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Abstract

Nonlinear mixed effect models (NLMEMs) are widely used for the analysis of lon-

gitudinal data. To design these studies, optimal designs based on the expected Fisher

information matrix (FIM) can be used. A method evaluating the FIM using Monte-

Carlo Hamiltonian Monte-Carlo (MC-HMC) has been proposed and implemented in

the R package MIXFIM using Stan. This approach, however, requires a priori knowl-

edge of models and parameters, which leads to locally optimal designs. The objective of

this work was to extend this MC-HMC-based method to evaluate the FIM in NLMEMs

accounting for uncertainty in parameters and in models. When introducing uncertainty

in the population parameters, we evaluated the robust FIM as the expectation of the

FIM computed by MC-HMC over the distribution of these parameters. Then, the com-

pound D-optimality criterion (CD optimality), corresponding to a weighted product

of the D-optimality criteria of several candidate models, was used to find a common

CD-optimal design for the set of candidate models. Finally, a compound DE-criterion

(CDE optimality), corresponding to a weighted product of the normalized determi-

nants of the robust FIMs of all the candidate models accounting for uncertainty in

parameters, was calculated to find the CDE-optimal design which was robust on both

parameters and model. These methods were applied in a longitudinal Poisson count

model. We assumed prior distributions on the population parameters as well as several

candidate models describing the relationship between the logarithm of the event rate

parameter and the dose. We found that assuming uncertainty in parameters could lead

to different optimal designs, and misspecification of models could induce designs with

low efficiencies. The CD- or CDE-optimal designs therefore provided a good compro-

mise for different candidate models. Finally, the proposed approach allows for the first

time optimization of designs for repeated discrete data accounting for parameter and

model uncertainties.

Key words: Fisher information matrix; Longitudinal count data; Markov Chain
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Hamiltonian Monte Carlo; Nonlinear mixed effect models; Optimal design; Robust

design.

1 Introduction

In pharmacometrics, longitudinal analysis of clinical data is increasingly performed in stud-

ies that provide repeated continuous or discrete data over time on several individuals. In

recent years, several methods and software packages have been developed for maximum like-

lihood estimation of population parameters from longitudinal data using nonlinear mixed

effect models (NLMEMs) (Mould and Upton, 2012, 2013; Upton and Mould, 2014). Before

modeling, it is crucial to choose an appropriate population design in order to obtain good

precision of estimates. Indeed, the informativeness of a dataset for parameter estimation

depends on the number of subjects and on the number and timing of the samples. The

Fisher information matrix (FIM) can be used in design evaluation and optimization, as

its inverse is the lower bound of the variance covariance matrix of any unbiased parame-

ter estimator according to the Cramer-Rao inequality (Atkinson, Donev, and Tobias, 2009;

Fedorov and Leonov, 2013; Pronzato and Pázman, 2013).

Before discussing experimental design we briefly consider calculation of the information

matrix. The problem is that in NLMEMs the FIM has no analytical form, and its calculation,

which requires multiple integrations, can be challenging. Therefore, an expression of the FIM

based on first-order linearization (FO) of the model around the expectation of the random

effects was proposed by Mentré, Mallet, and Baccar (1997). Although efficient in general

(Bazzoli, Retout, and Mentré, 2009), FO has limitations in the case of complex nonlinear

models, with large variability (Jones et al., 1999; Nguyen and Mentré, 2014) and in studies

with discrete outcomes. FO was extended by Ogungbenro and Aarons (2011) in studies with

discrete endpoints, where they developed a method based on generalized estimating equations
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and the marginal quasi-likelihood (MQL) approximation. However, this approach requires

computation of an analytical form for the partial derivatives of the conditional log-likelihood

for each type of data, which is inconvenient in practice. The probabilistic programming

language Stan (Stan Development Team, 2016) provides automatically numerical differenti-

ation to evaluate these partial derivatives. New approaches have recently been developed for

the computation of the FIM without linearization. Ueckert and Mentré (2016) extended the

method proposed by Nguyen and Mentré (2014) based on Monte Carlo - Adaptive Gaussian

quadrature (MC-AGQ) and applied it to longitudinal discrete data. This approach performed

better than the MQL-based method for the estimation of random effect variances in discrete

NLMEMs (Ueckert and Mentré, 2016). A method based on Monte Carlo Hamiltonian Monte

Carlo (MC-HMC) has also been developed by Riviere, Ueckert, and Mentré (2016). In this

approach, MC is used to compute the integral over the observations and the integral over

the random effects is evaluated by HMC. This method yields an asymptotically exact FIM,

and is especially suitable for complex NLMEMs presenting a large variability. Its calculation

time increases linearly with the number of random parameters for MC-HMC, whereas it in-

creases exponentially for MC-AGQ. This approach is implemented in the R package MIXFIM

