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Abstract

In order to respond reliably to specific features of their environment, sensory neurons need

to integrate multiple incoming noisy signals. Crucially, they also need to compete for the

interpretation of those signals with other neurons representing similar features. The form

that this competition should take depends critically on the noise corrupting these signals. In

this study we show that for the type of noise commonly observed in sensory systems,

whose variance scales with the mean signal, sensory neurons should selectively divide their

input signals by their predictions, suppressing ambiguous cues while amplifying others. Any

change in the stimulus context alters which inputs are suppressed, leading to a deep

dynamic reshaping of neural receptive fields going far beyond simple surround suppression.

Paradoxically, these highly variable receptive fields go alongside and are in fact required for

an invariant representation of external sensory features. In addition to offering a normative

account of context-dependent changes in sensory responses, perceptual inference in the

presence of signal-dependent noise accounts for ubiquitous features of sensory neurons

such as divisive normalization, gain control and contrast dependent temporal dynamics.

Author summary

Perception involves using incoming sensory signals to infer which objects or features are

present in the surroundings. To do this, sensory systems must perform two basic opera-

tions: (i) combination of noisy sensory cues, and (ii) competition between different per-

cepts. Here we show that the optimal form of competition depends on how sensory

signals are corrupted by noise. Moreover, for the type of noise commonly observed in sen-

sory systems, whose variance scales with the signal amplitude, competition should occur

between different sensory cues before they are combined. Implemented neurally, this

results in a highly flexible representation, in which neural receptive fields change dynami-

cally depending on the stimulus context. Further we show that competition should take

the form of divisive inhibition from the surround, accounting for why divisive
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normalisation, gain control and contrast dependent temporal dynamics appear so ubiqui-

tous in sensory areas.

Introduction

A fundamental goal of any perceptual system is to infer the state of the environment from

received sensory signals. These signals are generally noisy and unreliable, so that the same sig-

nal can correspond to many different states of the world. For example, the sound of a bell may

mean my mobile phone is ringing or there is someone at the door. Contextual cues, such as a

vibration in my pocket, can resolve such ambiguities, in this case suggesting that my phone is

ringing, and not the doorbell (Fig 1a). Such competition between different explanations of

Fig 1. ‘Explaining away’ in sensory perception. (a) The presumed goal of perception is to infer the state of the external world from

received sensory cues. Here, two possible events (someone arriving at the door, and a telephone call) can give rise to three sensory cues (a

knocking sound, ringing sound, or vibration). The ringing sound is ambiguous: it can come from either the door bell or the phone. Cues, such

as a vibrating telephone, can resolve this ambiguity: here, increasing the chances that the phone is ringing, while decreasing the chances that

there is someone at the door. Such competition between different explanations for received sensory cues is called ‘explaining away’. (b-c) In

sensory neural circuits, explaining away results in suppression from non-preferred stimuli in the surround. Its effects vary dramatically,

depending on whether inhibition acts (b) globally on the neural responses or (c) selectively, on certain neural inputs. (d-e) Hypothetical

response of ‘door’ and ‘phone’ selective neurons, in response to different combinations of sensory cues. The qualitative effects of explaining

away depend on whether it (d) globally suppresses the response of one or other detector, or (e) selectively suppresses the influence of

certain cues.

https://doi.org/10.1371/journal.pcbi.1005582.g001
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sensory signals is called ‘explaining away’ and is a basic requirement for a perceptual system to

discriminate between similar features. Neurally, it implies that groups of neurons which

encode different (but overlapping) stimuli (such as the ‘telephone’ and ‘door’) should actively

compete, via recurrent suppression [1].

The way this competition is implemented has a crucial impact on how neural responses are

modulated by stimulus context.

In many ‘classical’ models of early visual processing, visual neurons are assumed to inte-

grate inputs from within their receptive field, before undergoing divisive or subtractive inhibi-

tion from the surround (Fig 1b) [2]. In this case, non-preferred stimuli produce a general

suppression of neural responses, but no changes to neural RF and/or tuning curve shapes

(only a general suppression). Returning to our previous example, this would predict a general

suppression of ‘door selective’ neurons when the phone was vibrating. In other words, the

phone vibration would equally suppress the response of these neurons to ringing and knocking

sounds (Fig 1d).

However, explaining away as described above requires a markedly different form of compe-

tition, with inhibition from non-preferred stimuli targeting specific neural inputs, before they

are combined (Fig 1c). In this case, suppression would cause neurons to become unresponsive

to certain inputs, but not others, resulting in a qualitative modulation of their receptive field

(RF) shapes and/or tuning curves. For example, if the phone is vibrating, suggesting someone

is calling, then the ringing sound (now explained by another cause) should not activate the

door selective neurons. However, this should not affect how these neurons respond to other

cues, such as a knocking sound (since the phone might be ringing whilst someone is also

knocking on the door; Fig 1e).

Here, we show that the specific form that this input-specific suppression should take

depends on how incoming signals are corrupted by noise. In turn, this will deeply affect the

predicted dynamics and integrative properties of sensory neurons. For example, if the noise

was Gaussian with a fixed variance independent of the signal strength, a sensory neuron

should subtract from the other neuron’s inputs its prediction of these inputs. Because this

operation is linear, the overall effect is equivalent to a global subtractive suppression by the sur-

round (i.e. the sum of all subtractive inhibitions from other neurons), bringing us back to ‘clas-

sical’ models of sensory processing (Fig 1b).

However, sensory receptor responses and neural firing rates generally exhibit signal-
dependent noise, whose variance scales proportionally with their amplitude [3–5]. We show

that in this case, competition should take the specific form of divisive suppression, where each
individual neural input is divided by its prediction from other neurons. Since this occurs before
these inputs are combined (Fig 1c), it is in no way equivalent to a global surround suppression

(either divisive or subtractive). Instead, the receptive fields of individual neurons are dynami-

cally and selectively reshaped by the surround.

Divisive inhibition of each input by the surround accounts for experimental evidence show-

ing that neural receptive fields are constantly reshaped by the spatiotemporal context of pre-

sented stimuli [6–9]. Importantly, these contextual changes in neural RFs and tuning curves

do not imply variations in the stimulus features encoded by each neuron. Rather, variable

receptive fields are required in order to maintain an invariant neural code that can be read-out

consistently by downstream neurons.

Note that this framework is normative and does not depend on how it is implemented at

the neuronal level. However, in order to provide more specific predictions, we show that opti-

mal estimation can be performed within a plausible neural circuit in which excitatory neurons

undergo divisive inhibition from local interneurons. Neurons in that circuit exhibit general

properties of sensory neural responses including response saturation, gain modulation by
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background stimuli and contrast-dependent temporal dynamics. For a subclass of ‘simple’ sti-

muli, the responses of excitatory neurons in this network can be phenomenologically

described using the canonical divisive normalization model of Heeger et al. [2, 10–14]. This

accounts for why divisive normalization appears so ubiquitously across different sensory areas

and organisms. It further suggests avenues for how this canonical model may need to be

extended to account for the richness and selectivity of surround suppression and contextual

modulation in general.

