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Abstract 

Defining thresholds of prognostic markers is essential for stratified medicine. Such thresholds are 

mostly estimated from purely statistical measures regardless of patient preferences potentially 

leading to unacceptable medical decisions. Quality-Adjusted Life-Years (QALYs) are a widely used 

preferences-based measure of health outcomes. We develop a time-dependent QALYs-based 

expected utility function for censored data that should be maximised to estimate an optimal 

threshold. We performed a simulation study to compare estimated thresholds when using the 

proposed expected utility approach and purely statistical estimators. Two applications illustrate 

the usefulness of the proposed methodology which was implemented in the R package ROCt 

(www.divat.fr). Firstly, by reanalysing data of a randomized clinical trial comparing the efficacy of 

prednisone versus placebo in patients with chronic liver cirrhosis, we demonstrate the utility of 

treating patients with a prothrombin level higher than 89%. Secondly, we reanalyse the data of 

an observational cohort of kidney transplant recipients: we conclude to the uselessness of the 

Kidney Transplant Failure Score (KTFS) to adapt the frequency of clinical visits. Applying such a 

patient-centered methodology may improve future transfer of novel prognostic scoring systems 

or markers in clinical practice. 

 

Keywords: prognostic marker, threshold definition, QALY, censored data, stratified medicine, 

patient preferences  
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Introduction  

Stratified medicine currently relies on the use of biological markers capable of discriminating 

patients into sub-groups receiving the most appropriate treatment (1,2). The recent opportunities 

towards this personalized patient care, especially offered by omics technologies, have 

transformed biomedical research (3). Despite this, a very low proportion of discovered 

biomarkers or scoring systems have been transferred to clinical practice. This disillusion is 

partially explained by the numerous methodological pitfalls, leading to low credibility of the 

results (4,5), and by the non-consideration of the patients themselves: studies are often isolated 

from their social or environmental context (6), and independent of their preferences over the 

possible outcomes of individual-tailored clinical choices. In the literature, the potential usefulness 

of prognostic markers is often judged regarding purely statistical measures such as the highest 

area under the ROC curve (AUC). This indicator is widely associated with the following normative 

premise: the higher the AUC, the lower the error rates of a decision based on the marker, and the 

higher the corresponding usefulness in future medical decision making. Several common 

approaches (7,8) can be envisaged to estimate a marker threshold in order to discriminate 

between low and high risk patients, as the Youden index corresponding to the marker value that 

maximizes the sum of sensitivity and specificity. 

However, as recently recalled by Subtil et al. (9), these purely statistical approaches had already 

been clearly criticized in the literature since they ignored patient preferences of the health 

outcomes consequences of the stratified medical decision making, possibly leading to 

unacceptable trade-offs between the harms and the benefits of a clinical decision (10,11). From 

a decision analysis framework, several theoretical-based papers have shown how a clinically 
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useful threshold for a diagnostic test can be determined by maximizing an expected utility 

function, utility referring to the intensity of individual preferences over health outcomes (9,12–

15). Even if the expected utility maximization in order to estimate optimal threshold on a 

continuous marker appears relatively well-known in diagnostic context, these decision analytic 

approaches remain difficult to extrapolate to time-dependent prognostic frameworks that imply 

dealing with right censoring data and time-dependent utility measures for health outcomes. 

Fortunately, the former point can be treated by considering survival models and the latter point 

can be handled using Quality-Adjusted Life Years (QALYs). QALYs are a widely used composite 

measure of the health care consequences that combines in a single number information about 

the quantity and the health-related Quality of Life (QoL) (16). Although QALYs have been primarily 

designed for the purpose of economic evaluation, their potential usefulness for clinical decision-

making has been acknowledged and warrants further consideration (17–19). More precisely, 

QALYs represent any sequence of health states over time as an equivalent number of years lived 

in perfect health. Each life year is weighted by preference-based measures, called utility scores. 

The utility scores usually range from 0 (dead) to 1 (perfect health), so that a higher score indicates 

a more preferred health state. For instance, a patient alive 10 years with a utility of 0.8 will have 

8 QALYs (10 * 0.8), a value higher than the one for a patient alive 12 years with a utility of 0.6, 

this last one having 7.2 QALYs (12 * 0.6) due to a more efficient intervention but with more side 

effects. The utility scores can be assessed directly by asking patients. For this purpose, different 

methods exist, such as the standard gamble or the time trade-off methods for instance (20). The 

utility scores can also be obtained indirectly from pre-scored generic health-states description 

systems, such as the Euroqol EQ-5D  (21) or the SF-6D (22), that represent the preferences of the 
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general population. Another possibility is to gather utility scores through literature review (23). 

Given the widespread use of QALYs, published scores are available for a wide variety of health 

conditions.  

The aim of this paper is to extend expected utility maximization to prognostic frameworks in order 

to estimate prognostic marker thresholds to achieve patient-centered stratified medicine. We 

performed a simulation study to highlight the interest of considering the individual preferences 

comparatively to purely statistical approaches. We illustrate the usefulness of the methodology 

by assessing two different clinical decision contexts. The first concerns reanalysis of an old clinical 

trial aimed at assessing prednisone prescription in patients suffering of chronic liver cirrhosis 

based on the prothrombin level (24). The second relies on an observational cohort aiming to use 

the Kidney Transplant Failure Score (KTFS) to adapt the follow-up of kidney transplant recipients 

after one year post-transplantation (25).  