(Riviere and Mentré, 2015), which uses functions written in the probabilistic programming

language Stan, which was developed for Bayesian inference. Nyberg, Karlsson, and Hooker

(2009) also proposed an MC-based method to compute the FIM using a second-order ap-

proximation of the likelihood and applied it to binary and count responses. However, they

used MC sampling also to integrate the likelihood over the random effects, in contrast to

HMC performed in Riviere, Ueckert, and Mentré (2016). The latter is expected to be sub-

stantially more efficient and could explain why only 200 HMC samples (plus 500 burn-in)

were required in Riviere, Ueckert, and Mentré (2016) while Nyberg, Karlsson, and Hooker

(2009) reported the use of 1 000 000 MC samples.
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Given some FIM, one of the criteria widely used to optimize designs is D-optimality, which

consists of maximizing the determinant of the FIM. This approach however requires a priori

knowledge of the model and its parameters, which can sometimes be obtained from previous

experiments, leading to locally optimal designs. Several robust criteria have been proposed in

order to optimize designs assuming uncertainty in parameters (Pronzato and Walter, 1985;

Walter and Pronzato, 1987; Foo et al., 2012). However, these robust criteria do not account

for uncertainty in the model. Uncertainty in the model choice can be taken into account by

assuming a set of candidate models when computing the optimality criterion. To do that, we

make use of the theory of compound optimal design of Atkinson, Donev, and Tobias (2009),

which was used to propose optimal designs for both estimation and model discrimination

(Atkinson, 2008) as well as to find a common design for several drugs (Nguyen et al., 2016).

Here, we combined criteria for several models in a compound optimality criterion, following

the principle of model averaging, which associates the optimality criterion of each model

with its weight (Pinheiro et al., 2014).

In this article, we propose methods for optimal design of mixed models for discrete data

accounting for parameter and/or model uncertainty. We first extend the method based

on MC-HMC to compute the robust FIM by introducing uncertainty in the population

parameters. Then, we use the compound D-optimality criterion to optimize designs for

several candidate models. Finally, we propose an approach to find an optimal design that is

robust with respect to both parameters and model by using the compound DE-criterion for

the robust FIM.

We apply the proposed methods for design optimization in models for repeated count

responses. In Section 2, we detail the notation and methods, and we introduce the dif-

ferent optimality criteria used to account for uncertainty in parameters, the model, or

both. In Section 3, we explain how these methods were applied to design optimization
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in a model of repeated count response inspired by Riviere, Ueckert, and Mentré (2016) and

Ogungbenro and Aarons (2011). Finally, we discuss the results and perspectives of this work

in Section 4.

2 Methods

2.1 Population design

The elementary design ξi for the subject i (i = 1, . . . , N) is defined by the number ni of ob-

servations and the design variables (xi1, . . . , xini
). A population design Ξ = {N, (ξ1, . . . , ξN)}

is described by the total number of patients N , and the set of individual elementary designs

to be performed on each patient: (ξ1, . . . , ξN) with a total number of observations
∑N

i=1 ni.

2.2 Nonlinear mixed effect models for a discrete outcome

In this article, we consider NLMEMs for discrete data where the conditional probability for

observation yij at sample j = 1, . . . , ni from patient i can be written as:

p(yij|bi) = h(yij, ξi, g{µ, bi}). (1)

In this expression, h is a known function describing the probability of yij given bi for a

vector of design variables ξi and a vector of subject-specific parameters modeled through the

nonlinear function g. The function g can be expressed as a function of the vector of fixed

effects parameters µ and the vector of random effects bi. The random effects are assumed

to follow a multivariate normal distribution with mean zero and covariance matrix Ω, i.e.

bi ∼ N (0,Ω). We denote by ψ the vector of all model parameters, i.e. ψ = (µT ,ΩTu )
T , where

Ωu is a vector containing all unique elements of Ω. Observations are usually assumed to be

independent, conditional upon the random effect, i.e. the joint conditional probability for
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the vector of observations for subject i (yi = (yi1, . . . , yini
)T ) is equal to:

p(yi|bi, ψ) =
ni
∏

j=1

h(yij, ξi, g{µ, bi}). (2)

2.3 Evaluation of the FIM and robust FIM accounting for param-

eter uncertainty using MC-HMC

Evaluation of the FIM

The FIM M(ψ,Ξ) for the population design Ξ is the sum of the N elementary FIMs,

M(ψ, ξi), so that M(ψ,Ξ) =
N
∑

i=1

M(ψ, ξi). In this work, we assumed the same elementary

design in all patients (ξi = ξ for i = 1, . . . , N), then Ξ = {ξ;N}, andM(ψ,Ξ) = N×M(ψ, ξ).