Results

Competition & integration in perceptual inference

To interact effectively with our environment, we need to know ‘what’s there’. Thus, perception

can be viewed as an inference problem, in which sensory systems infer which combination of

stimuli is the most likely, given the noisy signals they receive. Perceptual inference requires

basic assumptions about how sensory signals are generated by external stimuli, which can be

expressed mathematically using a ‘generative model’. Here, we consider a simple generative

model, in which multiple positive stimulus features, x = (x1, x2, . . ., xn), combine linearly to

activate a population of neural inputs, s = (s1, s2, . . ., sn). The mean expected response of the jth

input to a stimulus, x, is:

hsj xð Þi ¼
X

k

wjkxk þ w0; ð1Þ

where wjk describes how strongly the jth input is activated by the kth stimulus feature and w0

describes its mean activity when all stimulus features are zero. The presumed goal of sensory

processing is to estimate stimulus features, x̂, from the received input, s.
Consider a population of neurons that encodes stimulus features, x̂ ¼ ðx̂1; x̂2; . . . ; x̂nÞ, via

their firing rates, r ðx̂Þ. While the stimulus features cannot usually be estimated directly by

pooling the neural inputs, we can set up dynamics of the network so that the encoded features,

x̂, converge to the most likely solution. This will be satisfied if the encoded stimulus features

vary in time according to,

@x̂ i
@t
¼ Z

@ logp sjx̂ð Þ

@x̂ i
; ð2Þ

where p ðsjx̂Þ describes the probability that a stimulus, x̂, would give rise to neural inputs s,
and η is a free parameter determining how quickly the estimates vary in time. These dynamics

ensure that the encoded stimulus features, x̂, converge on a local maximum of p ðsjx̂Þ [15, 16].

The neural dynamics required to implement the Eq 2 will depend critically on the input sta-

tistics, described by p ðsjx̂Þ. In particular, different assumptions about the reliability of the neu-

ral inputs will lead to qualitatively very different predictions.

A common experimental observation is that sensory neurons exhibit signal-dependent
noise, in which the trial-by-trial variance in single neuron firing rates scales proportionally

with their mean firing rate [4, 5]. When neural inputs are corrupted by independent Poisson
noise (a paradigmatic signal-dependent distribution), Eq 2 becomes:

@x̂ i
@t
¼ Z

X

j

wji
sj

P
k wjkx̂k þ w0

� 1

 !

: ð3Þ

Thus, the estimate of each stimulus feature varies in time according to a linear sum of ‘frac-

tional prediction errors’,
sj

hsj ðx̂Þi
� 1, equal to the ratio between the received input and the mean
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predicted input (given the current estimate), minus one (see section 1 in S1 Text for deriva-

tion). If the received input is equal to the predicted input, then the fractional prediction error

is zero, and the estimate does not change. However, if the received input is larger or smaller

than the predicted input, then the estimate is updated to reduce the error.

Importantly, dividing the received input by the predicted input is necessary to perform

optimal estimation given many different types of signal-dependent noise—as long as the vari-

ance in each input is proportional to its mean (section 1 in S1 Text). Poisson input is but one

example of such signal-dependent noise statistics. Furthermore, while noise correlations will

introduce further terms to Eq 3, these additional terms also require dividing the received input

by the predicted input (section 2 in S1 Text).

We note that ‘noise’ in our model refers to trial-by-trial variability of neural inputs, s, given

fixed external stimulus features, x. In contrast, the dynamics of the model network, described

by Eq 3, are deterministic (see Discussion).

In Eq 3, each input (sj) is divided by a different factor ðhsj ðx̂ÞiÞ, before being combined

with other inputs. Thus, any neural network implementation of Eq 3 will need to normalize

different inputs separately, before they are combined (Fig 1c).

For comparison, let us consider an artificial example with the input signal corrupted by

constant Gaussian noise, whose magnitude is independent of the signal strength. In such a sce-

nario, the estimate of each feature would evolve as a function of the absolute (rather than the

‘fractional’) prediction errors, sj � ŝj. Eq 3 could then be separated into two linear terms: a

feedforward input and a subtractive lateral inhibition term (see Methods). Moreover, steady

neural responses could be described as applying a ‘center-surround’ feedforward receptive

field to the stimulus. Thus, if sensory noise was constant Gaussian and not signal dependent,

competition between encoded features would result in a global ‘inhibitory surround’, separable

from a static feed-forward ‘center’ (Fig 1b).

In the rest of the paper we refer to the network assuming constant Gaussian noise as the

‘subtractive model’, as opposed to the model assuming signal-dependent noise, which we call

the ‘divisive’ model.

Reshaping of sensory receptive fields and tuning curves by the context

To relate the estimation algorithm described in the previous section to neural data, we make

the basic assumption that each neuron encodes a single stimulus feature, with firing rate pro-

portional to the estimated feature (ri / x̂ i; see later for neural implementation).

The divisive model described by Eq 3 requires selective inhibition of specific neural inputs,

before they are combined. Thus, if certain inputs are predicted by the stimulus context, they

will be inhibited, and the neuron will become differentially less responsive to them. As a result,

a neuron’s stimulus selectivity will be reshaped by the context. In contrast, in the subtractive

model (see Methods), inhibition acts globally to alter the magnitude of neural responses, but

not their stimulus selectivity.

To illustrate this, we first consider a simple generative model, where each stimulus feature

is assumed to activate two neighbouring sensory inputs. This results in the network shown in

Fig 2a, where each neuron receives two equal strength inputs from neighbouring locations in

the previous layer. With both subtractive and divisive models, each neuron responds equally

strongly to both its inputs (‘no context’ condition; Fig 2b), while being suppressed by contex-

tual ‘surround’ stimuli, that do not elicit a response when presented alone. However, in the

divisive model inhibition selectively targets certain inputs, so that a surround stimulus only

suppresses a neuron’s response to nearby inputs (that are ‘predicted’ by the surround). As a

result, neurons respond less strongly to stimuli presented in parts of their receptive field that

Sensory noise predicts divisive reshaping of receptive fields
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are near the surround (‘adjoint context’; Fig 2b), than to stimuli presented far from the sur-

round (‘disjoint context’). In contrast, the subtractive model predicts the same degree of sur-

round suppression, regardless of the location of stimuli within the cell’s receptive field.

A further and related consequence of input-targeted inhibition, is that neural tuning curves

are reshaped by contextual stimulation. To illustrate this effect, we considered a generative

model in which stimulus features activate nearby sensory inputs, arranged along a single

dimension (e.g. representing the orientation of a presented visual stimulus). In the resulting

network, neurons responded with bell shaped tuning curves to presented stimuli (Fig 2c, top

left panel; see Methods). An overlapping ‘mask’ stimulus, that did not activate a given neuron

Fig 2. Input-targeted inhibition alters neural selectivity. (a) Schematic of neural network, with input-targeted feedback. (b) Steady-state

response responses of recorded neuron, predicted by model with input-targeted divisive feedback, or subtractive inhibition. There are three

stimulus conditions: (i) ‘no context’ condition, with a single stimulus within the cell’s RF; (ii) ‘adjoint context’ condition, with a second stimulus in the

surround, near to the stimulus within the RF and (iii) ‘disjoint context’ condition, with a second stimulus in the surround, far from the stimulus within

the RF. (c) Contextual shifts in neural tuning curves. Each neuron encodes a stimulus features (e.g. orientation, or motion direction) with a given

preferred value. The mean response of a single neuron is plotted against the presented stimulus value, in the absence (black) or presence of an

overlapping mask, to the right or left of the neuron’s preferred stimulus (blue and red). (c, lower panel) As above, but for an LN model. (d) Simulation

of network in which cells encode stimuli in a circular region of space. (top panel) Estimated RF, with random sparse stimulus. (lower panel)

Estimated RF in presence of vertical mask. The measured RF is elongated in the horizontal direction. (e) As for panel d, but for an LN model.

https://doi.org/10.1371/journal.pcbi.1005582.g002

Sensory noise predicts divisive reshaping of receptive fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005582 June 16, 2017 6 / 26

https://doi.org/10.1371/journal.pcbi.1005582.g002
https://doi.org/10.1371/journal.pcbi.1005582


when presented alone, selectively inhibits inputs to the neuron that overlap with the mask. As

a result, the neuron’s tuning curve was reduced in magnitude and shifted away from the mask

(Fig 2c, top left panel). This effect is qualitatively similar to contextual shifts in neural tuning

curves observed experimentally in cat primary visual cortex (Fig 2c, top right panel) [6].