 

Methods 

Definition of the time-dependent expected utility function for a stratified medical decision 

Let a sample be constituted by 𝑛 patients. Let 𝑇, 𝐶, 𝑍 and 𝑋 be, respectively, the time to the time-

to-failure, the time-to-censoring, the treatment (A or B) and the baseline prognostic marker under 

investigation to potentially drive the treatment allocation. For each subject 𝑖 (𝑖 = 1, … , 𝑛), we 

observe {𝑦𝑖, 𝑧𝑖, 𝑥𝑖} with 𝑌 = min(𝑇, 𝐶). Let 𝐷(𝜏) be the indicator of failure such that 𝐷(𝜏) = 1 if 

it occurs before the forecast horizon time 𝜏, and 𝐷(𝜏) = 0 otherwise. By convention, assume that 

the incremental benefit of the treatment A compared to the treatment B in terms of delayed 

failure increases with 𝑋 at the price of possible side effects deteriorating QoL (again compared to 
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the treatment B). The aim is to define a threshold 𝜅 for the following decision: proposition of the 

treatment A for a patient 𝑖 when {𝑥𝑖 > 𝜅} and B otherwise. Patient profiles may therefore be 

distinguished by combining their two possible initial strata (𝑋 > 𝜅 or 𝑋 ≤ 𝜅) and their two 

possible outcomes (𝐷(𝜏) = 1 or 𝐷(𝜏) = 0). The stratified medical decision leads to four possible 

health outcomes that each correspond to specific flows of time-dependent health states or 

health-related QoL levels over the prognostic period. Adapting the initial proposition of Metz (13), 

the expected utility function correspond to a sum over all four health outcomes weighted by their 

corresponding utility. In a prognostic framework, taking into account the patients’ preferences 

over health states, the optimal threshold 𝜅∗ can be estimated by maximizing the following time-

dependent expected utility function:  

 𝜓𝜏(𝜅) = ∑ ∑ 𝑃(𝑔, 𝐷(𝜏) = 𝑗)𝑄(𝜏|𝑔, 𝐷(𝜏) = 𝑗)

𝑗∈{0,1}𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 (1)  

where 𝑄(𝜏|𝑔, 𝐷(𝜏) = 𝑗) represent the numbers of QALYs up to the prognostic time 𝜏 

corresponding to each possible profile and 𝑃(𝑔, 𝐷(𝜏) = 𝑗) are the associated probabilities. The 

number of QALYs is defined as the sum of life years weighted by the instantaneous utility ranging 

from 0 (being dead) to 1 (being in perfect health) of the corresponding health states (26), i.e. a 

mean of the health-state utilities weighted by the corresponding probabilities up to time 𝜏: 

 𝑄(𝜏|𝑔, 𝐷(𝜏) = 𝑗) = ∑ ∫ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 𝑙)𝑃(𝐷(𝑡) = 𝑙|𝑔, 𝐷(𝜏) = 𝑗)𝑑𝑡
𝜏

0 𝑙∈{0,1}

 (2)  

where 𝑢(𝑡|𝑔, 𝐷(𝑡) = 𝑙) is the instantaneous utility defined on the scale 0-1 (death-perfect health) 

of the health state at time 𝑡. We assumed, as the QALY model does, that the instantaneous utility 

scores at time 𝑡 for health states are constant over time, i.e. 𝑢(𝑡|𝑔, 𝐷(𝑡) = 𝑙) = 𝑢𝑔,𝑙 for all 𝑡. If 
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𝑔 = {𝑋 > 𝜅}, the utility of receiving treatment A is considered (𝑢𝑋>𝜅,𝑙 = 𝑢𝐴,𝑙); otherwise the 

utility of receiving B (𝑢𝑋≤𝜅,𝑙 = 𝑢𝐵,𝑙). It can be shown that the time-dependent expected utility 

function (equation (1)) may then be simplified as follows (see demonstration in appendix): 

 𝜓𝜏(𝜅) = ∑ 𝑃(𝑔)[𝑢𝑔,0𝐸(min(𝑇, 𝜏) |𝑔) + 𝑢𝑔,1(𝜏 − 𝐸(min(𝑇, 𝜏) |𝑔))]

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 (3)  

where 𝐸(min(𝑇, 𝜏) |𝑔) is the Restricted Mean Survival Time (RMST) up to time 𝜏 in the group 𝑔, 

i.e. the average survival time when patients are followed up to 𝜏 (27). Because we assumed that, 

compared to the treatment B, the treatment A is associated to a better efficacy in delaying the 

failure for high values of the marker 𝑋 and a lower QoL due to side-effects, we also have to respect 

the condition {𝑢𝑋>𝜅,𝑙 ≤ 𝑢𝑋≤𝜅,𝑙} for all 𝑙 ∈ {0,1}. Because we considered a time-to-failure, we also 

have {𝑢𝑔,0 > 𝑢𝑔,1} for all 𝑔 ∈ {𝑋 > 𝜅, 𝑋 ≤ 𝜅}.  

For a patient-centered medical decision, the time 𝜏 should be determined as the most important 

value with sufficient at-risk patients to allow a reliable statistical inference. Patient expectations 

are both to delay the event as late as possible and to maintain their QoL as long as possible. Note 

also that the value of τ enters in the equation (3), therefore the choice of τ affects the 

corresponding number of QALYs, resulting in the non-consideration of the decision consequences 

beyond τ. We therefore recommend to define τ as the highest possible value. 

Note that the maximization of the time-dependent expected utility function (equation (3)) may 

result in an estimation of 𝜅∗ equal to an extremum of the marker. This implies treating all patients 

with A if 𝜅∗ = min(𝑋), or with B if 𝜅∗ = max(𝑋). These situations indicate the futility of the 

prognostic marker for patient-centered stratified medical decision making, even if its prognostic 

capacities are important.  
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Non-parametric estimation of the time-dependent expected utility function 

We used a non-parametric approach in order to maximize the expected utility function leading to 

the optimal threshold 𝜅∗. As demonstrated, the expected utility function can be decomposed into 

three terms (equation (3)). First, the probabilities 𝑃(𝑔) for 𝑔 ∈ {𝑋 > 𝜅, 𝑋 ≤ 𝜅}, can be estimated 

by the empirical cumulative distribution function of 𝑋 in 𝑔, i.e 𝑃(𝑔) = 𝑛−1 ∑ 1(𝑋𝑖  ∈  𝑔)𝑛
𝑖=1 , with 

