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Introduction

In pharmacometrics, longitudinal analysis of clinical data is increasingly performed in studies that provide repeated continuous or discrete data over time on several individuals. In recent years, several methods and software packages have been developed for maximum likelihood estimation of population parameters from longitudinal data using nonlinear mixed effect models (NLMEMs) (Mould andUpton, 2012, 2013;Upton and Mould, 2014). Before modeling, it is crucial to choose an appropriate population design in order to obtain good precision of estimates. Indeed, the informativeness of a dataset for parameter estimation depends on the number of subjects and on the number and timing of the samples. The Fisher information matrix (FIM) can be used in design evaluation and optimization, as its inverse is the lower bound of the variance covariance matrix of any unbiased parameter estimator according to the Cramer-Rao inequality [START_REF] Atkinson | Optimum Experimental Designs with SAS[END_REF][START_REF] Fedorov | Optimal design for nonlinear response models[END_REF][START_REF] Pronzato | Design of experiments in nonlinear models[END_REF].

Before discussing experimental design we briefly consider calculation of the information matrix. The problem is that in NLMEMs the FIM has no analytical form, and its calculation, which requires multiple integrations, can be challenging. Therefore, an expression of the FIM based on first-order linearization (FO) of the model around the expectation of the random effects was proposed by [START_REF] Mentré | Optimal design in random-effects regression models[END_REF]. Although efficient in general [START_REF] Bazzoli | Fisher information matrix for nonlinear mixed effects multiple response models: evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model[END_REF], FO has limitations in the case of complex nonlinear models, with large variability [START_REF] Jones | Design of cross-over trials for pharmacokinetic studies[END_REF][START_REF] Nguyen | Evaluation of the Fisher information matrix in nonlinear mixed effect models using adaptive Gaussian quadrature[END_REF] and in studies with discrete outcomes. FO was extended by [START_REF] Ogungbenro | Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments[END_REF] in studies with discrete endpoints, where they developed a method based on generalized estimating equations and the marginal quasi-likelihood (MQL) approximation. However, this approach requires computation of an analytical form for the partial derivatives of the conditional log-likelihood for each type of data, which is inconvenient in practice. The probabilistic programming language Stan (Stan Development Team, 2016) provides automatically numerical differentiation to evaluate these partial derivatives. New approaches have recently been developed for the computation of the FIM without linearization. [START_REF] Ueckert | A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature[END_REF] extended the method proposed by [START_REF] Nguyen | Evaluation of the Fisher information matrix in nonlinear mixed effect models using adaptive Gaussian quadrature[END_REF] based on Monte Carlo -Adaptive Gaussian quadrature (MC-AGQ) and applied it to longitudinal discrete data. This approach performed better than the MQL-based method for the estimation of random effect variances in discrete NLMEMs [START_REF] Ueckert | A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature[END_REF]. A method based on Monte Carlo Hamiltonian Monte Carlo (MC-HMC) has also been developed by [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF]. In this approach, MC is used to compute the integral over the observations and the integral over the random effects is evaluated by HMC. This method yields an asymptotically exact FIM, and is especially suitable for complex NLMEMs presenting a large variability. Its calculation time increases linearly with the number of random parameters for MC-HMC, whereas it increases exponentially for MC-AGQ. This approach is implemented in the R package MIXFIM [START_REF] Riviere | R package MIXFIM, version 1.0[END_REF], which uses functions written in the probabilistic programming language Stan, which was developed for Bayesian inference. [START_REF] Nyberg | Population optimal experimental design for discrete type data[END_REF] also proposed an MC-based method to compute the FIM using a second-order approximation of the likelihood and applied it to binary and count responses. However, they used MC sampling also to integrate the likelihood over the random effects, in contrast to HMC performed in [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF]. The latter is expected to be substantially more efficient and could explain why only 200 HMC samples (plus 500 burn-in) were required in [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF] while [START_REF] Nyberg | Population optimal experimental design for discrete type data[END_REF] reported the use of 1 000 000 MC samples.