As a control, we considered a ‘linear-nonlinear’ (LN) model, with responses obtained by a

filter followed by a threshold non-linearity: ri = f(∑j vjisj). Linear weights were fitted to match,

as closely as possible, the responses of the divisive model across all three stimulus conditions

(see Methods). As shown in Fig 2c (lower panel) an LN model was unable to produce the shifts

in neural tuning curves observed with the divisive model.

In addition to shifting neural tuning curves, input-targeted divisive inhibition also results

in dynamic reshaping of neural receptive fields (RFs). To illustrate this, we extended our previ-

ous generative model, to consider the case where presented stimulus features activate sensory

inputs, arranged along two spatial dimensions. Neural RFs, estimated using reverse correlation

with random sparse stimuli (see Methods), exhibited a ‘centre-surround’ structure, with a cen-

tral excitatory region surrounded by an inhibitory region (Fig 2d, above). However, simulta-

neously presenting an overlapping grating stimulus dramatically reshaped the estimated RFs,

which were elongated orthogonal to the grating (Fig 2d, below). No such contextual shifts in

RFs was observed with an LN model (Fig 2e).

Previously, Meister et al. showed that presenting an orientated grating stimulus over a

period of several seconds leads to a reshaping of retinal ganglion cell RFs, qualitatively similar

to what we observed in our model [17]. (However, note that to properly model the effects of

temporal adaption would require extending our work to consider optimal estimation of tem-

porally dynamic stimuli) [18].

In early visual areas, where neural RFs are localized within a single region of space,

our model predicts simple shifts in neural RFs, as shown in Fig 2d. However, in other

sensory modalities (e.g. olfaction/audition), where neural RFs have a more complex

structure, contextual reshaping of neural RFs could be more complex [19, 20]. To illustrate

this, we considered a generative model in which individual sensory features (e.g. presented

odors) produce a distributed and multi-modal activation of sensory receptors, as shown in

Fig 3a (upper panels; see Methods). We measured the RFs of neurons in response to a random

sparse stimulus plus a contextual mask that activated a small subset of nearby receptors. The

contextual mask led to complex changes in neural RFs that could not be characterised as a sim-

ple repulsive shift away from the context (Fig 3a). Moreover, the observed reshaping of neural

RFs was highly non-local: contextual activation of nearby receptors affected distant regions of

a cell’s RF.

To explain intuitively this contextual reshaping of neural RFs, we considered a toy

generative model consisting of three stimulus features, which produce patterns of sensory acti-

vation resembling the letters ‘V’ ‘A’ and ‘I’, respectively (Fig 3b). We measured the RF of the

neuron encoding the letter ‘I’ in response to random sparse stimuli, and in the presence of an

overlapping contextual stimulus (Fig 3c). Because of the simplicity of this network, we can

understand how the contextual stimuli reshape the neuron’s RF. For example, the first contex-

tual stimulus strongly activated the neuron encoding the letter ‘A’ (Fig 3c, top left) leading to

targeted inhibition of neural inputs that overlap with the letter ‘A’. As a result, the recorded

neuron became insensitive to these inputs, and they did not form part of its recorded RF

(Fig 3c, top right). An analogous effect occurred with a contextual stimulus designed to acti-

vate the neuron encoding the letter ‘V’ (Fig 3c, lower panels). Note that this contextual reshap-

ing of neural RFs occurred because inhibition was targeted on a subset of neural inputs

(Fig 1c); it would not occur in a network with global inhibition, that acted directly on neural

responses (Fig 1b).

Sensory noise predicts divisive reshaping of receptive fields
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Adaptive receptive fields alongside invariant neural code

The observation that neurons have highly variable RFs could lead one to conclude that the

neural code also varies with stimulus context. However, note that each neuron always encodes

a fixed stimulus feature, as defined by the generative weights wij. As a result, the neural

responses can always be read-out in the same way by the downstream neurons, by interpreting

the activity of each neuron as indicating the presence of its preferred feature. For this same rea-

son, our model can be extended to hierarchical frameworks where each layer predicts the

responses of the layer below (section 3 in S1 Text). The resulting neural code is thus ‘fixed’ (as

defined by the features wij), and the neural representation is ‘invariant’ (in the sense that sen-

sory neurons always represent the same objects, regardless of context). However, in order to

maintain this fixed code, neurons in the network need to have variable RFs, that adapt depend-

ing on the stimulus context (Fig 4a).

To illustrate this idea, we return to our earlier simulation with bell-shaped tuning curves,

shown in Fig 2c. This time, however, we plotted neural tuning curves in the presence of three

different ‘contexts’ (Fig 4b; each context was a ‘mask’, constructed from a random combina-

tion of ‘background’ stimulus features; these masks were constantly added to the inputs used

Fig 3. (a) Contextual reshaping of multimodal RFs. Each neuron encodes a stimulus feature (e.g. an odor)

that is assumed to elicit a multimodal pattern of sensory activity (upper panels). Neural RFs are measured in

the presence of a mask stimulus that activates a small number of nearby receptors. For the three cells shown,

recorded RFs undergo complex, non-local changes in the presence of the contextual mask. (b) Reshaping of

neural RFs in a simplified network of three neurons, which encode the letters ‘V’, ‘I’, and ‘A’. (c) The RF of a

neuron encoding the letter ‘I’ is significantly altered by a contextual stimulus designed to selectively activate

one of the other two neurons in the network.

https://doi.org/10.1371/journal.pcbi.1005582.g003
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to measure the tuning curve and estimate the read-out weights). As before, the tuning curves

were shifted by the context (Fig 4c, left panel; tuning curves are rescaled and shifted to have

the same magnitude and zero mean). Next, we trained ‘readout filters’ to linearly reconstruct

the inputs from the neural responses (see Methods). As could be expected, these were similar

to the actual read-out weights wij. In particular, and in sharp contrast with the tuning curves,

which were shifted by context, readout filters were almost completely invariant to changes in

context (Fig 4c, right panel).

For comparison, we repeated the same procedure with an LN model (Fig 4d). As seen previ-

ously, in this model neural tuning curves are not shifted by context (only their gain is changed,

which does not appear on the re-scaled tuning curves). However, readout filters were altered

by context, meaning that in each context, downstream neurons would have to integrate

responses from the network differently (depending to the context) in order to reconstruct the

stimulus.

As shown in Fig 4e and 4f, the same qualitative effects were observed for the tuning curves

and readout filters across the entire neural population, in addition to the example cell shown

in Fig 4c and 4d.

Finally, we quantified the reconstruction error across all three conditions (normalized rms

error), obtained with the ‘correct’ readout filter (i.e. trained on responses obtained with the

same mask; Fig 4g, blue bars), compared with a ‘mismatched’ decoder (trained in different

conditions; Fig 4g, red bars). In the input-targeted inhibition model, similar performance was

achieved in either case, as the readout filter did not change significantly across conditions. In

Fig 4. (a) Schematic illustrating how contextual shifts in neural tuning curves required for a context-invariant neural code. (b) Contextual mask

presented in each condition. (c, left panel) Tuning curve of a model neuron in the presence of the three different stimulus masks (tuning curves are

rescaled, to have zero mean and unitary standard-deviation). (right panel) Inferred readout filters for the same neuron in each condition. (d) As for

panel c, but for an LN model. (e) Mean squared difference in (rescaled) tuning curves across the different stimulus contexts. Each cell corresponds

to one data point. The example cell, plotted in panels c-d is shown in red. (f) Identical analysis to panel e, but applied to the linear readout filters. (g)

Normalized reconstruction error using ‘correct’ readout filters for each stimulus condition (blue bars), or ‘mismatched’ decoders, inferred in other

stimulus conditions.

https://doi.org/10.1371/journal.pcbi.1005582.g004
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contrast, in the LN model performance was drastically reduced when using a mismatched

decoder, learned in a different context.