In this expression, M(ψ, ξ) is the individual FIM of ψ and can be expressed as:

M(ψ∗, ξ) = Ey

(

∂ log{L(y|ψ∗)}

∂ψ
×
∂ log{L(y|ψ∗)}

∂ψ

T)

, (3)

where the likelihood of the observations vector y of an individual i (subscript i will be omitted

in the following) is the integral over the random effects of its conditional likelihood, and is

therefore given by:

L(y, ψ∗) =

∫

b

p(y|b, ψ∗)p(b|ψ∗)db, (4)

with p(y|b, ψ∗) the p.d.f. of y given the random effects b, and p(b|ψ∗) the p.d.f. of b.

The (k, l) term of the FIM can be written as:

M(ψ∗, ξ)k,l = Ey

(

∂ log{L(y, ψ∗)}

∂ψk

∂ log{L(y, ψ∗)}

∂ψl

)

= Ey(Dk,l{y, ψ
∗}). (5)
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Riviere, Ueckert, and Mentré (2016) showed that this expectation with respect to the ob-

servations y can be estimated using MC, whereas, after calculation, the quantity Dk,l(y, ψ
∗)

can be written as:

Dk,l(y, ψ
∗) = Eb|y,ψ∗

(

∂ (log{p(y|b, ψ∗)p(b|ψ∗)})

∂ψk

∣

∣

∣

∣

y

)

×Eb|y,ψ∗

(

∂ (log{p(y|b, ψ∗)p(b|ψ∗)})

∂ψl

∣

∣

∣

∣

y

)

. (6)

To evaluate (5), Riviere, Ueckert, and Mentré (2016) (see appendix A of supplementary

material) proposed using MC to evaluate the expectation with respect to the observations y,

by sampling in the marginal distribution of y. Then, for each sampled vector of observations

y, they recommend to use HMC for evaluation of the expectation with respect to b given y

in (6).

Evaluation of the robust FIM

Let pm(ψm) denote the distribution of the vector of parameters ψm of model Mm. In

this paragraph, indices m in ψ and p will be omitted for simplicity. The robust FIM for

elementary design ξ can be evaluated by computing the expectation of the FIM over p(ψ):

MR(ξ) = Eψ (M{ψ, ξ}) . (7)

The evaluation of MR(ξ) requires computation of one supplementary integral with respect

to p(ψ). Using the (k, l) term, the robust FIM can be expressed as:

MR(ξ)k,l = Eψ(Ey{Dk,l(y, ψ)}), (8)
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where Dk,l(y, ψ) is evaluated by HMC as in (6). In (8), one vector of ψ is first sampled.

Then, conditioning on each value of ψ, one vector of observations y is sampled, instead of

drawing several vectors of observations y for each value of ψ sampled. It follows that the

robust FIM can be estimated as:

M̃R(ξ)k,l =
1

nR

nR
∑

r=1

B
(1)
k,rB

(2)
l,r , (9)

with

B
(1)
k,r =

1

nH

nH
∑

h=1

∂
(

log{p(yr|b
(1)
h,r, ψr)p(b

(1)
h,r|ψr)}

)

∂ψk

B
(2)
l,r =

1

nH

nH
∑

h=1

∂
(

log{p(yr|b
(2)
h,r, ψr)p(b

(2)
h,r|ψr)}

)

∂ψl
,

where (ψr, yr)r=1,...,nR
is an nR-sample of the joint distribution of (ψ, y), and (b

(1)
h,r)h=1,...,nH

and (b
(2)
h,r)h=1,...,nH

are 2nR nH -samples of the conditional p.d.f. of b given (ψr, yr). Two in-

dependent samples from the posterior of b given (ψr, yr) are used so that B
(1)
k,r and B

(2)
l,r

are independent. So, even with a small value of the number of HMC samples nH , a

large value of the number of MC samples nR will lead to convergence of the FIM esti-

mate (Riviere, Ueckert, and Mentré, 2016).

Finally, in order to be symmetric, MR(ξ) is obtained as:

MR(ξ) =
M̃R(ξ) + M̃R(ξ)

T

2
.

Of note, instead of this final symmetry step, one could alternatively fill up the lower part

of the matrix by copying the (l, k)th to the (k, l)th term. However, the approach we propose

does not take more computing time, as the same samples are used to compute M̃R and M̃T
R.
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This is expected to provide a more precise estimate of MR, as it makes use of more samples.