1(∙) the indicator function equal to 1 if the condition within the brackets is verified and 0 

otherwise. Second, the utility scores 𝑢𝑔,𝑙, for 𝑔 ∈ {𝑋 > 𝜅, 𝑋 ≤ 𝜅} and 𝑙 ∈ {0,1}, can be obtained 

from individual preference scores already published in the literature. Third, 𝐸(min(𝑇, 𝜏) |𝑔) can 

be estimated by the area under the Kaplan-Meier survival curve in patients of the strata 𝑔 with 

the adequate treatment, noticed �̂�(· |𝑔), up to time 𝜏. More precisely, among patients of the 

strata 𝑔, let 𝑡1,𝑔 < ⋯ < 𝑡𝑞,𝑔 < ⋯ < 𝑡𝑝,𝑔 be the different event time, 𝑑𝑞,𝑔 the number of subjects 

experiencing the event at time 𝑡𝑞,𝑔 and 𝑅𝑞,𝑔 the number of at-risk patients at the same time. 

Corresponding to the average survival time when patients are followed up to 𝜏, the RMST can 

therefore be written as: 

𝐸(min(𝑇, 𝜏) |𝑔) = ∫ 𝑆(𝑡|𝑔)
𝜏

0

𝑑𝑡  

 

= ∑ (𝑡𝑚,𝑔 − 𝑡𝑚−1,𝑔)

𝑚:𝑡𝑚,𝑔≤𝜏

× �̂�(𝑡𝑚,𝑔|𝑔) 

= ∑ [(𝑡𝑚,𝑔 − 𝑡𝑚−1,𝑔) × ∏ (1 −
𝑑𝑞,𝑔

𝑅𝑞,𝑔
)

𝑞:𝑡𝑞,𝑔≤𝑡𝑚,𝑔

]

𝑚:𝑡𝑚,𝑔≤𝜏
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Depending on the study design, the RMST may be directly estimated in each strata 𝑔. For instance, 

in a clinical trial, the two treatments are observed: 𝐸(min(𝑇, 𝜏) |𝑋 > 𝜅) is then estimated in 

patients receiving treatment A, i.e. E(min(T, τ) |𝑋 > 𝜅, 𝑍 = 𝐴 ),  while 𝐸(min(𝑇, 𝜏) |𝑋 ≤ 𝜅) is 

estimated in patients receiving treatment B, E(min(T, τ) |𝑋 ≤ 𝜅, 𝑍 = 𝐵). However, in some other 

cases, specific assumptions have to be formulated. For instance, from an observational cohort in 

which only treatment B is observed, 𝐸(min(𝑇, 𝜏) |𝑋 > 𝜅) cannot be directly estimated since 

treatment A is not observed. In this situation, we have to assume a relative increase (Δ) in the 

RMST of patients treated by A compared to B, i.e. 𝐸(min(𝑇, 𝜏) |𝑋 > 𝜅) = min(𝐸(min(𝑇, 𝜏) |𝑋 >

𝜅, 𝑍 = 𝐵) × (1 + Δ); 𝜏). 

The 95% confidence interval (CI) of the optimal threshold 𝜅∗ can be estimated by using non-

parametric bootstrap resampling (28). From the observational data, 2000 independent bootstrap 

samples are generated and the expected utility function is maximized in order to estimate an 

optimal threshold for each sample. The corresponding 2.5th and the 97.5th percentiles represent 

the 95% CI. All analyses were performed using the 3.0.2. version of the R software (29). This 

method has been implemented in the package ROCt available at www.divat.fr. 

 

Simulation study 

Design 

Data were simulated according a 1:1 randomized clinical trial design. For each subject 𝑖 (𝑖 =

1, … ,1000), the prognostic marker 𝑋𝑖 was obtained from a Gaussian distribution truncated 

between 20 and 600 of mean 140 and standard deviation 55. The binary variable 𝑍𝑖  related to the 

treatment A (𝑍 = 1) or B (𝑍 = 0) was simulated according to a Bernouilli distribution with 

http://www.divat.fr/
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probability at 0.5. The time-to-censoring 𝐶𝑖 was generated from a Weibull distribution in order to 

obtain around 10% of censoring at 6 years. The time-to-event 𝑇𝑖 was simulated from a 

proportional hazard model: 𝜆0(𝑡𝑖) 𝑒𝑥𝑝(𝛽𝑋𝑋𝑖 + 𝛽𝑍𝑍𝑖 + 𝛽𝑋𝑍𝑋𝑖𝑍𝑖), with a Weibull distribution for 

the baseline risk 𝜆0(𝑡). Weibull parameters were chosen in order to have roughly a 30% survival 

probability at 6 years of follow-up. The prognostic marker 𝑋𝑖 was assumed to be a risk factor 

with 𝛽𝑋 = 0.002.  

We considered different scenarios for which we simulated 1000 samples of patients. More 

precisely, we investigated three treatment effects 𝛽𝑍 = (0, −0.5, −1.25) and three interaction 

levels with the marker 𝛽𝑋𝑍 = (0, −0.004, −0.008). Moreover, different impacts on QoL were 

investigated: a similar utility between the two treatments (𝑢𝐴,0 = 𝑢𝐵,0 = 0.7), a 15% decrease 

due to treatment A compared to B (𝑢𝐴,0 = 0.6; 𝑢𝐵,0 = 0.7), a 30% decrease due to treatment A 

compared to B (𝑢𝐴,0 = 0.5; 𝑢𝐵,0 = 0.7). We considered the death as the event of interest, we 

therefore have 𝑢𝐴,1 = 𝑢𝐵,1 = 0. The prognostic time τ was fixed at 6 years. 

We compared three estimators: our proposed approach based on the expected utility 

maximization, the Youden index, and the profile likelihood maximization of a Cox model including 

the treatment, the marker and the corresponding interaction. 