Our results suggest that, rather than trying to describe neural responses using a static

‘encoder model’ (e.g. tuning curves or RFs) one may be able to fit a simpler context-invariant

‘decoder model’, describing how to reconstruct the stimulus from neural responses. Experi-

mental support for this is provided by Marre et al. who were able recover a highly accurate

reconstruction of a moving bar stimulus from a simple linear readout of retinal ganglion cell

responses [21]. In contrast, neural responses in their experiment were poorly described by an

LN model.

The advantages of input-targeted divisive inhibition are also seen when discriminating

between similar features, presented together. To demonstrate this, we returned to the earlier

model with multimodal distributed features, shown in Fig 3a. We considered neural responses

to combinations of three similar stimulus features, encoded by different neurons in the net-

work (Fig 5a): feature 1 presented alone, and alongside feature 2 or 3 (Fig 5b). Fig 5c plots the

response of five feature-selective neurons. Despite the fact that the three features activated

highly overlapping sets of receptors, neural responses were highly specific, with only neurons

that encode the presented odors responding on a given trial. In contrast, an LN model could

not achieve this degree of specificity (Fig 5d).

Neural implementation

The estimation algorithm described by Eq 3 could be implemented in more than one way

within a neural network. The most direct implementation would be for each neuron to encode

a single stimulus feature, with firing rate proportional to the estimated feature (ri / x̂ i). In this

case each neuron needs to selectively inhibit the input synapses of neurons encoding different

Fig 5. Input-targeted inhibition allows for discrimination of similar stimulus features. (a) Three different stimulus features

(e.g. odors) encoded by different neurons in the network. The plots show the overlapping pattern of receptor activation elicited by

each feature. (b) Three different combinations of features presented to the network. (c) Neural responses to each feature

combination, obtained from the input-targeted divisive inhibition model. The response of each neuron is highly specific to its

encoded feature, even with multiple overlapping features presented simultaneously. (d) As for panel c, but with an LN model,

trained to match the responses of the divisive input model, to a range of different presented feature combinations. In contrast to

before, neurons respond non-specifically when similar featue are presented together.

https://doi.org/10.1371/journal.pcbi.1005582.g005
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features, as shown in Fig 6a. The response of each neuron evolves in time according to:

@ri
@t
/
X

j

~wji rð Þ sj � const ð4Þ

where ~wjiðrÞ is an ‘effective input weight’, obtained by dividing the feed-forward weight, wji, by

the responses of other neurons in the network, according to: ~wji rð Þ ¼ wjiP
k
wjkrkþw0

. As a result,

feedback connections alter the effective weighting of each input, thereby altering neural stimu-

lus selectivity.

There are two reasons why neural dynamics described by Eq 4 may not be biologically plau-

sible, at least in the cortex. First, the network violates Dale’s law: neurons are required to send

both excitatory projection to higher sensory layers and inhibitory feedback to other neurons in

the same area. Second, it requires a highly selective form of feedback, targeted on individual

synapses (Fig 6a).

To overcome these issues, we propose an alternative network that consists of two distinct

neural populations: excitatory neurons that encode the ratio between the received and

Fig 6. Proposed neural implementation. (a) Example network in which each stimulus feature is encoded by an excitatory neuron

that projects to higher level areas. Divisive inhibition acts on individual synaptic inputs. (b) Example network with two neural

populations: excitatory neurons encode the ratio between the received and predicted input,
sj

hsj ðx̂̂Þi
, while inhibitory neurons encode

estimated stimulus features, x̂ i. (c) Example of a hierarchical network. The fractional prediction error encoded in a given layer is

integrated by downstream neurons, which encode more complex stimulus features. (d) Divisive gain control. (left) A ‘test’ stimulus

activates the input to the recorded neuron (indicated with arrow), while a mask stimulus activates the input to the other neuron.

Response of recorded neuron is plotted versus amplitude of the test stimulus. Each plot corresponds to a different amplitude mask

(see legend).

https://doi.org/10.1371/journal.pcbi.1005582.g006
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predicted input,
sj

hsj ðx̂Þi
, and inhibitory neurons that encode stimulus features, x̂ i (Fig 6b). Each

excitatory neuron receives feed-forward input from one receptor type, and lateral inhibition

from interneurons. Its response evolves in time as:

a
drexcj
dt
¼ sj � w0 þ

X

k

wjkr
inh
k

 !

rexcj : ð5Þ

where a is a constant that (along with the magnitude of inhibition) determines the of timescale

of excitatory responses.

Inhibition acts multiplicatively on the leak term in the firing rate dynamics (see Discussion

for biophysical mechanism). These dynamics ensure that in the steady state the response of

each excitatory neuron is equal to the ratio of its excitatory and inhibitory input:

rexcj ¼
sj

w0þ
P

k
wjkrinhk

. (Note that, unlike classical subtractive predictive coding, in the case where

sensory inputs are perfectly predicted by the network, excitatory responses are equal to unity,

not zero).

Inhibitory neurons receive lateral input from nearby excitatory neurons. Their responses

evolve in time according to:

b
drinhi
dt
¼
X

j

wji r
exc
j � 1

� �
: ð6Þ

where b determines the rate that inhibitory neurons integrate their input. In the steady state

(i.e. when rj ¼
sj

w0þ
P

k
wjkrinhk

), this equation is equivalent to the optimal estimation algorithm

shown in Eq 3. Thus, in the steady state, the response of each inhibitory neuron will be propor-

tional to an encoded feature, rinhi ¼ x̂
opt
i . Both excitatory and inhibitory neural responses are

constrained to be positive.

Stimulus features can be recovered by neurons in higher-level areas by temporally integrat-

ing the responses of the excitatory neurons (Fig 6c and section 3 in S1 Text). Thus, the network

implements a form of ‘predictive coding’, in which the fractional prediction errors, rather than

the estimated stimulus features themselves, are communicated to higher level sensory areas

[1]. In the following sections we will explore the implications of input-targeted divisive inhibi-

tion in the context of this ‘predictive coding’ network.

Sensory gain control

We investigated how divisive inhibition modulates the steady state responses of excitatory neu-

rons, which encode the fractional prediction error. We first considered a very simple model

composed of only two sensory receptors, both activated by a single stimulus feature. The corre-

sponding neural network consists of two excitatory neurons that connect with equal strength

to one inhibitory neuron (Fig 6d, left).

In this network, the sustained response of each excitatory neuron is simply equal to its feed-

forward input, divided by the total rectified input to the network (section 4 in S1 Text):

rexc
1
/

s1
max ðs1 þ s2;w0Þ

: ð7Þ

This equation bears strong similarity to the canonical divisive normalization equation, devel-

oped by Heeger et al. [10, 22]. Thus, our normative framework parsimoniously predicts the

nonlinearities seen in previous phenomenological models of divisive normalization.
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When the feed-forward input to neuron 1 is very weak (i.e. s1� s2), the denominator of

Eq 7 is constant, and the neuron’s responses increases linearly with input strength. When the

feed-forward input to neuron 1 is very strong (i.e. s1� s2), on the other hand, the numerator

and denominator of Eq 7 approach equality, and the neuron’s response saturates. Plotted on a

logarithmic scale, this gives rise to a sigmoidal input-response curve (Fig 6d) [2].