2.4 Optimality criteria

Let ψ∗
m be a given a priori population parameter vector for a model Mm, pm(ψm) be the a

priori distribution of the vector of parameters ψm of model Mm, and Pm be the number of

population parameters of this model. We propose to use four criteria, summarized in Table

1, for design optimization accounting for uncertainty in parameters and/or model.

To obtain the D-optimal design ΞD,m, the D-optimality criterion, corresponding to the nor-

malized determinant of M(ψ∗
m,Ξ) weighted by the inverse of the number of parameters,

is used (expression (10) in Table 1). When accounting for uncertainty in parameters, the

DE-optimality criterion (Foo and Duffull, 2010; Foo et al., 2012; Lestini et al., 2016) is used

for design optimization (expression (11) in 1). This criterion can be shown to be unimodal

as there is some monotone increasing function of this criterion for which the equivalence

theorem holds (Atkinson, Donev, and Tobias, 2009; Kiefer, 1974).

Uncertainty in the model choice is introduced by computing an optimality criterion based on

the principle of model averaging. A set ofM candidate models is considered. The D-optimal

design for each model Mm given population parameter values ψ∗
m (with m = 1, . . . ,M), can

be obtained using the D-optimality criterion. Then, the common design ΞCD for theM mod-

els given their population parameter values can be optimized using the compound D-criterion

(CD-criterion, expression (12) in Table 1) inspired by Atkinson (2008) and Nguyen et al.

(2016). The CD-criterion corresponds to a product of the D-criteria for the M models, in

which each model Mm is associated with a weight, αm, quantifying the balance between the

M models (with
∑M

m=1 αm = 1). In order to find the CDE-optimal design that is robust with

respect to both parameters and model, a compound DE-criterion (CDE-criterion) combining

the determinants of the robust FIMs is computed (expression (13) in Table 1). Assuming a
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set ofM candidate models, the CDE-criterion is then a weighted product of the DE-criterion

evaluated for each model Mm. For a given model Mm, the X-relative efficiency of a design

Ξ with respect to the optimal design for this model ΞX,m can then be calculated as follows:

EX,m(Ξ) =
ΦX,m(Ξ)

ΦX,m(ΞX,m)
for X = {D,DE}.

Averaging over M models, the X-relative efficiency of a design Ξ with respect to the optimal

design for the M models ΞX can then be calculated as follows:

EX(Ξ) =
ΦX(Ξ)

ΦX(ΞX)
for X = {CD,CDE},

which has the usual interpretation in terms of numbers of observations since
∑M

m=1 αm = 1.

3 Application to design optimization for count data

In this section, we present how the methods introduced in Section 2 were applied to de-

sign optimization for discrete data when introducing parameter and/or model uncertainties.

An NLMEM for repeated counts at three dose levels with several replications inspired by

Riviere, Ueckert, and Mentré (2016); Ogungbenro and Aarons (2011); Nyberg, Karlsson, and Hooker

(2009), was considered. The number of subjects N and the number of observations per

subject per dose nrep were adapted in order to have satisfactory Relative Standard Errors

(RSE) and D-optimality criterion values for three fixed doses. Even if this example seems

theoretical here, it can easily be extended to real trials with count data in various settings

(Marques and Loingeville, 2016). We first chose the number of MC and HMC samples to

use to evaluate the FIM and the robust FIM. As we aim to optimize a design with three

dose levels, denoted as ξ = {d1, d2, d3}, combinatorial optimization of two non-zero dose

11



levels (d2, d3), in addition to d1 fixed to 0 (i.e placebo), was performed, accounting or not

for uncertainty in parameters and in the model.

3.1 Studied models and parameters

The NLMEM studied describes nrep = 10 repeated count data for N = 60 patients observed

at different dose levels. The probability of each observation yij for patient i was modeled

using a Poisson distribution:

P (yij = k|bi) =
λki exp(−λi)

k!
.