Given some FIM, one of the criteria widely used to optimize designs is D-optimality, which consists of maximizing the determinant of the FIM. This approach however requires a priori knowledge of the model and its parameters, which can sometimes be obtained from previous experiments, leading to locally optimal designs. Several robust criteria have been proposed in order to optimize designs assuming uncertainty in parameters [START_REF] Pronzato | Robust experiment design via stochastic approximation[END_REF]Walter and Pronzato, 1987;[START_REF] Foo | Comparison of robust criteria for D-optimal designs[END_REF]. However, these robust criteria do not account for uncertainty in the model. Uncertainty in the model choice can be taken into account by assuming a set of candidate models when computing the optimality criterion. To do that, we make use of the theory of compound optimal design of [START_REF] Atkinson | Optimum Experimental Designs with SAS[END_REF], which was used to propose optimal designs for both estimation and model discrimination [START_REF] Atkinson | DT-optimum designs for model discrimination and parameter estimation[END_REF] as well as to find a common design for several drugs [START_REF] Nguyen | Design optimisation for pharmacokinetic modeling of a cocktail of phenotyping drugs[END_REF].

Here, we combined criteria for several models in a compound optimality criterion, following the principle of model averaging, which associates the optimality criterion of each model with its weight [START_REF] Pinheiro | Model-based dose finding under model uncertainty using general parametric models[END_REF].

In this article, we propose methods for optimal design of mixed models for discrete data accounting for parameter and/or model uncertainty. We first extend the method based on MC-HMC to compute the robust FIM by introducing uncertainty in the population parameters. Then, we use the compound D-optimality criterion to optimize designs for several candidate models. Finally, we propose an approach to find an optimal design that is robust with respect to both parameters and model by using the compound DE-criterion for the robust FIM.

We apply the proposed methods for design optimization in models for repeated count responses. In Section 2, we detail the notation and methods, and we introduce the different optimality criteria used to account for uncertainty in parameters, the model, or both. In Section 3, we explain how these methods were applied to design optimization in a model of repeated count response inspired by [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF] and [START_REF] Ogungbenro | Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments[END_REF]. Finally, we discuss the results and perspectives of this work in Section 4.

Methods

Population design

The elementary design ξ i for the subject i (i = 1, . . . , N) is defined by the number n i of observations and the design variables (x i1 , . . . , x in i ). A population design Ξ = {N, (ξ 1 , . . . , ξ N )} is described by the total number of patients N, and the set of individual elementary designs to be performed on each patient: (ξ 1 , . . . , ξ N ) with a total number of observations N i=1 n i .

Nonlinear mixed effect models for a discrete outcome

In this article, we consider NLMEMs for discrete data where the conditional probability for observation y ij at sample j = 1, . . . , n i from patient i can be written as:

p(y ij |b i ) = h(y ij , ξ i , g{µ, b i }). (1) 
In this expression, h is a known function describing the probability of y ij given b i for a vector of design variables ξ i and a vector of subject-specific parameters modeled through the nonlinear function g. The function g can be expressed as a function of the vector of fixed effects parameters µ and the vector of random effects b i . The random effects are assumed to follow a multivariate normal distribution with mean zero and covariance matrix Ω, i.e.

b i ∼ N (0, Ω). We denote by ψ the vector of all model parameters, i.e. ψ = (µ T , Ω T u ) T , where Ω u is a vector containing all unique elements of Ω. Observations are usually assumed to be independent, conditional upon the random effect, i.e. the joint conditional probability for the vector of observations for subject i (y i = (y i1 , . . . , y in i ) T ) is equal to:

p(y i |b i , ψ) = n i j=1 h(y ij , ξ i , g{µ, b i }).
(2)

2.3 Evaluation of the FIM and robust FIM accounting for parameter uncertainty using MC-HMC Evaluation of the FIM

The FIM M(ψ, Ξ) for the population design Ξ is the sum of the N elementary FIMs,

M(ψ, ξ i ), so that M(ψ, Ξ) = N i=1 M(ψ, ξ i ).
In this work, we assumed the same elementary design in all patients (ξ i = ξ for i = 1, . . . , N), then Ξ = {ξ; N}, and M(ψ, Ξ) = N ×M(ψ, ξ).