Lateral inhibition from a ‘mask’ stimulus that does not provide direct input to neuron 1 (i.e.

it activates s2 only), suppresses the neuron’s response [45]. When s1� w0, the effect of the

mask is to add an additional constant to the denominator of Eq 7, shifting the neuron’s input-

response curve to the right on a logarithmic scale (Fig 6d). Consequently, a stronger feed-

forward input is required to elicit the same neural response.

A mask stimulus that provides weak input to neuron 1 and strong input to neuron 2 (i.e. it

weakly activates s1, and strongly activates s2, as shown on Fig 6e) can both suppress or facilitate

the response of neuron 1, depending on the strength of the neuron’s feed-forward input [2].

When the feed-forward input to neuron 1 is very weak, the denominator of Eq 8 is constant

(due to rectification), and the neuron linearly sums its feed-forward inputs. As a result, its

response is facilitated by the mask (Fig 6e). When the feed-forward input to neuron 1 is strong,

the mask increases the size of the denominator, suppressing the neuron’s response (Fig 6e).

The results described above also apply to larger networks consisting of many excitatory and

inhibitory neurons. Indeed, for “simple” inputs that do not activate multiple overlapping fea-

ture detectors, the sustained response of each excitatory neuron is approximately equal to its

feed-forward input, divided by the summed input to nearby neurons (Section 4 in S1 Text):

rexci /
si

max ð
P

j wijsj;w0Þ
: ð8Þ

Thus, the classical normalization model [10], that was originally designed to provide a

phenomenological description of non-linearities in neural responses, emerges as a special case

of our proposed dynamics.

Temporal dynamics of neural responses

We next investigated the temporal dynamics of excitatory and inhibitory neural responses to a

constant stimulus in the simple, two neuron network described in the previous section (Fig 6d,

left panel). Following stimulus onset, the response of the activated excitatory neuron, encoding

the fractional error signal, exhibited a transient peak in activity followed by a decay (Fig 7a).

At the same time, the response of the inhibitory neuron, which encoded the sensory estimate,

increased continuously towards the steady state (Fig 7b). This qualitative behaviour is a general

property of predictive coding, and thus also occurred for the subtractive model, where excit-

atory neurons encoded the absolute (rather than the fractional) error (Fig 7c and 7d).

What distinguishes the subtractive and divisive models was the input-depencence of the

neural dynamics. For the divisive model, the timescale of excitatory neural responses decreased

with the sensory input, resulting in a shorter time to peak response with higher amplitude

inputs (Fig 7a). This is because the leak term in the excitatory neural dynamics (which imple-

ments divisive inhibition) is proportional to its inhibitory input Eq (5). Thus, the greater a

neuron’s inhibitory input, the quicker its response varies in time. In contrast, the temporal

dynamics of the subtractive model were input-invariant.

Recent experiments using voltage sensitive dye to measure V1 responses reported contrast-

dependent temporal dynamics, consistent with our model [23]. Similarly, Albrecht et al. [24]

observed that the time to peak firing rate response decreases with visual contrast. However,

Albrecht et al also reported that temporally shifting firing rate responses to compensate for
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contrast-dependent variations in onset latency resulted in temporal response profiles that were

approximately contrast invariant. This discrepancy between voltage data and firing rate data

could be accounted for by including a firing threshold into our model.

When put into the context of a larger, topographically organized sensory layer, the temporal

dynamics of the divisive model could parsimoniously account for the presence of ‘traveling

waves’ observed in the visual cortex, where a presented stimulus generates a wave of activity

that spreads gradually outwards from a single cortical location (Fig 8a) [25]. According to our

model, traveling waves will occur when the input generated by a stimulus varies in strength

with cortical location [26] (Fig 8b). Neurons that receive strongest feed-forward input will

respond quickest, followed by nearby neurons that receive weaker input. The resultant effect is

a damped traveling wave that spreads outwards from neurons most strongly activated by the

stimulus (Fig 8c). In contrast, with subtractive inhibition, the timecourse of neural responses

does not depend on their distance from the input (Fig 8d).

Discussion

Functional role of divisive inhibition

It has long been thought that divisive inhibition performs a kind of gain control, that keeps

neural firing rates within their available dynamic range [10, 27, 28]. Here we provide an alter-

native interpretation, that divisive inhibition occurs as a consequence of optimal cue combina-

tion given sensory noise. When the variance of each input depends on its mean, some signals

Fig 7. Predicted temporal response profile. (a, left) Temporal response profile of excitatory neuron, to a constant feed-forward

input of varying strength. (right) Instantaneous response of the excitatory neuron versus amplitude of feed-forward input. Each plot

corresponds to a fixed time after stimulus presentation (indicated by vertical dashed lines in left panel). (b) Same as (a), but for an

inhibitory model neuron. (c-d) Same as a-b, but for a model with subtractive, rather than divisive inhibition.

https://doi.org/10.1371/journal.pcbi.1005582.g007
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become more reliable than others. Divisive inhibition insures that each signal is weighted

appropriately, before these signals are combined by downstream neurons.

In that sense, our work places itself in the more general framework of optimal cue combina-

tion [29] where each cue should be weighted according to its reliability before being combined.

Human subjects are indeed able to perform such optimal cue combination [30, 31], and are

also able to implement explaining away, e.g. to resolve ambiguities by assigning inputs to their

most likely sources [32]. Our model proposes that optimal cue combination and explaining

away are already implemented at a microscopic level by sensory networks, through selective

divisive gain modulation of sensory neural responses.

In contrast to the gain-control hypothesis, our framework precisely specifies the form of

divisive inhibition required for optimal estimation, which should occur before individual

inputs are combined (Fig 1c). For simple stimuli, which activate only one feature detector at a

time, the predicted neural responses are consistent with the classical divisive normalization

model (Figs 6 and 7). However, for more complex stimuli, which activate multiple overlapping

feature detectors, input-targeted divisive inhibition results in dynamic changes in neural tun-

ing properties and receptive field shapes (Figs 2 and 3), not captured by the classical divisive

normalization model.

A prediction of our model is that sensory normalisation will vary with changes in neural

variability. Thus, future experimental tests of our work could investigate whether divisive nor-

malisation is altered as expected by stimulus-dependent modulations in neural Fano-factor

(see section 1.2 in S1 Text) and noise correlations (see section 2 in S1 Text) [33, 34].

Fig 8. Traveling waves in the visual cortex. (a) Schematic of topographic model network, in which each inhibitory neuron

connects with equal strength to two neighbouring excitatory neurons. The feed-forward input decreases with distance from the

centre. (b) Heat map of excitatory neural responses, normalized by peak amplitude. Each row shows the response of a neuron at a

specified distance from the centre. Filled and solid diamonds indicate at what time each neuron’s response is 70% of its maximum.

The right panel indicates the maximum response of each neuron. (c) Same as c, but with subtractive, rather than divisive inhibition.

https://doi.org/10.1371/journal.pcbi.1005582.g008
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Comparison with other functional accounts of divisive inhibition

Previously, Schwartz and Simoncelli showed that divisive normalisation can serve to remove

statistical redundancies between neural responses, leading to a more efficient code [35]. In a

later extension to this work, they showed that divisive normalisation can be interpreted as

implementing ‘explaining away’ of global stimulus features (e.g. global image contrast) so as to

permit optimal inference of local stimulus features (e.g local reflectance) [36].

While in both our model and that of Schwartz et al., divisive normalisation implements

explaining away, their underlying assumptions are very different. In Schwartz et al.’s model,

normalisation is predicted because of the assumed high-level structure of sensory signals, as

being produced by multiplying local and global stimulus features. In contrast, in our model,

divisive normalisation is predicted due to the biophysics of sensory signal transduction, which

leads to sensory signals being corrupted by signal-dependent (and not Gaussian) noise.