 

Results 

Simulation results of the different scenarios are presented in Table 3. The two purely statistical 

approaches approximately estimated a threshold round the value 140, i.e. the mean of prognostic 

marker. As expected, the Youden index and the profile likelihood maximization lead to thresholds 
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insensitive to the assumptions made on the utilities. It may result in unacceptable stratified 

medical decision making. For instance, when considering a higher efficacy of treatment A 

compared to treatment B (𝛽𝑍 = −1.25) with no interaction with the marker (𝛽𝑋𝑍 = 0) and 

similar utilities (𝑢𝐴,0 = 𝑢𝐵,0 = 0.7), the Youden index led to a threshold at 142.91 and the profile 

likelihood maximization at 141.88. It leads to recommend treatment B for about one half of the 

population, a nonsense regarding such an obvious balance benefit/risk in favour of treatment A. 

In this situation, maximizing the time-dependent expected utility leads to a threshold at 25.92 for 

which more than 99% of patients would receive treatment A. This threshold increased to 91.61 

when utility for treatment A is 0.6 and utility for treatment B is 0.7, corresponding to treat 20% 

of patients with treatment A. In contrast, when side effects due to treatment A were too strong 

compared to treatment B (𝑢𝐴,0 = 0.5; 𝑢𝐵,0 = 0.7), the threshold was 281.49, corresponding 

maintain all patients with treatment B.  

When the interaction coefficient is negative, the effect of treatment A increases with the marker 

and should lead to recommend treatment A to more patients. This trend was observed from our 

QALYs-based expected utility maximization. For example, for a 15% utility decrease (𝑢𝐴,0 =

0.6; 𝑢𝐵,0 = 0.7) and an intermediate treatment effect (𝛽𝑍 = −0.5), the threshold was 126.48 

for a 𝛽𝑋𝑍 = −0.004 and 85.57 for a 𝛽𝑋𝑍 = −0.008. In contrast, purely statistical approaches were 

not sensitive. 

Considering obvious balances benefit/risk, such as the better efficacy of treatment A without 

more side effects compared to treatment B, or the similar efficacy of treatment A but with more 

side effects compared to the treatment B. In these situation, our proposed approach give 



13 
 

standard errors (SE) lower than the ones obtained from purely statistical approaches. In contrast, 

when the balances benefit/risk require an arbitration, SE obtained from our approach are higher 

than the SE obtained from purely statistical approaches. Therefore, it appears that the SE 

obtained from our approach better reflects the uncertainty which surround the therapeutic 

decision, while variability from purely statistical approaches will mainly depend on the sample 

size. 

 

Applications 

Patients with chronic liver cirrhosis 

In an randomized clinical trial studying the efficacy of prednisone (treatment A, n=226) to increase 

the survival of patients with chronic liver cirrhosis (24), no significant difference was reported 

compared to patients receiving placebo (treatment B, n=220). Nevertheless, an interaction with 

the initial prothrombin level, an essential blood clotting glycoprotein, suggested the better 

efficacy of prednisone in patients with a high prothrombin level (30). Patients with a poorer liver 

function, i.e. a low prothrombin level, did not benefit from prednisone as their liver were unable 

to metabolize the high steroid dose, and therefore may be steroid-poisoned. For the purpose of 

illustration, we aimed to reanalyze the data of this historic clinical trial to define the prothrombin 

threshold above which patients may receive prednisone, by taking into account that prednisone 

is a glucocorticosteroid that may be beneficial to liver function (31) whilst causing side effects 

such as osteopenia, diabetes mellitus, elevation of arterial blood pressure, psychiatric disorders, 

glaucoma or serious infections (32). We chose the prognostic time 𝜏 at 8 years, as the maximal 
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follow-up time with sufficient at-risk patients for inference. More precisely, 36 prednisone-

treated patients and 32 placebo-treated patients were still at risk.  

The patient survival probabilities at 8 years were 37% (95% CI from 30% to 45%) for the 

prednisone-treated patients and 28% (95% CI from 22% to 36%) for the placebo-treated patients. 

The median prothrombin level was 68% (range from 12% to 134%). The area under the ROC curve 

for a prognostic up to 8 years (Figure 1) was 0.59 (95% CI from 0.51 to 0.66) reflecting moderate 

prognostic capacities of prothrombin measurement.  

Utilities of the various health states were defined according to the mean Euroqol EQ-5D values 

published in a systematic review of health-state utilities in liver disease performed by Mc Lernon 

et al. (33). The EQ-5D is a widely used five-item health-related quality of life descriptive system 

that provides utility scores for 243 possible health states estimated by applying the time-trade off 

method over samples of the general population (34,35). The assessed utility score was 0.75 for 

patients with compensated cirrhosis. We used this value for patients receiving the placebo, i.e. 

𝑢𝐵,0 = 0.75. Compared to placebo, we may reasonably assume that the impact of prednisone on 

the QoL ranges between a 5% decrease (𝑢𝐴,0 = 0.95 × 𝑢𝐵,0 = 0.71) and a 10% decrease (𝑢𝐴,0 =

0.90 × 𝑢𝐵,0 = 0.67). Because the treatment allocation was performed independently of the 

prothrombin level, the RMSTs used in the equation (3) can be estimated assuming no confounding 

factors. 

The results are presented in Table 1. With a 5% utility decrease due to prednisone, the optimal 

prothrombin threshold was estimated at 89% (95% CI from 16% to 91%). The corresponding 

expected utility was 3.54 years in perfect health (QALYs). In comparison, this mean value should 

have been 3.41 QALYs by treating all the patients with prednisone and 3.32 QALYs by treating all 
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the patients with placebo. In others words, for 100 patients treated by prednisone if their 

prothrombin level is higher than 89% and by placebo otherwise, the expected gain was 13 years 

in perfect health (100 × (3.54 − 3.41)) compared to treating the 100 patients by prednisone. 