In the following, index i was omitted for the sake of simplicity. We studied five candi-

date models for the relationship between log(λ) and the dose level d, which are the full

Imax model (M1), the linear model (M2), the log-linear model (M3), the Imax model (M4),

and the quadratic model (M5). These are traditionally used candidate models for dose-

response relationships, inspired from the literature on model averaging in dose finding stud-

ies (Buatois et al., 2018; Pinheiro et al., 2014; Maloney et al., 2013; Wedenberg, 2013) and

in the R package MCP-Mod (Bornkamp et al., 2009). These models express log(λ) as a

function of the dose level d and are represented in Figure 1:

• M1 : log(λ) = β1(1−
d

d+β2
),

• M2 : log(λ) = β1(1− β2d),

• M3 : log(λ) = β1(1− β2 log{d+ 1}),

• M4 : log(λ) = β1(1−
β3d
d+β2

),

• M5 : log(λ) = β1(−β2d2 + β3d+ 1).
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Model M1 and its parameters are inspired by Riviere, Ueckert, and Mentré (2016). Of note,

after a re-parameterization and re-scaling, this model is a hyperbolic equation with re-

spect to dose. Parameters β1 and β2 follow a log-normal distribution βp = g(µp, bp) =

µpexp(bp) for p = (1, 2), where bp follows a normal distribution with mean 0 and variance

ω2
p. Parameter values ψ∗

1 are displayed in Table 2. As log(λ) for d = 0 should be equal to

β1 for each of the five models, uncertainty was introduced only in the parameters µ2 and

ω2, in order to have the same mean value of log(λ) at d = 0 and d = 1 for each of the five

models. Moreover, often the placebo rate is well characterized, so no uncertainty might be

needed on β1 in those cases. Log-normal a priori distributions, which yield exclusively posi-

tive values for µ2 and ω2, were assigned to these parameters. These log-normal distributions

have expectations equal to the a priori values µ∗
2 and ω∗

2 of model M1, and coefficients of

variation (CV) of 70% in µ2 and 90% in ω2. Of note, the relationship between the CV and

σ, the standard deviation of the log-normal a priori distribution, is CV =
√

exp(σ2)− 1.

The expectations and standard deviations for p1(ψ1) were then calculated (Table 2).

Models M2 to M5 are alternative models with parameters chosen in order to have the same

mean value of log(λ) as for model M1 at the lower and upper boundaries of the dose level

interval, i.e. d = 0 and d = 1. Parameter values ψ∗
m for model Mm (for m = 2, . . . ,M), and

parameters of the log-normal distributions pm(ψm) when considering uncertainty in param-

eters are displayed in Table 2. As for model M1, we chose a CV of 70% in µ2 and 90% in

ω2. For models M4 and M5, for the sake of simplicity and to have similar number of random

effects than in models M1 to M3, there was no variability in β3. The proposed approach

could easily be applied to models M4 and M5 with variability in both β2 and β3.
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3.2 Choice of the number of MC and HMC samples

The methods proposed for evaluation of M and MR rely on MC-HMC. Therefore, it is

essential to choose carefully the number of MC and HMC samples to use in order to obtain

accurate approximations. Riviere, Ueckert, and Mentré (2016) recommended using nH =

200 HMC iterations. Indeed, they noticed that at a fixed number of MC samples, improving

the number of HMC iterations does not seem to impact the determinant of the FIM. Thus,

for good estimation, nH = 200 HMC iterations seems high enough. To choose an appropriate

number of MC samples, we studied the convergence of the D-optimality criteria based on M,

and of the DE-optimality criteria based on MR as functions of the number of MC samples

(denoted as nR) for the five considered models, while fixing the number of HMC iterations

at nH = 200. We used here the elementary design ξ = {0, 0.4, 0.7}. To evaluate M and MR

for model Mm, we used population parameters ψ∗
m and pm(ψm), respectively.

The D- and DE-optimality criteria computed seemed stable enough for 5000 MC samples

using nH = 200 (Figure 2). Thus, nH = 200 HMC samples and nR = 5000 MC samples were

used in the present work with 500 burn-in samples for evaluation of M and MR.

3.3 D- and DE-optimal designs for the five models

Assuming the first dose set to zero (d1 = 0), two doses were optimized among the following

values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. We did not consider repetition, i.e. the

three doses were different. This corresponds to
(

10
2

)

= 45 possible elementary designs. We

performed design optimization for the five models given the parameter values ψ∗
m using the

D-optimality criterion. Then, a robust design was optimized with respect to the population

parameter values µ2 and ω2 using the DE-optimality criterion and the a priori distributions

pm(µ2,m) and pm(ω2,m) in Table 2.

Figure 3 displays the D- and DE-efficiencies obtained when performing combinatorial
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optimization of two doses, accounting or not for uncertainty in population parameters of the

five models. As expected, we noticed that assuming or not uncertainty in parameters could

lead to different optimal designs, as in the case of M1 or M4. However, the DE-efficiency of

ΞD,1 on model M1 is 94.1% whereas the DE-efficiency of ΞD,4 on model M4 is 84.6% showing

that the D-optimal designs were quite robust here. Furthermore, different models led to

different optimal designs.