Schwartz & Simoncelli’s model also belongs to a broader class of normalisation models in

which divisive occurs after sensory inputs have been combined [2]. In contrast, our model pre-

dicts that divisive normalisation should act directly on the inputs, before combination. As we

showed (Fig 2), such pre-combination divisive inhibition leads to flexible RFs, which are

dynamically shifted by the stimulus context. In contrast, output-targetted divisive normalisa-

tion will only lead to such shifts in neural RFs when sensory inputs undergo an additional (e.g.

quadratic) non-linearity before normalisation.

Previously Beck et al. proposed a new role for divisive normalisation in performing a

probabilistic compuation known as ‘marginilisation’ [37, 38]. This computation is required

for many different tasks, in which one wants to infer a subset of ‘relevant’ stimulus features,

while disregarding (i.e. marginilising) other irrelevant features. At some level, this

explanation is related to Schwartz et al.’s work, where normalisation was assumed to factor out

(i.e. marginilise) global fluctuations in the sensory input, so as to allow inferences about local

features. However, Beck et al.’s model differs from both Schwartz et al. and our work, in that

marginilisation is predicted as a result of a particular type of probabilistic neural population

code.

In previous work, we proposed a model in which input-targeted divisive inhibition imple-

ments competition between different stimulus features. However, this model relied on a num-

ber of assumptions about sensory stimuli (e.g. that they were produced by binary stimulus

features that had Markov temporal dynamics), as well as assumptions about the spiking neural

code [18]. Here we show that input-targeted divisive inhibition emerges very generally, and

irrespective of additional assumptions about the neural code and signal dynamics, so long as

the sensory noise scales with the magnitude of the signal.

Recent experimental work suggested that in the ferret auditory cortex, neural responses

adapt to the stimulus statistics in such a way as to allow behaviourally relevant signals to be

extracted from background noise [39, 40]. Interestingly, Mesgarini et al. showed that their

results could be explained by top-down divisive feed-back. While the details of our model dif-

fer from that of Mesgarini et al. (e.g. they assumed that divisive inhibition acts after inputs are

combined) it gives a suggestion as to why top-down divisive feed-back could result in the

noise-invariant neural responses observed in their data.

Divisive versus subtractive predictive coding

Predictive coding implies that, rather than directly encoding sensory stimuli, feed-forward

neurons encode a prediction error that can be used to update the internal representation in

higher-level areas [1]. Here we show that, given signal-dependent sensory noise, this error sig-

nal should take a fractional form, implying divisive inhibition.

Sensory noise predicts divisive reshaping of receptive fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005582 June 16, 2017 16 / 26

https://doi.org/10.1371/journal.pcbi.1005582


Previously, Spratling et al. showed that a predictive coding network that minimizes frac-

tional prediction errors can account for a number of classical and extra-classical response

properties of neurons in visual area V1 [41]. We provide a normative interpretation of Spra-

tling’s model, as implementing optimal estimation of presented stimulus features given signal-

dependent noise. We find that, for a large family of distributions in which the variance in each

input is proportional to its mean (including, but not limited to Poisson noise), the prediction

errors take a fractional form, implying divisive predictive coding (see section 1 in S1 Text).

With the exception of Spratling’s work, previous predictive coding models have usually

assumed that sensory neurons encode the difference between their received and predicted

input [1, 42]. This type of code will be optimal only if the the variance in each sensory input is

constant, irrespective of its mean. Subtractive predictive coding results in qualitatively differ-

ent neural response properties, compared to divisive predictive coding. It predicts that: (i) the

time course of neural responses is independent of stimulus strength; (ii) neural responses vary

linearly with their feed-forward input, and thus, do not saturate; (iii) neural RFs are largely

invariant to changes in stimulus context (see section 4 in S1 Text). In summary, subtractive

predictive coding cannot account for many of the non-linear response properties observed in

sensory neurons, and that are explained by divisive predictive coding.

The sources of neural noise

Here, we show that the optimal form of neural gain control depends on how neural inputs are

corrupted by noise. Specifically, signal-dependent noise requires input-targeted divisive inhi-

bition, in contrast to gaussian noise, which requires global subtractive inhibition.

‘Noise’ here refers to the trial-by-trial variability of neural inputs, given a fixed stimulus.

Generally, multiple noise sources combine to produce neural variability, including external

noise sources (e.g. random fluctuations in light intensity), and internal noise sources (e.g.

spike failure). The model is agnostic to these details, as long as the trial-by-trial variability of

inputs to the network scales monotonically with their amplitude.

In contrast, the model network itself has deterministic dynamics: for a given input, the neu-

ral responses are always be the same. However, while this choice was made for simplicity,

related work on networks of spiking neurons shows how optimal estimation can be performed

in a network of neurons that exhibit Poisson-like spiking statistics [18, 43]. In these models,

internal noise fluctuations that alter the spike times of single neurons are compensated by

recurrent connections in the network, such that the read-out from the population response is

relatively stable.

Circuits and mechanisms underlying divisive inhibition

The effects presented here come about as a result of optimal estimation with signal-dependent

noise, and are thus largely independent of the specific neural mechanism that implements divi-

sive inhibition. For example, contextual reshaping of neural RFs (Figs 2 and 3) occurs because

‘explaining away’ takes place at the level of the inputs, before they have been combined, while

gain modulation of neural responses (Fig 6) is a property of the fractional prediction error.

Nonetheless, in order to make concrete predictions about sensory neural responses we pro-

posed a simple network architecture, in which excitatory neurons encode a fractional predic-

tion error, and receive lateral inhibition from local interneurons that encode individual

stimulus features (Fig 6b). However, note that there is more than one way to implement the

optimal estimation described by Eq 3. For example, divisive inhibition could be mediated via

top-down feed-back from higher-level areas [1], or via lateral inhibition of individual synaptic
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inputs [18] (Fig 6a). However, as they share the same normative structure to our model, these

different network architectures result in very similar predictions for the neural responses.

In our proposed network, excitatory neurons at the first level of processing each receive

input from one type of receptor, and divisive inhibition from lateral interneurons. This closely

matches the observed anatomy of both fly and mouse olfactory system, where mitral cells (or

2nd-order PNs in fly) receive feed-forward input from one type of olfactory receptor, and lat-

eral inhibitory feed-back that depends on the responses of many receptors [42, 44]. Further-

more, recent experiments have shown that in the fly, inhibition from lateral neurons is well

described by the exact same divisive formula as obtained with our model [45].

Recently, researchers have reported how various interneuron types play different roles in

sharpening and/or globally suppressing visual neural responses [46–49]. While generally, our

simplified model is not designed to address this level of detail, it is worth noting that when

implemented in a hierarchy (Fig 6c), interneurons at different levels of processing will have

qualitatively different effects on the tuning curves of excitatory neurons. Specifically, interneu-

rons in the previous layer to a recorded neuron, that target its inputs, will act to sharpen and

reshape the neuron’s selectivity, whereas interneurons in the same layer, that provide direct

lateral inhibition, will lead to a global suppression (but no sharpening) of its responses.

In our model, divisive inhibition is implemented via lateral feedback from inhibitory inter-

neurons, which multiplicatively increases the ‘leak’ term in the dynamics of the excitatory neu-

ral responses Eq (5). A potential candidate for this gain modulation is shunting inhibition [2]

(although see [50–52]). More generally however, current experiments suggest that there is not

one unique neural mechanism that implements divisive inhibition [22]. Rather a host of differ-

ent mechanisms, such as synaptic depression [53], ongoing network dynamics [54], and neu-

romodulatory feedback [55] may be responsible for divisive inhibition in different sensory

areas and species. This is consistent with our framework, which suggests that it is the computa-

tion performed by divisive inhibition, rather than its neural implementation, that is conserved

across sensory systems in order to optimally infer the state of the environment.