Similarly, the expected gain of the stratified medical decision for a prothrombin at 89% was 22 

years in perfect health (100 × (3.54 − 3.32)) compared to treating the 100 patients by placebo.  

As also indicated in the Table 1, one can note that stratifying the medical decision at 89% results 

in a comparable RMST than treating systematically by prednisone: 4.80 versus 4.81 years, 

respectively. Similarly, the difference of RMST when all the patients received the placebo is small: 

4.80 versus 4.42 years. That illustrates the importance to not only consider the decision in terms 

of efficacy, which may not be so pertinent than using QALYs. Twenty-two percent of patients had 

a prothrombin higher than 89%. In this subgroup and for patients followed up to 8 years, we 

estimated at 1.7 years the mean increase of time-to-death attributable to prednisone (versus 

placebo). This was equivalent to a 1 year survival gain in perfect health. In patients with a 

prothrombin level lower than 89%, the placebo resulted in a similar RMST compared to 

prednisone. Nevertheless, this equivalent RMST corresponded to an increase of 0.17 QALY due to 

the side effects of prednisone. One can note that the results were similar with a 10% decrease in 

the utility due to prednisone treatment. The prothrombin threshold is still estimated at 89% (95% 

CI from 36% to 99%). Additionally, by exploring others prognostic times 𝜏 from 3 years to 8 years, 

the optimal threshold appeared stable, ranging from 87% to 89%. 

From purely statistical approaches, we retained different thresholds (Table 1 and Figure 1). Using 

the Youden index for instance, the retained threshold of the prognostic marker was 59% (95% CI 

from 43% to 92%), corresponding to 62% of patients that should be treated by prednisone in a 
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future stratified medical decision making situation. The corresponding expected utility was 3.42 

QALYs for a 5% utility decrease. In other words, for 100 patients treated by prednisone if their 

prothrombin level is higher than 59% and by placebo otherwise, the expected loss was 12 years 

in perfect health (100 × (3.42 − 3.54)) compared to the same decision rules with the threshold 

at 89% we previously reported by using our proposed approach. By a profile likelihood 

maximization of a Cox model including the treatment, the prothrombin level (1 if the level is 

higher than 𝜅 and 0 otherwise) and the corresponding interaction, we estimated a prothrombin 

threshold at 54% (95% CI from 36 % to 90%): 72% of patients that should be treated by 

prednisone. The corresponding expected utility was 3.37 QALYs for a 5% utility decrease, which 

represents an expected loss for 100 patients equals to 17 years in perfect health (100 × (3.37 −

3.54)) compared to the same decision rules with the threshold at 89%.  

 

Kidney transplant recipients 

Obtained from the observational DIVAT cohort, the KTFS (Kidney Transplantation Failure Score) 

is a score calculated at one year post-transplantation and composed of 8 clinical parameters 

aiming to predict returns to dialysis within the 8 years post-transplantation (25). The authors 

proposed a threshold at 4.17 by maximizing both the time-dependent sensitivity and specificity 

(36), a method close to the Youden index maximization. A randomized clinical trial is currently in 

progress in order to determine whether the efficiency of the transplantation could be improved 

by adapting the recipient follow-up, in particular with a higher frequency of visits for patients 

stratified at high-risk, i.e. with KTFS higher than 4.17 (37). 
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We reanalyzed the training sample used in the initial paper (25) with the same prognostic time 𝜏 

at 8 years. In this cohort, all patients received standard care in terms of visit frequency (treatment 

B). We wondered whether some patients could benefit from a more intensive follow-up 

(treatment A) regarding their higher risk of return to dialysis, even if one can also expect a 

decrease of recipients’ QoL due to repeated in-hospital visits with negative consequences such as 

anxiety, depression and distress that have been documented in some diseases (38). This sample 

was composed of 2169 kidney transplant patients, 182 had returned to dialysis at the end of the 

follow-up. The graft survival probabilities at 4 and 8 years post-transplantation were respectively 

95% (95% CI from 93% to 96%) and 85% (95% CI from 83% to 88%). The median KTFS was equal 

to 3.73 (range from 1.23 to 15.33). Prognostic capacities at 8 years appeared good with an area 

under the ROC curve (Figure 2) estimated at 0.78 (95% CI from 0.73 to 0.80).  

The mean EQ-5D utility score for a functional kidney transplant was estimated at 0.81 in a meta-

analysis by Liem et al. (39). We found only one study reporting the utility after a return in dialysis 

(40), which was estimated at 65% of the utility of having a functional transplant. More formally, 

we have: 𝑢𝐵,0 = 0.81 and 𝑢𝐴,1 = 𝑢𝐵,1 = 0.65 × 𝑢𝐵,0 = 0.53. We defined several expected QoL 

decreases related to a higher frequency of visits compared to standard follow-up: i) 10% (𝑢𝐴,0 =

0.90 × 𝑢𝐵,0 = 0.73), ii) 5% (𝑢𝐴,0 = 0.95 ×  𝑢𝐵,0 = 0.77) and iii) 1% (𝑢𝐴,0 = 0.99 × 𝑢𝐵,0 = 0.80). 

We found no published data supporting the gain in RMST related to the follow-up frequency 

increase, we therefore hypothesized two possible scenarios: a 5% and a 10% RMST increase 

compared to standard follow-up. Note that the gain was assumed identical whatever the KTFS 

threshold.  
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The results are presented in Table 2. For a 10% decrease in the utility of a transplanted patient, 

the maximization of the time-dependent expected utility led to maintaining all patients on a 

standard follow-up regardless the RMST gain (𝜅∗ = 15.33, the maximum observed value of KTFS). 