In this expression, M(ψ, ξ) is the individual FIM of ψ and can be expressed as:

M(ψ * , ξ) = E y ∂ log{L(y|ψ * )} ∂ψ × ∂ log{L(y|ψ * )} ∂ψ T , (3) 
where the likelihood of the observations vector y of an individual i (subscript i will be omitted in the following) is the integral over the random effects of its conditional likelihood, and is therefore given by:

L(y, ψ * ) = b p(y|b, ψ * )p(b|ψ * )db, (4) 
with p(y|b, ψ * ) the p.d.f. of y given the random effects b, and p(b|ψ * ) the p.d.f. of b.

The (k, l) term of the FIM can be written as:

M(ψ * , ξ) k,l = E y ∂ log{L(y, ψ * )} ∂ψ k ∂ log{L(y, ψ * )} ∂ψ l = E y (D k,l {y, ψ * }). (5) 
Riviere, [START_REF] Ueckert | A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature[END_REF] showed that this expectation with respect to the observations y can be estimated using MC, whereas, after calculation, the quantity D k,l (y, ψ * ) can be written as:

D k,l (y, ψ * ) = E b|y,ψ * ∂ (log{p(y|b, ψ * )p(b|ψ * )}) ∂ψ k y × E b|y,ψ * ∂ (log{p(y|b, ψ * )p(b|ψ * )}) ∂ψ l y . (6) 
To evaluate (5), Riviere, Ueckert, and Mentré (2016) (see appendix A of supplementary material) proposed using MC to evaluate the expectation with respect to the observations y, by sampling in the marginal distribution of y. Then, for each sampled vector of observations y, they recommend to use HMC for evaluation of the expectation with respect to b given y in (6).

Evaluation of the robust FIM

Let p m (ψ m ) denote the distribution of the vector of parameters ψ m of model M m . In this paragraph, indices m in ψ and p will be omitted for simplicity. The robust FIM for elementary design ξ can be evaluated by computing the expectation of the FIM over p(ψ):

M R (ξ) = E ψ (M{ψ, ξ}) . ( 7 
)
The evaluation of M R (ξ) requires computation of one supplementary integral with respect to p(ψ). Using the (k, l) term, the robust FIM can be expressed as:

M R (ξ) k,l = E ψ (E y {D k,l (y, ψ)}), (8) 
where D k,l (y, ψ) is evaluated by HMC as in (6). In (8), one vector of ψ is first sampled.

Then, conditioning on each value of ψ, one vector of observations y is sampled, instead of drawing several vectors of observations y for each value of ψ sampled. It follows that the robust FIM can be estimated as:

MR (ξ) k,l = 1 n R n R r=1 B (1) k,r B (2) l,r , (9) with B 
(1)

k,r = 1 n H n H h=1 ∂ log{p(y r |b (1) h,r , ψ r )p(b (1) h,r |ψ r )} ∂ψ k B (2) l,r = 1 n H n H h=1 ∂ log{p(y r |b (2) h,r , ψ r )p(b (2) h,r |ψ r )} ∂ψ l ,
where (ψ r , y r ) r=1,...,n R is an n R -sample of the joint distribution of (ψ, y), and (b

(1) h,r ) h=1,...,n H and (b (2)
h,r ) h=1,...,n H are 2n R n H -samples of the conditional p.d.f. of b given (ψ r , y r ). Two independent samples from the posterior of b given (ψ r , y r ) are used so that B

(1) k,r and B

(2) l,r are independent. So, even with a small value of the number of HMC samples n H , a large value of the number of MC samples n R will lead to convergence of the FIM estimate [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF].

Finally, in order to be symmetric, M R (ξ) is obtained as:

M R (ξ) = MR (ξ) + MR (ξ) T 2 .
Of note, instead of this final symmetry step, one could alternatively fill up the lower part of the matrix by copying the (l, k) th to the (k, l) th term. However, the approach we propose does not take more computing time, as the same samples are used to compute MR and MT R .

This is expected to provide a more precise estimate of M R , as it makes use of more samples.

Optimality criteria

Let ψ * m be a given a priori population parameter vector for a model M m , p m (ψ m ) be the a priori distribution of the vector of parameters ψ m of model M m , and P m be the number of population parameters of this model. We propose to use four criteria, summarized in Table 1, for design optimization accounting for uncertainty in parameters and/or model.