Predicted differences between excitatory and inhibitory responses

The proposed neural network predicts several qualitative differences between the responses of

excitatory neurons, which encode fractional prediction errors, and inhibitory neurons, which

encode stimulus features. These differences are: (i) long-range (i.e. between cortical regions)

signals are normalized, while short-range (i.e. within region) signals are not; (ii) inhibitory

neurons respond to more complex non-local features than excitatory neurons in the same area

(they are thus expected to exhibit wider, apparently less selective tuning curves, as indeed

observed experimentally [56]); (iii) inhibitory responses are less transient than excitatory neu-

ral responses.

Recent experiments, using optogenetic techniques, have shown that parvalbumin (PV)-

expressing inhibitory cells can have a divisive effect on excitatory responses to sensory stimuli.

Interestingly, PV cells appear to fulfil many qualitative criteria required by inhibitory cells in

our model, such as broad stimulus tuning, temporally sustained responses, and minimal con-

trast normalisation (relative to layer 2/3 excitatory neurons, to which they provide input) [48].

Future research will be required to quantify more precisely how the activity of PV cells com-

pares to the predictions of our model.

The role of feedback

Our model can easily be extended to consider sensory processing in a hierarchy, with neurons

at each layer of the network reconstructing stimulus features of increasing complexity based
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on the inputs they receive from the previous layer (see Fig 6c and section 3 in S1 Text). In this

case, optimal estimation also requires using high-level knowledge to constrain and shape the

low-level sensory representation. This can be easily incorporated into our framework, in the

form of top-down feedback. As well as carrying information about the stimulus features

encoded by higher-level areas, this top-down feed-back could also carry information about the

organism’s prior experience and task-demands. Future work could investigate whether such

top-down feedback is able to account for the experience-dependent and attention-dependent

shifts in neural tuning curves that are observed experimentally [57, 58].

In summary, our model suggests a highly dynamic system, in which neural RFs and tuning

curves are continuously reshaped by the spatiotemporal context of presented stimuli, as well as

the organism’s prior experience and task-demands. However, the neural code is context invari-

ant: neurons always represent the same external feature, and thus their response can be read

the same way by downstream neurons, regardless of the stimulus context.

Materials and methods

Subtractive model

In addition to the model described in the main text, we also considered an artificial example,

where the input signal is corrupted by constant Gaussian noise (whose magnitude is indepen-

dent of the signal strength). In this case, encoded features vary in time according to:

@x̂ i
@t
¼ Z

X

j

wji sj �
X

k

wjkx̂k þ w0

 !

ð9Þ

Thus, the estimate of each feature evolves in time according to a sum of ‘absolute prediction

errors’, sj � hsj ðx̂Þi, equal to the difference between received and predicted inputs.

Note that because of the linearity of this equation, the left hand-side can be rewritten as

the sum of a feed-forward input term ∑j wjisj and a lateral subtractive inhibition term

�
P

jk wjiwjkx̂k � w0. In the particular case of constant gaussian noise, lateral inhibition is thus

separable and can be seen as occurring “after combination” of these input signals. Similarly, in

the steady state, the estimated features can be obtained by a weighted linear sum of feed-for-

ward inputs: x̂ i ¼
P

j vjisj, with feed-forward weights vi directly related to the encoded features

wi (i.e. vi ¼ ðW
TWÞ� 1wi). In that interpretation, competition between encoded features adds a

subtractive component (an inhibitory surround) to a static feed-forward filter (Fig 1b).

Comparison between subtractive and divisive models

For the initial simulations shown in Figs 2–5, we sought to investigate the general implications

of divisive versus subtractive inhibition Eqs (3) and (9), irrespective of the specific neural

implementation. Although we assumed that neurons encode individual stimulus features, with

firing rate proportional to the encoded feature (ri / x̂ i), the qualitative results would also be

the same for a distributed code, in which each neurons encode a linear combination of stimu-

lus features, according to, ri /
P
qkix̂ i. Note that for the simulations used to generate Figs 2–5

the dimensions are essentially arbitrary, and thus all parameters are quoted in unit-less dimen-

sions. Encoded features were initialized at zero, and updated using Eq 3 for the divisive algo-

rithm, and Eq 9 for the subtractive algorithm. The update rate, η, was set to ensure smooth

dynamics, while the number of iterations, N, was chosen to allow the estimates to converge on

steady state values. The background rate, w0, was set to 0.01. In our framework, the generative

model describing how external stimulus features activate sensory receptors determines the
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network connectivity. Furthermore, in the case where each neuron encodes a separate stimulus

feature, there is a one-to-one correspondence between the structure of the generative model

(parameterized by w) and the feed-forward connectivity in the network. Specifically, the

parameter wji, that determines how strongly the ith feature activates the jth receptor, also deter-

mines the connection strength between the ith neuron and the jth receptor.

Comparison between input-targeted divisive inhibition and LN models

We compared the input-targetted divisive inhibition model to a linear-nonlinear (LN) model,

with responses obtained by linearly filtering the sensory inputs then applying a static non-

linearity: ri = f(∑j vjisj + v0). (Note that this is a simple generalisation of the subtractive model

where responses were strictly linear). For our simulations we used a threshold non-linearity,

while linear weights (vji) and offset (v0), were learned so as to best fit the responses obtained

with the input-targetted divisive model. Using a different non-linearity (e.g. exponential) had

no qualitative effect on the predicted contextual tuning curve changes. In addition, we also

considered a ‘global divisive-inhibition’ model (Section 5 in S1 Text).

Suppression by a contextual stimulus

For the simulation shown in Fig 2b there were 30 sensory receptors and 30 neurons. We

used a generative model in which each feature activates two neighbouring receptors

(i.e. wii = w(i+1)i = 40). Thus, each neuron received equal strength feed-forward inputs from

two neighbouring receptors (Fig 2a). We computed the steady-state response of the kth neuron

with both the subtractive or divisive algorithms, in three different stimulus conditions. In the

‘no-context’ condition, only one of the inputs to the recorded neuron was active, with firing

rate drawn from a Poisson distribution with mean 50 (i.e. hsk+1i = 50). For the ‘adjoint context’

condition, a neighbouring input that did not drive the recorded neuron was also active (with

amplitude hsk+2i = 20). Finally, for the ‘disjoint context’ condition, an input on the opposite

side of the recorded neuron’s receptive field was active (i.e. hsk−1i = 20). In each condition, we

averaged the neuron’s steady state response over 200 trials.

Contextual shifts in tuning curves

For the simulation shown in Fig 2c there were 30 sensory receptors and 30 neurons. We

assumed a generative model in which a stimulus moving in a given direction (indexed by ‘i’)
activates multiple neighbouring receptors, described mathematically via the circular basis

functions: wji ¼ wmaxe
4 cos 2p

30
j� ið Þð Þ� 1½ � (with wmax = 40). As before, this implies that each neuron

receives feed-forward inputs from multiple neighbouring inputs. We first looked at the steady

state response of a single neuron to a varying stimulus direction, i. The activation of the jth sen-

sory input was drawn from a Poisson distribution, with mean hsj (i)i = wji + w0. We next

looked at the response of the same neuron in the presence of a ‘mask’, which activated a single

receptor, shifted 3 receptors to the left or right of the neuron’s preferred input. The activation

of this receptor was held constant at 200. The input to all other receptors was the same as in

the previous control condition. The mask was chosen specifically so that it did not elicit any

response in the recorded neuron when presented alone.