This means that the expected gain of RMST was insufficient to outweigh the consequences due 

to the increased follow-up frequency in terms of QoL. The corresponding mean RMST and the 

expected utility were respectively 7.54 years and 6.35 QALYs. Similarly, with a 5% decrease in the 

utility of a transplanted patient and a 10% RMST increase, the optimal threshold was estimated 

at 9.34 (95% CI from 7.45 to 15.33) with only 1% of patients having a higher KTFS. Only a very 

small (but unrealistic) 1% decrease in the utility due to a higher visit frequency could lead to 

intermediate optimal thresholds. The corresponding mean RMST and the expected utility were 

respectively 7.95 years and 6.43 QALYs. In addition, we also explored optimal threshold 

estimation for different prognostic times 𝜏 from 2 years to 8 years post-transplantation. Our 

conclusions were similar: only a 1% utility decrease allows to estimate discriminating thresholds 

(data not shown). Note that using the Youden index, the threshold was 4.07 (95% CI from 4.05 to 

4.43) (Figure 2), close to the threshold 4.17 initially proposed by Foucher et al. (25), leading to 

68% of patients with a higher KTFS. But the Youden index does not lead to the threshold that best 

represent the patients’ preferences. For instance, assuming a 10% utility decrease and a 5% RMST 

increase, for 100 kidney recipients for which a stratified medical decision is made given a KTFS 

threshold at 4.07, the expected loss was 19 years in perfect health (100 × (6.16 − 6.35)) 

compared to propose systematically the standard follow-up. 
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Discussion 

The use of prognostic markers for the development of stratified medicine is conditioned upon the 

determination of clinically relevant thresholds allowing to discriminate patients according to 

whether they could benefit or not from a treatment. In agreement with recent commentaries on 

personalized medicine (6), we believe that the clinical utility of such prognostic markers should 

be evaluated in a patient-centered framework (41), taking into consideration the ultimate 

objective of biomedical studies: improving patient well-being.  

We proposed a threshold estimator by maximizing a time-dependent QALYs-based expected 

utility function. This approach has several interesting features. Firstly, it takes into account both 

a marker’s prognostic capacities in the presence of censored data and individual preferences over 

health outcomes. Secondly, our proposal may prove simple and directly applicable to various 

medical contexts, as illustrated by the applications we provided. It avoids having to directly assess 

patients’ preferences, which is often considered a difficult and costly task (42), since QALYs can 

be estimated from indirect information about patient preferences, available in the literature for 

a wide variety of health states. Thirdly, as showed in the applications as well as in the simulation 

study, the maximization of the proposed time-dependent expected utility function lead to 

estimating thresholds that are potentially different from those estimated using purely statistical 

methods, which questions their clinical relevance. Lastly, unlike statistical approaches, our 

method allows to take into account the consequences of therapeutic uncertainty regarding the 

possible outcomes of a stratified medicine program.  

Subtil et al. (9) recalled that expected utility function for stratified decision making are related to 

decision curves developed by Vickers et al. (42,43) and initially proposed to compare predictive 
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models. Decision Curves Analysis (DCA) does not directly compare to our approach since it does 

not aim at determining an optimal threshold for the marker. DCA does not require explicitly 

patients’ preferences elicitation since it assumes that physicians have knowledge of threshold 

probability of a disease at which a patient would opt for treatment instead of doing nothing. This 

threshold probability is associated to the ratio of net benefit of treating a diseased patient to net 

cost of treating a non-diseased one. In this spirit, Foucher et al. (44) asked physicians for their 

estimation of the probability threshold for an intensive follow-up program of renal transplant 

patients. However, physicians may find it difficult to assess this relative weight and their 

assessments may not be in accordance with patients’ preferences (45,46). By contrast, our 

approach need neither to assume a prior knowledge of patients’ preferences (patient’s threshold 

probability) nor to ask physicians about these preferences but uses a well-established and widely 

used measure of health outcomes.  

Besides, the two applications highlight that high prognostic capacities of a marker, summarized 

for instance through a high area under the ROC curve, is not sufficient to demonstrate its clinical 

utility for patient-centered stratified medicine. Actually, the KTFS appeared useless at driving the 

frequency of recipient follow-up, although the corresponding AUC at 0.78 (95% CI from 0.73 to 

0.80) can be considered as elevated. Conversely, in the chronic liver cirrhosis application, the ROC 

curve related to the prothrombin level leads to a moderate AUC at 0.59 (95% CI from 0.51 to 0.66) 

for a prognostic at 8 years. Nevertheless, a stratified medical program based on the prothrombin 

threshold may increase patient well-being. Note that the interaction between the marker of 

interest and the treatment appears as important as the prognostic capacities of the marker and 

may influenced the threshold estimation. 
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Our proposal has nevertheless some limitations that are worth mentioning. First, it has been 

argued that regret minimization offers a more accurate description of physicians’ behavior than 

expected utility (47,48). However, we are concerned here by prescriptive medical decision making 

and expected utility maximization is still thought of as the best theory to recommend optimal 

decisions (49). Secondly, implementing our approach requires making assumptions about the 

potential consequences of stratified medicine. In some ways, this is similar to the exercise made 

in randomized controlled trial planning to estimate a sample size. Interestingly, Royston et al. 

recently proposed the use of the difference in RMST to design and analyze clinical trials (50). The 

anticipation of potential future health outcomes is intrinsic to the exercise of stratified medicine. 

Thirdly, our time-dependent expected utility (equation (3)) does not discount future QALYs, in 

contrast to the general formulation (equation (1)). In a normative perspective the choice of the 

discount rate and the legitimacy of discounting future health effects are controversial (32). Adding 

a discount factor would be straightforward and would not change the central message of the 

paper.  Finally, when the two treatments are observed, we did not develop the issue related to 

potential confounders. Based on the recent development we published on adjusted survival 

curves (51), we are currently developing a confounder-adjusted time-dependent expected utility. 

To conclude, we have proposed a decision analytic method to determine optimal thresholds of 

prognostic markers based on the maximization of a time-dependent expected utility function, 

allowing to overcome the limitation of purely statistical approaches. The package ROCt in R has 

been updated to make this methodology simple for users and available for future applications. 