Table 3 reports the D-efficiencies of the five D-optimal designs ΞD,m when the true

model is another one. For instance, when using the D-optimal design for model M1, ξD,1 =

{0, 0.4, 0.5}, with model M2, we lost almost 40% of efficiency. Worse still, when using the

design ξD,2 = {0, 0.9, 1}, which is optimal for models M2 and M3, with model M4, we lost

almost 70% of efficiency. We thus noted that misspecification of models could lead to im-

portant loss of D-efficiency.

The DE-efficiencies of the five DE-optimal designs when the model was or was not cor-

rectly pre-specified are displayed in Table 4. We noticed that none of the elementary optimal

designs obtained for the M models ξDE,m were good across all models. On the contrary, we

observed notable loss of DE-efficiency in the case of model misspecifications as for D-optimal

designs.

Of note, the evaluation of the optimality criterion for one model using one elementary

design takes about one hour, on a computer i7-5600 U CPU, with frequency 2.60 GHz, 4

cores, 8 GB of RAM.

3.4 Compound D- and Compound DE-optimal designs

To propose a design that is robust with respect to the model, the CD-criterion was evaluated

for the combination of the five models considered. To obtain a robust design with respect to

the population parameter values µ2 and ω2, as well as to the five models, the CDE-criterion
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was evaluated. Here, the same weight (αm = 1/5 for model Mm with m = 1, . . . , 5) was

used for each model. The CD- and CDE-efficiencies of every possible design are represented

in Figure 4.

The CD-optimal design obtained, ξCD = {0, 0.3, 1}, was different from the five D-optimal

designs obtained separately for each model. When using the CD-optimal design and when

the model is actually one of the five modelsM1 toM5, the D-efficiency is at least 79% (Table

3). Thus, the CD-optimal design performed well in terms of D-efficiency and was robust to

the choice of models. The CDE-optimal design obtained was ξCDE = {0, 0.2, 1}. This design

has DE-efficiencies above 82% when assuming one of the five models, showing that it is

robust with respect to parameters and model.

4 Discussion

We have proposed an approach based on MC-HMC for design optimization in NLMEMs, to

account for uncertainty in the parameters and in the model. MC-HMC has been shown by

clinical trial simulations in Riviere, Ueckert, and Mentré (2016) to be a relevant method of

computation for multiple integrations over the distribution of observations and of random

effects. Therefore, we used it to compute one supplementary integral in the distribution

of the population parameters in order to evaluate the robust FIM with uncertainty in pa-

rameters. Optimization of design can then be performed using the DE-criterion. To take

into account uncertainty in the model, we used a compound optimality criterion which is a

weighted product of the D- or DE-criterion for a set of candidate models.

This approach provides the first application to robust design optimization for repeated

discrete data. Several previous works proposed to use D-optimality to find design robust

to parameter values for count data. Russell et al. (2009) calculated D-optimal designs in

Poisson regression models and used clustering techniques to account for uncertainties in pa-
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rameter values. Maloney, Simonsson, and Schaddelee (2013) proposed a method for design

optimization for three Poisson dose-response models with random effects. This method relied

on D-optimality criterion over a range of different parameter values to introduce robustness

with respect to parameter values. However, none of these works accounted for robustness

with respect to the model.

In this work, we found that, as expected, accounting or not for uncertainty in parameters

may lead to different allocations of optimal doses, with little impact on efficiencies. This can

be explained by the fact that the prior distributions were chosen centered around the prior

guess in our example. However misspecification of models can lead to D-efficiencies as low

as 30% for some models. The CD- or CDE-optimal designs, optimized accross the models,

were found to provide a good compromise for different candidate models, with D-efficiencies

of at least 80% for each model.

In the proposed example, the DE-optimal doses for the full Imax model M1 were close to

0.5, i.e. µ2, the fixed effect on D50, the dose that is required to get 50% of the maximal

effect. However, by increasing the coefficient of variation in µ2 or by assigning non-centered

distributions to population parameters, we would expect to obtain different optimal designs

with doses far from the D50.

In the example presented in this papier, we considered a Poisson model. In practice,

a greater variability than the one expected using a Poisson model can be observed. The

methods we proposed in this paper can address this problem by assuming a negative bi-

nomial model to account for overdispersion. The proposed methods can also be applied to

continuous data, as well as to other types of discrete data, such as binary or time to event

data.

Moreover, in the example presented, design optimization of doses was performed with

N = 60 subjects and nrep = 10 replications per subject per dose. More work on the appro-
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priate choice of N and nrep given experimental or cost constraints could be conducted, for

example by varying (N, nrep) (Retout et al., 2009).