Measurement of receptive fields

For the simulation shown in Fig 2d and 2e there were 400 neurons, and 900 sensory inputs

(arranged on a 30×30 grid in visual space). Each neuron encoded a circular ‘blob-like’ stimulus

feature. Specifically, columns of the matrixW specified the feature encoded by each neuron,
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with elements given by: wji ¼ wmaxe
� 1

2s2
w
ðxj � x0iÞ

2þðyj � y0iÞ
2½ �

. x0i and y0i specify the preferred

region of visual space for the ith neuron, distributed uniformly along the axis spanned by x and

y (0! 1). wmax, and σw determine the amplitude and width of the encoded features, and were

set to 40 and 0.1 respectively. We first performed a simulation with ‘random sparse’ stimuli.

Sensory inputs, sj, were either equal to 0 (with probability 0.95) or 100 (with probability 0.05).

Next, a vertical grating stimulus (in which each bar spanned 8 pixels), of magnitude 20, was

added to the random sparse stimulus (Fig 2d and 2e, bottom left). The phase (but not the ori-

entation) of the grating varied randomly on each trial. Thus, on the nth trial, the sensory input

was equal to, sn ¼ sngrating þ snnoise. In each case, neural receptive fields (RFs) were quantified

using reverse correlation: ŵ j ¼ Q� 1
ss q

j
rs, where (Qss)ij = hsisji and ðqrsÞ

j
i ¼ hsirji, and h�i denotes

an average over 104 stimulus presentations.

In Figs 3a and 5 we considered an ‘olfactory network’, with neurons were assumed to have

a distributed selectivity, spanning multiple receptor inputs. Mathematically, the network was

similar to the network described above. However, for the olfactory simulations, the feature

encoded by each neuron consisted of a sum of four ‘blobs’, distributed randomly across the

input space (see examples shown in upper panels of Fig 3a).

Neural receptive fields were estimated as before, in response to a random sparse stimulus

plus a contextual stimulus. For the plots shown in Fig 3a, the contextual stimulus consisted of

a single ‘blob’ (of magnitude 100, and width σcntxt = 0.1), that activated a set of nearby receptors

(see black and white panels in Fig 3a).

Finally, we illustrated the principles underlying reshaping of neural receptive field using a

simple network of only three neurons, each of which encoded a different letter of the alphabet

(‘A’, ‘I’, and ‘V’). Encoded features (comprised of 600 sensory inputs, arranged in a 20×30

grid), are shown in Fig 3b. As before, neural RFs were estimated using random sparse stimuli,

in addition to a contextual mask (shown in the left panels of Fig 3c).

Invariance of neural code

We next investigated how divisive inhibition enables the network to maintain an invariant

representation of encoded stimulus features.

The network used for these simulations was the same as the model with bell-shaped tuning

curves, shown in Fig 2c. We measured tuning curves in the same way as before, measuring the

mean firing rate of each neuron versus the stimulus orientation. However, in this case we mea-

sured tuning curves in the presence of three constant ‘masks’, constructed from different com-

binations of encoded features (Fig 4b), added to the varying stimulus.

In each stimulus condition, we estimated the linear filters required to reconstruct the stimu-

lus from the neural responses, using linear regression. Thus, readout filters were given by

U ¼ h�s�rTi h�r�rTi� 1
, where �s ¼ s � hsi and �r ¼ r � hri.

Fig 4d was constructed in the same way using the LN model (Fig 4e). The parameters of the

LN model were fitted to minimize the mean squared difference between the responses pre-

dicted by the LN model and the input-targeted inhibition model, across all three stimulus

conditions.

In Fig 5 we demonstrate how a model with input-targeted inhibition is able to discriminate

between similar overlapping stimulus features. To illustrate this, we returned to the ‘olfactory

network’ used to generate Fig 3a. We compared this input-targeted divisive inhibition model

to the output-targeted divisive inhibition model, described previously. Parameters of this

model were fitted to minimize the mean squared difference between the responses of the global

inhibition model and the input-targeted inhibition models. Stimuli used to fit the model
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parameters consisted of random linear combinations of the features encoded by the network,

corrupted by Poisson noise.

Neural network implementation

We proposed a neurally plausible implementation of the the estimation algorithm described in

Eq 3 (Fig 6b). This network consists of two populations of neurons: excitatory neurons with

dynamics described by Eq 5, and inhibitory neurons with dynamics described by Eq 6. Figs 7

and 8 were generated using discretized version of these equations. For these simulations, the

background input was set to w0 = 1. Parameters, a and b, determining the timescale of excita-

tion and inhibition were set to 0.08 and 40 respectively (see section 6 in S1 Text for the effect

of varying the excitatory and inhibitory timescales). Input spikes were always counted over a

time-window of T = 1s, so that the number of spikes fired by each input is equal to its firing

rate.

The network connectivity was entirely constrained by the generative model describing how

presented stimulus features activate the inputs to the network. That is, the parameter ‘wji’, that

describes how strongly the ith stimulus feature activates the jth receptor, also determined the

strength of the lateral connection between the jth excitatory neuron and the ith inhibitory

neuron.

Gain modulation

For the plots shown in Fig 6d and 6e we considered a minimal model with 1 encoded feature

and 2 sensory inputs. Within our framework, this corresponds to a network with 1 inhibitory

and 2 excitatory neurons (Fig 6d, left panel). The inhibitory neuron received equal strength

inputs from both excitatory neurons (w11 = w21 = 40). Steady-state excitatory responses could

be obtained directly from Eq 7. In Fig 6d, the input to each excitatory neuron was drawn from

a Poisson distribution with mean: hs1i = Itest and hs2i = Imask respectively. in Fig 6e, the ‘test’

and ‘mask’ stimulus activated both sensory inputs, so that: hs1i = Itest + 0.1Imask and hs2i = Imask
+ 0.1Itest.

Temporal response dynamics

For the plots shown in Fig 7 we again considered the minimal network with 1 excitatory and 2

inhibitory neurons (connection strengths were same as for Fig 6). On each trial, the input to

the recorded excitatory neuron was drawn from a Poisson distribution, with mean varying

between 0 & 200Hz. The other neuron received zero input.

For the plots shown in Fig 8, we considered a ‘topographic’ network of 30 excitatory and 30

inhibitory neurons. Each inhibitory neuron connected with equal strength to 2 neighbouring

excitatory neurons (wii = wi(i+1) = 40). The input to the jth excitatory neuron was drawn from a

Poisson distribution with mean, hsji ¼ 150e�
jj� kj

2 , where k denotes the neuron that receives

maximal input.

Supporting information

S1 Text. Supplementary appendix. Includes derivation of optimal estimation algorithm, gen-

eralisation to non-poisson noise statistics, correlated input noise, and implementation of in a

multi-layer neural network.

(PDF)
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S1 Fig. Comparison between simulation and analytic results. The network consists of 30

inhibitory and 30 excitatory neurons. Connection strengths between inhibitory and excitatory

neurons are chosen from a uniform distribution between 0 and 40. In the ‘no mask’ condition

one of the sensory inputs varies between 10−1Hz and 104Hz, while all the other inputs are set

to the background input of w0 = 1Hz. In the ‘mask condition’ all sensory inputs are activated

at 10Hz. Solid lines plot the steady-state response of the maximally driven excitatory neuron,

in the ‘no mask’ and ‘mask’ conditions. Dashed curves show the response of the neuron,

approximated using eq 31 in S1 Text.

(TIF)

S2 Fig. Predictions of global divisive inhibition. The figure is the same as Fig 2c and 2d and

in the main text, but with a global divisive inhibition (with responses described by eq 34 in S1

Text).

(TIF)

S3 Fig. Effect of varying exicitatory/inhibitory timescales. The figure is the same to Fig 7a

and 7b in the main text, with the exception that the timescale of inhibition has been increased

by a factor of 40, relative to excitation.

(TIF)
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