To obtain the D-optimal design Ξ D,m , the D-optimality criterion, corresponding to the normalized determinant of M(ψ * m , Ξ) weighted by the inverse of the number of parameters, is used (expression (10) in Table 1). When accounting for uncertainty in parameters, the DE-optimality criterion [START_REF] Foo | Methods of robust design of nonlinear models with an application to pharmacokinetics[END_REF][START_REF] Foo | Comparison of robust criteria for D-optimal designs[END_REF][START_REF] Lestini | Robust design in model-based analysis of longitudinal clinical data[END_REF] is used for design optimization (expression (11) in 1). This criterion can be shown to be unimodal as there is some monotone increasing function of this criterion for which the equivalence theorem holds [START_REF] Atkinson | Optimum Experimental Designs with SAS[END_REF][START_REF] Kiefer | General equivalence theory for optimum designs (approximate theory)[END_REF].

Uncertainty in the model choice is introduced by computing an optimality criterion based on the principle of model averaging. A set of M candidate models is considered. The D-optimal design for each model M m given population parameter values ψ * m (with m = 1, . . . , M), can be obtained using the D-optimality criterion. Then, the common design Ξ CD for the M models given their population parameter values can be optimized using the compound D-criterion (CD-criterion, expression (12) in Table 1) inspired by [START_REF] Atkinson | DT-optimum designs for model discrimination and parameter estimation[END_REF] and [START_REF] Nguyen | Design optimisation for pharmacokinetic modeling of a cocktail of phenotyping drugs[END_REF]. The CD-criterion corresponds to a product of the D-criteria for the M models, in which each model M m is associated with a weight, α m , quantifying the balance between the M models (with M m=1 α m = 1). In order to find the CDE-optimal design that is robust with respect to both parameters and model, a compound DE-criterion (CDE-criterion) combining the determinants of the robust FIMs is computed (expression (13) in Table 1). Assuming a set of M candidate models, the CDE-criterion is then a weighted product of the DE-criterion evaluated for each model M m . For a given model M m , the X-relative efficiency of a design Ξ with respect to the optimal design for this model Ξ X,m can then be calculated as follows:

E X,m (Ξ) = Φ X,m (Ξ) Φ X,m (Ξ X,m )
for X = {D, DE}.

Averaging over M models, the X-relative efficiency of a design Ξ with respect to the optimal design for the M models Ξ X can then be calculated as follows:

E X (Ξ) = Φ X (Ξ) Φ X (Ξ X ) for X = {CD, CDE},
which has the usual interpretation in terms of numbers of observations since M m=1 α m = 1.

Application to design optimization for count data

In this section, we present how the methods introduced in Section 2 were applied to design optimization for discrete data when introducing parameter and/or model uncertainties.

An NLMEM for repeated counts at three dose levels with several replications inspired by [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF]; [START_REF] Ogungbenro | Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments[END_REF]; [START_REF] Nyberg | Population optimal experimental design for discrete type data[END_REF], was considered. The number of subjects N and the number of observations per subject per dose n rep were adapted in order to have satisfactory Relative Standard Errors (RSE) and D-optimality criterion values for three fixed doses. Even if this example seems theoretical here, it can easily be extended to real trials with count data in various settings [START_REF] Marques | Improved near-exact distributions for the product of independent generalized gamma random variables[END_REF]. We first chose the number of MC and HMC samples to use to evaluate the FIM and the robust FIM. As we aim to optimize a design with three dose levels, denoted as ξ = {d 1 , d 2 , d 3 }, combinatorial optimization of two non-zero dose levels (d 2 , d 3 ), in addition to d 1 fixed to 0 (i.e placebo), was performed, accounting or not for uncertainty in parameters and in the model.

Studied models and parameters

The NLMEM studied describes n rep = 10 repeated count data for N = 60 patients observed at different dose levels. The probability of each observation y ij for patient i was modeled using a Poisson distribution:

P (y ij = k|b i ) = λ k i exp(-λ i ) k! .
In the following, index i was omitted for the sake of simplicity. We studied five candidate models for the relationship between log(λ) and the dose level d, which are the full I max model (M 1 ), the linear model (M 2 ), the log-linear model (M 3 ), the I max model (M 4 ), and the quadratic model (M 5 ). These are traditionally used candidate models for doseresponse relationships, inspired from the literature on model averaging in dose finding studies [START_REF] Buatois | Comparison of model averaging and model selection in dose finding trials analyzed by nonlinear mixed effect models[END_REF][START_REF] Pinheiro | Model-based dose finding under model uncertainty using general parametric models[END_REF][START_REF] Maloney | D optimal designs for three poisson dose-response models[END_REF]Wedenberg, 2013) and in the R package MCP-Mod [START_REF] Bornkamp | MCPMod: An R package for the design and analysis of dose-finding studies[END_REF]. These models express log(λ) as a function of the dose level d and are represented in Figure 1: Moreover, often the placebo rate is well characterized, so no uncertainty might be needed on β 1 in those cases. Log-normal a priori distributions, which yield exclusively positive values for µ 2 and ω 2 , were assigned to these parameters. These log-normal distributions have expectations equal to the a priori values µ * 2 and ω * 2 of model M 1 , and coefficients of variation (CV) of 70% in µ 2 and 90% in ω 2 . Of note, the relationship between the CV and σ, the standard deviation of the log-normal a priori distribution, is CV = exp(σ 2 ) -1.

• M 1 : log(λ) = β 1 (1 -d d+β 2 ), • M 2 : log(λ) = β 1 (1 -β 2 d), • M 3 : log(λ) = β 1 (1 -β 2 log{d + 1}), • M 4 : log(λ) = β 1 (1 -β 3 d d+β 2 ), • M 5 : log(λ) = β 1 (-β 2 d 2 + β 3 d + 1).
The expectations and standard deviations for p 1 (ψ 1 ) were then calculated (Table 2). 2. As for model M 1 , we chose a CV of 70% in µ 2 and 90% in ω 2 . For models M 4 and M 5 , for the sake of simplicity and to have similar number of random effects than in models M 1 to M 3 , there was no variability in β 3 . The proposed approach could easily be applied to models M 4 and M 5 with variability in both β 2 and β 3 .

Choice of the number of MC and HMC samples

The methods proposed for evaluation of M and M R rely on MC-HMC. Therefore, it is essential to choose carefully the number of MC and HMC samples to use in order to obtain accurate approximations. Riviere, Ueckert, and Mentré (2016) recommended using n H = 200 HMC iterations. Indeed, they noticed that at a fixed number of MC samples, improving the number of HMC iterations does not seem to impact the determinant of the FIM. Thus, for good estimation, n H = 200 HMC iterations seems high enough. To choose an appropriate number of MC samples, we studied the convergence of the D-optimality criteria based on M, and of the DE-optimality criteria based on M R as functions of the number of MC samples (denoted as n R ) for the five considered models, while fixing the number of HMC iterations at n H = 200. We used here the elementary design ξ = {0, 0.4, 0.7}. To evaluate M and M R for model M m , we used population parameters ψ * m and p m (ψ m ), respectively.

The D-and DE-optimality criteria computed seemed stable enough for 5000 MC samples using n H = 200 (Figure 2). Thus, n H = 200 HMC samples and n R = 5000 MC samples were used in the present work with 500 burn-in samples for evaluation of M and M R .

D-and DE-optimal designs for the five models

Assuming the first dose set to zero (d 1 = 0), two doses were optimized among the following values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. We did not consider repetition, i.e. the three doses were different. This corresponds to 10 2 = 45 possible elementary designs. We performed design optimization for the five models given the parameter values ψ * m using the D-optimality criterion. Then, a robust design was optimized with respect to the population parameter values µ 2 and ω 2 using the DE-optimality criterion and the a priori distributions p m (µ 2,m ) and p m (ω 2,m ) in Table 2.

Figure 3 displays the D-and DE-efficiencies obtained when performing combinatorial optimization of two doses, accounting or not for uncertainty in population parameters of the five models. As expected, we noticed that assuming or not uncertainty in parameters could lead to different optimal designs, as in the case of M 1 or M 4 . However, the DE-efficiency of Ξ D,1 on model M 1 is 94.1% whereas the DE-efficiency of Ξ D,4 on model M 4 is 84.6% showing that the D-optimal designs were quite robust here. Furthermore, different models led to different optimal designs. Table 3 reports the D-efficiencies of the five D-optimal designs Ξ D,m when the true model is another one. For instance, when using the D-optimal design for model M 1 , ξ D,1 = {0, 0.4, 0.5}, with model M 2 , we lost almost 40% of efficiency. Worse still, when using the design ξ D,2 = {0, 0.9, 1}, which is optimal for models M 2 and M 3 , with model M 4 , we lost almost 70% of efficiency. We thus noted that misspecification of models could lead to important loss of D-efficiency.

