspond to attractors of the original comprehensive

model.

(PDF)

Text S2 Hierarchical transition graphs associated with receptor

alterations. Model dynamics following either EGFR over-expres-

sion or FGFR3 activating mutation (with all inputs set to 0,

throughout the simulations) are depicted in two separated graphs,

which were obtained using the reduced model version red1. For

sake of simplicity, simulations were performed by using a single

initial state with all the remaining variables set to 0 (the salient

dynamics were preserved in these cases – cf. Dataset S3). The

resulting hierarchical transition graphs (see Methods) are com-

posed by different classes of nodes, emphasising strongly connected

components (blue), and linear (non circular) pathways (pink). The

attractors reached are represented at the bottom of the figures.

Attractor colours refer to the corresponding phenotypes: red for

proliferation, green for apoptosis, grey for no decision. Stables

states are denoted by rectangles, while cyclic attractors are

denoted by circles. The accompanying tables give the composition

of each node of the corresponding HTG. For instance, the node

cc1 of the HTG obtained for FGFR3 activating mutation

corresponds to a strongly connected component of the state

transition graph. The number of states belonging to it (i.e. 24), as

well as the list of these states are listed in the table (asterisks denote

all possible values for the corresponding variable).

(PDF)
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