Applying such a patient-centered methodology may improve future transfer of novel prognostic 

scoring systems or markers in clinical practice. 
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Figure 1: Receiver-Operating Characteristic (ROC) curves for 8-year predictions to evaluate the 

prognostic capacity of the prothrombin marker among patients with chronic liver cirrhosis 

(n=446). 
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Figure 2: Receiver-Operating Characteristic (ROC) curves for 8-year predictions to evaluate the 

prognostic capacity of the KTFS among kidney transplant recipients (n=2169). 
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Table 1: Results of the application on patients suffering chronic liver cirrhosis for scenarios with 

5% and 10% utility decrease due to prednisone treatment compared to placebo. 

 

  

Utility 
decrease 

Threshold 𝜅∗ 
Percentage 

with 𝑋 >  𝜅∗ 

RMST change 
(years) over 
misclassified 

treated patients 

QALY change 
(years) over 
misclassified 

treated patients 

Mean RMST 
(in years) 

Expected utility 
(in QALYs) 

𝑋 >  𝜅∗ 𝑋 ≤  𝜅∗ 𝑋 >  𝜅∗ 𝑋 ≤  𝜅∗ 

5% 

Maximum: 134 0% - - - - 4.42 3.32 

QALYs-based 
expected utility : 89 

[16-91]1 

22% 1.67 -0.01 0.99 0.17 4.80 3.54 

Youden index : 59 

[43-92]1 
62% 0.53 -0.23 0.18 -002 4.74 3.42 

Profile likelihood 
maximisation : 54 

[36-92]1 

72% 0.36 -0.47 0.06 -0.21 4.69 3.37 

Minimum : 12 100% - - - - 4.81 3.41 

10% 

Maximum: 134 0% - - - - 4.42 3.32 

QALYs-based 
expected utility : 89 

[13-99]1 

22% 1.67 -0.01 0.74 0.34 4.80 3.48 

Youden index : 59 

[43-92]1 
62% 0.53 -0.23 -0.04 0.13 4.74 3.29 

Profile likelihood 
maximisation : 54 

[36-92]1 

72% 0.36 -0.47 -0.16 -0.07 4.69 3.21 

Minimum : 12 100% - - - - 4.81 3.22 

1 CI95% calculated from 2000 bootstrap samples   
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Table 2: Results of the application on kidney transplant recipients for scenarios with 1%, 5% and 

10% utility decrease due to prednisone treatment associated with 5% or 10% RMST increase due 

to a higher consultation frequency.  

 

 

 

 Utility 
decrease  

RMST 
increase 

Threshold 𝜅∗ 

[Bootstrap 95% CI]1 

Percentage 
with 𝑋 >  𝜅∗  

RMST change 
(years) over 

observed 
patients 

QALY change 
(years) over  

observed 
patients 

Mean RMST 
(in years) 

Expected 
utility (in 
QALYs) 

𝑋 >  𝜅∗ 𝑋 ≤  𝜅∗ 

10% 

10% 
15.33 

[10.85-15.33] 
0% - - 7.54 6.35 

5% 
15.33 

[11.59-15.33] 
0% - - 7.54 6.35 

5% 

10% 
9.34 

[7.45-15.33] 
1% 0.39 -0.06 7.54 6.35 

5% 
10.31 

[8.36-15.33] 
1% 0.18 -0.10 7.56 6.35 

1% 

10% 
3.57 

[2.96-3.80] 
57% 0.73 0.14 7.95 6.43 

5% 
1.23 

[1.23-2.03] 
100% 0.38 0.04 7.91 6.39 

10% 
10% 

Youden index : 4.07 

[4.05-4.43] 
68% 

0.70 -0.43 7.80 6.19 

5% 0.35 -0.50 7.67 6.16 

5% 
10% 0.70 -0.12 7.80 6.30 

5% 0.35 -0.20 7.67 6.27 

1% 
10% 0.70 0.13 7.80 6.40 

5% 0.35 0.04 7.67 6.36 

1 CI95% calculated from 2000 bootstrap samples   
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Table 3: Results of the simulation study performed on 1000 samples of 1000 patients.  

   𝑢𝐴 = 𝑢𝐵 = 0.7 
𝑢𝐴 = 0.6 

𝑢𝐵 = 0.7 

𝑢𝐴 = 0.5 

𝑢𝐵 = 0.7 

Interaction 
between 

marker and 
treatment 

𝛽𝑋𝑍 

Treatment 
effect 𝛽𝑍 

Estimator 
Mean of 

estimated 
𝜅 

SE 
Mean of 

estimated 
𝜅 

SE 
Mean of 

estimated 
𝜅 

SE 

0 

0 

QALYs-based expected utility 144.10 75.56 282.13 34.07 304.15 27.31 

Youden index 141.67 25.06 141.67 25.06 141.67 25.06 

Profile likelihood maximization 137.35 36.10 137.35 36.10 137.35 36.10 

-0.5 

QALYs-based expected utility 36.71 18.10 243.88 45.73 297.61 29.92 

Youden index 142.39 25.99 142.39 25.99 142.39 25.99 

Profile likelihood maximization 137.78 36.79 137.78 36.79 137.78 36.79 

-1.25 

QALYs-based expected utility 25.92 7.76 91.61 45.58 281.49 34.32 

Youden index 142.91 28.06 142.91 28.06 142.91 28.06 

Profile likelihood maximization 141.88 38.97 141.88 38.97 141.88 38.97 

-0.004 

-0.5 

QALYs-based expected utility 31.49 12.51 126.48 39.31 276.78 34.54 

Youden index 141.11 33.98 141.11 33.98 141.11 33.98 

Profile likelihood maximization 145.61 43.40 145.61 43.40 145.61 43.40 

-1.25 

QALYs-based expected utility 25.36 7.11 62.67 30.32 264.40 36.90 

Youden index 142.69 33.30 142.69 33.30 142.69 33.30 

Profile likelihood maximization 144.19 45.17 144.19 45.17 144.19 45.17 

-0.008 

-0.5 

QALYs-based expected utility 29.18 10.19 85.57 31.53 260.56 36.86 

Youden index 141.04 34.53 141.04 34.53 141.04 34.53 

Profile likelihood maximization 141.12 38.93 141.12 38.93 141.12 38.93 

-1.25 

QALYs-based expected utility 24.89 6.37 52.59 24.44 252.98 38.37 

Youden index 144.02 34.31 144.02 34.31 144.02 34.31 

Profile likelihood maximization 140.93 43.13 140.93 43.13 140.93 43.13 
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Appendix   