The DE-efficiencies of the five DE-optimal designs when the model was or was not correctly pre-specified are displayed in Table 4. We noticed that none of the elementary optimal designs obtained for the M models ξ DE,m were good across all models. On the contrary, we observed notable loss of DE-efficiency in the case of model misspecifications as for D-optimal designs.

Of note, the evaluation of the optimality criterion for one model using one elementary design takes about one hour, on a computer i7-5600 U CPU, with frequency 2.60 GHz, 4 cores, 8 GB of RAM.

Compound D-and Compound DE-optimal designs

To propose a design that is robust with respect to the model, the CD-criterion was evaluated for the combination of the five models considered. To obtain a robust design with respect to the population parameter values µ 2 and ω 2 , as well as to the five models, the CDE-criterion was evaluated. Here, the same weight (α m = 1/5 for model M m with m = 1, . . . , 5) was used for each model. The CD-and CDE-efficiencies of every possible design are represented in Figure 4.

The CD-optimal design obtained, ξ CD = {0, 0.3, 1}, was different from the five D-optimal designs obtained separately for each model. When using the CD-optimal design and when the model is actually one of the five models M 1 to M 5 , the D-efficiency is at least 79% (Table 3). Thus, the CD-optimal design performed well in terms of D-efficiency and was robust to the choice of models. The CDE-optimal design obtained was ξ CDE = {0, 0.2, 1}. This design has DE-efficiencies above 82% when assuming one of the five models, showing that it is robust with respect to parameters and model.

Discussion

We have proposed an approach based on MC-HMC for design optimization in NLMEMs, to account for uncertainty in the parameters and in the model. MC-HMC has been shown by clinical trial simulations in Riviere, [START_REF] Ueckert | A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature[END_REF] to be a relevant method of computation for multiple integrations over the distribution of observations and of random effects. Therefore, we used it to compute one supplementary integral in the distribution of the population parameters in order to evaluate the robust FIM with uncertainty in parameters. Optimization of design can then be performed using the DE-criterion. To take into account uncertainty in the model, we used a compound optimality criterion which is a weighted product of the D-or DE-criterion for a set of candidate models.

This approach provides the first application to robust design optimization for repeated discrete data. Several previous works proposed to use D-optimality to find design robust to parameter values for count data. [START_REF] Russell | D-optimal designs for poisson regression models[END_REF] calculated D-optimal designs in Poisson regression models and used clustering techniques to account for uncertainties in pa-rameter values. [START_REF] Maloney | D optimal designs for three poisson dose-response models[END_REF] proposed a method for design optimization for three Poisson dose-response models with random effects. This method relied on D-optimality criterion over a range of different parameter values to introduce robustness with respect to parameter values. However, none of these works accounted for robustness with respect to the model.

In this work, we found that, as expected, accounting or not for uncertainty in parameters may lead to different allocations of optimal doses, with little impact on efficiencies. This can be explained by the fact that the prior distributions were chosen centered around the prior guess in our example. However misspecification of models can lead to D-efficiencies as low as 30% for some models. The CD-or CDE-optimal designs, optimized accross the models, were found to provide a good compromise for different candidate models, with D-efficiencies of at least 80% for each model.

In the proposed example, the DE-optimal doses for the full I max model M 1 were close to 0.5, i.e. µ 2 , the fixed effect on D50, the dose that is required to get 50% of the maximal effect. However, by increasing the coefficient of variation in µ 2 or by assigning non-centered distributions to population parameters, we would expect to obtain different optimal designs with doses far from the D50.

In the example presented in this papier, we considered a Poisson model. In practice, a greater variability than the one expected using a Poisson model can be observed. The methods we proposed in this paper can address this problem by assuming a negative binomial model to account for overdispersion. The proposed methods can also be applied to continuous data, as well as to other types of discrete data, such as binary or time to event data. Moreover, in the example presented, design optimization of doses was performed with N = 60 subjects and n rep = 10 replications per subject per dose. More work on the appro-priate choice of N and n rep given experimental or cost constraints could be conducted, for example by varying (N, n rep ) [START_REF] Retout | Design optimization in nonlinear mixed effects models using cost functions: application to a joint model of infliximab and methotrexate pharmacokinetics[END_REF].