When considering Bayesian D-optimum designs, the ELD criterion, corresponding to the

expectation of the logarithm of the determinant of the FIM, could be used instead of the DE

criterion Atkinson, Donev, and Tobias (2009). One could compute this criterion using the

MC-HMC approach. However, this would require drawing of several vectors of observations

for each vector of population parameters sampled. We should consider this criterion after

reduction of the execution time of the proposed method. Indeed, performing combinatorial

optimization by evaluating the FIM and the robust FIM for every possible design is time

consuming. Here we perform optimization for sparse designs, but if we aim at optimizing

richer designs, this would result in more elementary designs to evaluate. An alternative

approach would therefore consist in implementing an optimization algorithm as suggested as

a possibility in the discussion of Riviere, Ueckert, and Mentré (2016). The particle swarm

optimization algorithm (Kim and Li, 2011; Chen et al., 2015) could also be a solution.

Riviere, Ueckert, and Mentré (2016) showed that, based on calculation time, AGQ should

be recommended as a fast algorithm for simple discrete models, and HMC for complex mod-

els with more parameters and random effects. Therefore, an alternative method would be to

use MC-AGQ instead of MC-HMC in the evaluation of the robust FIM. MC-AGQ could be

used for binary or time-to-event models with a maximum of two random effect parameters.

Gotwalt, Jones, and Steinberg (2009) used an AGQ-based method to integrate over the prior

distribution of parameters along with the ELD criterion for robust design optimization in

nonlinear models and in generalized linear models. This work could be extended to NLMEM.

Besides, to save execution time, MC in MC-HMC and MC-AGQ could be replaced

by a more efficient approach, such as quasi-random sampling or especially quasi-random

Monte-Carlo (Pan and Thompson, 2007; Ueckert and Mentré, 2015). Quasi-random sam-
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pling avoids the exponential growth of the number of quadrature points as the number of

random effects increases, and has a higher accuracy than classic MC methods with the same

number of function evaluations.

Furthermore, the methods studied in this paper could be combined with adaptive de-

signs (Lestini, Dumont, and Mentré, 2015; Dumont, Chenel, and Mentré, 2016) to further

improve designs in longitudinal studies. At each stage of the study, accumulating informa-

tion will be used to update knowledge of the parameter distributions and of the candidate

models to be taken into account in design optimization.

Finally, the methods we proposed for robust designs accounting for parameter and mo-

del uncertainties were implemented in R version 3.2.3, extending the R package MIXFIM

(Riviere, Ueckert, and Mentré, 2016). We plan to include these new developments in a new

version of this package, as well as in PFIM, which is the software program for designing lon-

gitudinal studies developed by our laboratory (Dumont et al., 2018) (www.pfim.biostat.fr).
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Table 1: Optimality criteria.

Parameters
Model Given model Mm Set of candidate models Mm

(m = 1, . . . ,M)

Given parameter D-optimality Compound-D optimality

values ψ∗
m ΦD,m(Ξ) = det(M(Ψ∗

m,Ξ))
1/Pm (10) ΦCD(Ξ) =

∏M
m=1ΦD,m(Ξ)

αm (12)

a priori DE-optimality Compound-DE optimality

distribution ΦDE,m(Ξ) = det(MR(Ξ))
1/Pm (11) ΦCDE(Ξ) =

∏M
m=1ΦDE,m(Ξ)

αm (13)
on parameters

pm(ψm)

M(Ψ∗
m,Ξ)) is the Fisher information matrix (FIM) with population parameters Ψ∗

m and design

Ξ, and MR(Ξ)) is the robust FIM with design Ξ. Pm is the number of population parameters of

model Mm and αm is the weight quantifying the balance between the M models (
∑M

m=1 αm = 1).
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Table 2: Population parameter values ψ∗
m and distributions pm(ψm) for model Mm with

m = 1, . . . , 5.

ψ∗
m pm(ψm)

µ∗
1 µ∗

2 µ∗
3 ω∗

1 ω∗
2 µ1 µ2 µ3 ω1 ω2

M1 1.00 0.50 0.30 0.30 1.00 LN (−0.89, 0.63) 0.30 LN (−1.50, 0.77)
M2 1.00 0.67 0.30 0.30 1.00 LN (−0.60, 0.63) 0.30 LN (−1.50, 0.77)
M3 1.00 0.96 0.30 0.30 1.00 LN (−0.24, 0.63) 0.30 LN (−1.50, 0.77)
M4 1.00 0.20 0.80 0.30 0.30 1.00 LN (−1.81, 0.63) 0.80 0.30 LN (−1.50, 0.77)
M5 1.00 0.80 0.13 0.30 0.30 1.00 LN (−0.42, 0.63) 0.13 0.30 LN (−1.50, 0.77)