The expected utility 𝜓𝜏(𝜅), as defined by the equation (1), may be developed as follows by 

considering the number of QALYs (equation (2)): 

𝜓𝜏(𝜅) = ∑ ∑ 𝑃(𝑔, 𝐷(𝜏) = 𝑗)𝑄(𝜏|𝑔, 𝐷(𝜏) = 𝑗)

𝑗∈{0,1}𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

 = ∑ {𝑃(𝑔, 𝐷(𝜏) = 0)𝑄(𝜏|𝑔, 𝐷(𝜏) = 0) + 𝑃(𝑔, 𝐷(𝜏) = 1)𝑄(𝜏|𝑔, 𝐷(𝜏) = 1)}

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

= ∑ {𝑃(𝑔, 𝐷(𝜏)

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

= 0) [∫ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 0)𝑃(𝐷(𝑡) = 0|𝑔, 𝐷(𝜏) = 0)
𝜏

0

+ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 1)𝑃(𝐷(𝑡) = 1|𝑔, 𝐷(𝜏) = 0)𝑑𝑡] 

+𝑃(𝑔, 𝐷(𝜏) = 1) [∫ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 0)𝑃(𝐷(𝑡) = 0|𝑔, 𝐷(𝜏) = 1)
𝜏

0

+ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 1)𝑃(𝐷(𝑡) = 1|𝑔, 𝐷(𝜏) = 1)𝑑𝑡]} 

= ∑ {𝑃(𝑔, 𝐷(𝜏) = 0) [∫ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 0)𝑑𝑡
𝜏

0

]

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

+𝑃(𝑔, 𝐷(𝜏) = 1) [∫ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 0)𝑃(𝐷(𝑡) = 0|𝑔, 𝐷(𝜏) = 1)
𝜏

0

+ 𝑢(𝑡|𝑔, 𝐷(𝑡) = 1)𝑃(𝐷(𝑡) = 1|𝑔, 𝐷(𝜏) = 1)𝑑𝑡]} 
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We assumed a constant utility over time, i.e. 𝑢(𝑡|𝑔, 𝐷(𝑡) = 𝑙) = 𝑢𝑔,𝑙 for all 𝑡. Thus, the 

expected utility 𝜓𝜏(𝜅) can be written as: 

𝜓𝜏(𝜅) 
= ∑ {𝑃(𝑔, 𝐷(𝜏) = 0) [∫ 𝑢𝑔,0𝑑𝑡

𝜏

0

]

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

+𝑃(𝑔, 𝐷(𝜏)

= 1) [∫ 𝑢𝑔,0𝑃(𝐷(𝑡) = 0|𝑔, 𝐷(𝜏) = 1) + 𝑢𝑔,1𝑃(𝐷(𝑡) = 1|𝑔, 𝐷(𝜏) = 1)𝑑𝑡
𝜏

0

]} 

 
= ∑ {∫ 𝑢𝑔,0(𝑃(𝑔, 𝐷(𝜏) = 0) + 𝑃(𝑔, 𝐷(𝜏) = 1)𝑃(𝐷(𝑡) = 0|𝑔, 𝐷(𝜏) = 1))𝑑𝑡

𝜏

0𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

+ ∫ 𝑢𝑔,1𝑃(𝑔, 𝐷(𝜏) = 1)𝑃(𝐷(𝑡) = 1|𝑔, 𝐷(𝜏) = 1)𝑑𝑡
𝜏

0

} 

= ∑ {𝑢𝑔,0 ∫ (𝑃(𝑔, 𝐷(𝜏) = 0) + 𝑃(𝐷(𝑡) = 0, 𝑔, 𝐷(𝜏) = 1))𝑑𝑡
𝜏

0𝑔∈{𝑋>𝜅,𝑋≤𝜅}

+ 𝑢𝑔,1 ∫ 𝑃(𝐷(𝑡) = 1, 𝑔, 𝐷(𝜏) = 1)𝑑𝑡
𝜏

0

} 

= ∑ {𝑢𝑔,0 ∫ 𝑃(𝐷(𝑡) = 0, 𝑔)𝑑𝑡
𝜏

0

+ 𝑢𝑔,1 ∫ 𝑃(𝐷(𝑡) = 1, 𝑔)𝑑𝑡
𝜏

0

}

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

= ∑ {𝑃(𝑔) × [𝑢𝑔,0 × ∫ 𝑃(𝐷(𝑡) = 0|𝑔)
𝜏

0

𝑑𝑡 + 𝑢𝑔,1 × ∫ 𝑃(𝐷(𝑡) = 1|𝑔)
𝜏

0

𝑑𝑡]}

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

= ∑ {𝑃(𝑔) × [𝑢𝑔,0 × ∫ 𝑆(𝑡|𝑔)
𝜏

0

𝑑𝑡 + 𝑢𝑔,1 × ∫ 1 − 𝑆(𝑡|𝑔)
𝜏

0

𝑑𝑡]}

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

= ∑ {𝑃(𝑔) × [𝑢𝑔,0 × 𝐸(min(𝑇, 𝜏) |𝑔) + 𝑢𝑔,1 × (𝜏 − 𝐸(min(𝑇, 𝜏) |𝑔))]}

𝑔∈{𝑋>𝜅,𝑋≤𝜅}

 

 