When considering Bayesian D-optimum designs, the ELD criterion, corresponding to the expectation of the logarithm of the determinant of the FIM, could be used instead of the DE criterion [START_REF] Atkinson | Optimum Experimental Designs with SAS[END_REF]. One could compute this criterion using the MC-HMC approach. However, this would require drawing of several vectors of observations for each vector of population parameters sampled. We should consider this criterion after reduction of the execution time of the proposed method. Indeed, performing combinatorial optimization by evaluating the FIM and the robust FIM for every possible design is time consuming. Here we perform optimization for sparse designs, but if we aim at optimizing richer designs, this would result in more elementary designs to evaluate. An alternative approach would therefore consist in implementing an optimization algorithm as suggested as a possibility in the discussion of [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF]. The particle swarm optimization algorithm [START_REF] Kim | A novel global search algorithm for nonlinear mixed-effects models using particle swarm optimization[END_REF][START_REF] Chen | Minimax optimal designs via particle swarm optimization methods[END_REF] could also be a solution. [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF] showed that, based on calculation time, AGQ should be recommended as a fast algorithm for simple discrete models, and HMC for complex models with more parameters and random effects. Therefore, an alternative method would be to use MC-AGQ instead of MC-HMC in the evaluation of the robust FIM. MC-AGQ could be used for binary or time-to-event models with a maximum of two random effect parameters. [START_REF] Gotwalt | Fast computation of designs robust to parameter uncertainty for nonlinear settings[END_REF] used an AGQ-based method to integrate over the prior distribution of parameters along with the ELD criterion for robust design optimization in nonlinear models and in generalized linear models. This work could be extended to NLMEM. Besides, to save execution time, MC in MC-HMC and MC-AGQ could be replaced by a more efficient approach, such as quasi-random sampling or especially quasi-random Monte-Carlo [START_REF] Pan | Quasi-Monte Carlo estimation in generalized linear mixed models[END_REF][START_REF] Ueckert | Computation of the Fisher information matrix for discrete nonlinear mixed effect models[END_REF]. Quasi-random sam-pling avoids the exponential growth of the number of quadrature points as the number of random effects increases, and has a higher accuracy than classic MC methods with the same number of function evaluations.

Furthermore, the methods studied in this paper could be combined with adaptive designs [START_REF] Lestini | Influence of the size of cohorts in adaptive design for nonlinear mixed effects models: an evaluation by simulation for a pharmacokinetic and pharmacodynamic model for a biomarker in oncology[END_REF][START_REF] Dumont | Two-stage adaptive designs in nonlinear mixed effects models: application to pharmacokinetics in children[END_REF] to further improve designs in longitudinal studies. At each stage of the study, accumulating information will be used to update knowledge of the parameter distributions and of the candidate models to be taken into account in design optimization.

Finally, the methods we proposed for robust designs accounting for parameter and model uncertainties were implemented in R version 3.2.3, extending the R package MIXFIM [START_REF] Riviere | An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models[END_REF]. We plan to include these new developments in a new version of this package, as well as in PFIM, which is the software program for designing longitudinal studies developed by our laboratory (Dumont et al., 2018) (www.pfim.biostat.fr). µ p is the fixed effect and ω p the standard deviation of the random effect for parameter β p ; ω 3 is assumed to be 0. Parameters of the log-normal distribution for uncertainty in µ 2 and ω 2 were chosen to have an expectation equal to µ * 2 and ω * 2 respectively and a coefficient of variation equal to 70% and 90% in µ 2 and ω 2 respectively.

(m = 1, . . . , M) Given parameter D-optimality Compound-D optimality values ψ * m Φ D,m (Ξ) = det(M(Ψ * m , Ξ)) 1/Pm (10) Φ CD (Ξ) = M m=1 Φ D,m ( 
p m (ψ m ) µ * 1 µ * 2 µ * 3 ω * 1 ω * 2 µ 1 µ 2 µ 3 ω 1 ω 2 M 1 1.
Table 3: D-efficiencies of the five D-optimal designs Ξ D,m = {N = 60, ξ D,m } for model M m with m = 1, . . . , 5 when the model is or is not correctly pre-specified. Efficiencies lower than 80% are highlighted in bold. D-efficiencies of the CD-optimal design Ξ CD = {N = 60, ξ CD } across all models are indicated in the last line. 