µp is the fixed effect and ωp the standard deviation of the random effect for parameter βp; ω3 is

assumed to be 0. Parameters of the log-normal distribution for uncertainty in µ2 and ω2 were

chosen to have an expectation equal to µ∗
2 and ω∗

2 respectively and a coefficient of variation equal

to 70% and 90% in µ2 and ω2 respectively.
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Table 3: D-efficiencies of the five D-optimal designs ΞD,m = {N = 60, ξD,m} for model Mm

with m = 1, . . . , 5 when the model is or is not correctly pre-specified. Efficiencies lower than
80% are highlighted in bold. D-efficiencies of the CD-optimal design ΞCD = {N = 60, ξCD}
across all models are indicated in the last line.

ED,1(Ξ) ED,2(Ξ) ED,3(Ξ) ED,4(Ξ) ED,5(Ξ) ECD(Ξ)

ξD,1 = {0, 0.4, 0.5} 100.0% 60.8% 68.9% 50.3% 27.7% 65.1%

ξD,2 = {0, 0.9, 1} 87.0% 100.0% 100.0% 30.8% 67.2% 82.3%

ξD,3 = {0, 0.9, 1} 87.0% 100.0% 100% 30.8% 67.2% 82.3%

ξD,4 = {0, 0.2, 1} 88.4% 85.7% 85.4% 100.0% 85.6% 98.0%

ξD,5 = {0, 0.5, 1} 94.6% 89.9% 91.7% 69.9% 100.0% 98.5%

ξCD = {0, 0.3, 1} 94.1% 88.1% 88.5% 79.7% 93.1% 100.0%
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Table 4: DE-efficiencies of the five DE-optimal designs ΞDE,m = {N = 60, ξDE,m} for model
Mm with m = 1, . . . , 5 when the model is or is not correctly pre-specified. Efficiencies lower
than 80% are highlighted in bold. DE-efficiencies of the CDE-optimal design ΞCDE = {N =
60, ξCDE} across all models are indicated in the last line.

EDE,1(Ξ) EDE,2(Ξ) EDE,3(Ξ) EDE,4(Ξ) EDE,5(Ξ) ECDE(Ξ)

ξDE,1 = {0, 0.2, 0.4} 100.0% 46.9% 56.7% 77.5% 23.6% 63.5%

ξDE,2 = {0, 0.9, 1} 73.3% 100.0% 100.0% 43.5% 87.1% 89.9%

ξDE,3 = {0, 0.9, 1} 73.3% 100.0% 100.0% 43.5% 87.1% 89.9%

ξDE,4 = {0, 0.1, 0.7} 89.1% 68.1% 73.9% 100.0% 51.4% 86.6%

ξDE,5 = {0, 0.5, 1} 83.1% 87.8% 89.6% 58.5% 100.0% 95.8%

ξCDE = {0, 0.2, 1} 90.9% 83.8% 83.9% 84.6% 82.8% 100.0%
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Figure 1: Representation of log(λ), where λ is the parameter of the Poisson model, as a
function of the dose level d for model Mm (m = 1, . . . , 5), with parameters ψ∗

m indicated in
Table 2.
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Figure 2: Convergence of the D- (left) and DE- (right) optimality criteria with respect to
the number of MC samples for the MC-HMC method, for model Mm (m = 1, . . . , 5) with
population parameters ψ∗

m and a priori distribution on parameters pm(ψm) respectively.
N = 60 patients and nrep = 10 replications per patient per dose were considered, with
elementary design ξ = {0, 0.4, 0.7}, nH = 200 HMC samples, and 500 burn-in trials.
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Figure 3: Heatmaps for optimization of doses d2 and d3 in Poisson models Mm with m =
1, . . . , 5 for repeated count response without (left) or with uncertainty (right) in population
parameters ψm as specified in Table 2. The resulting D- or DE-efficiencies (%) using the
FIM or robust FIM respectively are reported for all possible designs of two doses from 0.1 to
1 (with a first dose d1 = 0 fixed). The black squares correspond to the D- and DE-optimal
designs.
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Figure 4: Compound-D-efficiencies (left) and Compound-DE-efficiencies (right) in a com-
bination of the five Poisson models M1 to M5, with N = 60 patients and nrep = 10 repli-
cations per patients per dose. The considered CD- and CDE-efficiencies correspond to a
balanced combination of the five Poisson models. The black squares correspond to the CD-
(ΞCD = {N = 60, ξCD}) and CDE- (ΞCDE = {N = 60, ξCD}) optimal designs.
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