E D,1 (Ξ) E D,2 (Ξ) E D,3 (Ξ) E D,4 (Ξ) E D,5 (Ξ) E CD (Ξ) ξ D,1 = {0, 0.4,

  after a re-parameterization and re-scaling, this model is a hyperbolic equation with respect to dose. Parameters β 1 and β 2 follow a log-normal distribution β p = g(µ p , b p ) = µ p exp(b p ) for p = (1, 2), where b p follows a normal distribution with mean 0 and variance ω 2 p . Parameter values ψ * 1 are displayed in Table 2. As log(λ) for d = 0 should be equal to β 1 for each of the five models, uncertainty was introduced only in the parameters µ 2 and ω 2 , in order to have the same mean value of log(λ) at d = 0 and d = 1 for each of the five models.

Models M 2

 2 to M 5 are alternative models with parameters chosen in order to have the same mean value of log(λ) as for model M 1 at the lower and upper boundaries of the dose level interval, i.e. d = 0 and d = 1. Parameter values ψ * m for model M m (for m = 2, . . . , M), and parameters of the log-normal distributions p m (ψ m ) when considering uncertainty in parameters are displayed in Table

  m (Ξ) = det(M R (Ξ)) 1/Pm (11) Φ CDE (Ξ) = M m=1 Φ DE,m (Ξ) αm (13) on parameters p m (ψ m ) M(Ψ * m , Ξ))is the Fisher information matrix (FIM) with population parameters Ψ * m and design Ξ, and M R (Ξ)) is the robust FIM with design Ξ. P m is the number of population parameters of model M m and α m is the weight quantifying the balance between the M models ( M m=1 α m = 1).

Figure 1 :

 1 Figure 1: Representation of log(λ), where λ is the parameter of the Poisson model, as a function of the dose level d for model M m (m = 1, . . . , 5), with parameters ψ * m indicated in Table2.

Figure 2 :

 2 Figure 2: Convergence of the D-(left) and DE-(right) optimality criteria with respect to the number of MC samples for the MC-HMC method, for model M m (m = 1, . . . , 5) with population parameters ψ * m and a priori distribution on parameters p m (ψ m ) respectively. N = 60 patients and n rep = 10 replications per patient per dose were considered, with elementary design ξ = {0, 0.4, 0.7}, n H = 200 HMC samples, and 500 burn-in trials.

Table 1 :

 1 Optimality criteria.

	Model	Given model M
	Parameters	

m Set of candidate models M m

Table 2 :

 2 Population parameter values ψ * m and distributions p m (ψ m ) for model M m with m = 1, . . . , 5.

	ψ * m

Table 4 :

 4 DE-efficiencies of the five DE-optimal designs Ξ DE,m = {N = 60, ξ DE,m } for model M m with m = 1, . . . , 5 when the model is or is not correctly pre-specified. Efficiencies lower than 80% are highlighted in bold. DE-efficiencies of the CDE-optimal design Ξ CDE = {N = 60, ξ CDE } across all models are indicated in the last line.

	ξ DE,1 = {0, 0.2, 0.4} 100.0%	46.9%	56.7%	77.5%	23.6%	63.5%
	ξ DE,2 = {0, 0.9, 1}	73.3%	100.0%	100.0%	43.5%	87.1%	89.9%
	ξ DE,3 = {0, 0.9, 1}	73.3%	100.0%	100.0%	43.5%	87.1%	89.9%
	ξ DE,4 = {0, 0.1, 0.7} 89.1%	68.1%	73.9%	100.0%	51.4%	86.6%
	ξ DE,5 = {0, 0.5, 1}	83.1%	87.8%	89.6%	58.5%	100.0%	95.8%
	ξ CDE = {0, 0.2, 1}	90.9%	83.8%	83.9%	84.6%	82.8%	100.0%

E DE,1 (Ξ) E DE,2 (Ξ) E DE,3 (Ξ) E DE,4 (Ξ) E DE,5 (Ξ) E CDE (Ξ)
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