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Paris-Saclay, Saclay, France, 4 Psychology department, Stanford University, Stanford, CA 94305, USA,

5 Cognitive Neuroimaging Unit, INSERM, Gif sur Yvette, France, 6 JARA-BRAIN, Jülich-Aachen Research
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Abstract

To map the neural substrate of mental function, cognitive neuroimaging relies on controlled

psychological manipulations that engage brain systems associated with specific cognitive

processes. In order to build comprehensive atlases of cognitive function in the brain, it must

assemble maps for many different cognitive processes, which often evoke overlapping pat-

terns of activation. Such data aggregation faces contrasting goals: on the one hand finding

correspondences across vastly different cognitive experiments, while on the other hand pre-

cisely describing the function of any given brain region. Here we introduce a new analysis

framework that tackles these difficulties and thereby enables the generation of brain atlases

for cognitive function. The approach leverages ontologies of cognitive concepts and multi-

label brain decoding to map the neural substrate of these concepts. We demonstrate the

approach by building an atlas of functional brain organization based on 30 diverse functional

neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional

brain mapping, this functional atlas supports robust reverse inference: predicting the mental

processes from brain activity in the regions delineated by the atlas. To establish that this

reverse inference is indeed governed by the corresponding concepts, and not idiosyncra-

sies of experimental designs, we show that it can accurately decode the cognitive concepts

recruited in new tasks. These results demonstrate that aggregating independent task-fMRI

studies can provide a more precise global atlas of selective associations between brain and

cognition.

Author summary

Cognitive neuroscience uses neuroimaging to identify brain systems engaged in specific

cognitive tasks. However, linking unequivocally brain systems with cognitive functions is
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difficult: each task probes only a small number of facets of cognition, while brain systems

are often engaged in many tasks. We develop a new approach to generate a functional

atlas of cognition, demonstrating brain systems selectively associated with specific cogni-

tive functions. This approach relies upon an ontology that defines specific cognitive func-

tions and the relations between them, along with an analysis scheme tailored to this

ontology. Using a database of thirty neuroimaging studies, we show that this approach

provides a highly-specific atlas of mental functions, and that it can decode the mental pro-

cesses engaged in new tasks.

Introduction

A major challenge to reaching a global understanding of the functional organization of the

human brain is that each neuroimaging experiment only probes a small number of cognitive

processes. Cognitive neuroscience is faced with a profusion of findings relating specific psy-

chological functions to brain activity. These are like a collection of anecdotes that the field

must assemble into a comprehensive description of the neural basis of mental functions, akin

to “playing twenty questions with nature” [1]. However, maps from individual studies are not

easily assembled into a functional atlas. On the one hand, the brain recruits similar neural ter-

ritories to solve very different cognitive problems. For instance, the intra-parietal sulcus is

often studied in the context of spatial attention; however, it is also activated in response to

mathematical processing [2], cognitive control [3], and social cognition and language process-

ing [4]. On the other hand, aggregating brain responses across studies to refine descriptions of

the function of brain regions faces two challenges: First, experiments are often quite disparate

and each one is crafted to single out a specific psychological mechanism, often suppressing

other mechanisms. Second, standard brain-mapping analyses enable conclusions on responses

to tasks or stimuli, and not on the function of given brain regions.

Cognitive subtraction, via the opposition of carefully-crafted stimuli or tasks, is used to iso-

late differential responses to a cognitive effect. However, scaling this approach to many studies

and cognitive effects leads to neural activity maps with little functional specificity, hard to

assemble in an atlas of cognitive function. Indeed, any particular task recruits many mental

processes; while it may sometimes be possible to cancel out all but one process across tasks

(e.g. through the use of conjunction analysis [5]), it is not feasible to do this on a large scale.

Furthermore, it can be difficult to eliminate all possible confounds between tasks and mental

processes. An additional challenge to the selectivity of this approach is that, with sufficient sta-

tistical power, nearly all regions in the brain will respond in a statistically significant way to an

experimental manipulation [6].

The standard approach to the analysis of functional brain images maps the response of

brain regions to a known psychological manipulation [7]. However, this is most often not the

question that we actually wish to answer. Rather, we want to understand the mapping between

brain regions/networks and psychological functions (i.e. “what function does the fronto-parie-

tal network implement?”). If we understood these mappings, then in theory we could predict

the mental state of an individual based solely on patterns of activation; this is often referred to

as reverse inference [8], because it reverses the usual pattern of inference from mental state to

brain activation. Whereas informal reverse inference (e.g. based on a selective review of the lit-

erature) can be highly biased, it is increasingly common to use meta-analytic tools such as

Neurosynth [9] to perform formal reverse inference analyses (also know as decoding). How-

ever, these inferences remain challenging to interpret due to the trade-off between breadth and
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specificity that is necessary to create a sufficiently large database (e.g. see discussion in [10,

11]).

The optimal basis for brain decoding would be a large database of task fMRI datasets span-

ning a broad range of mental functions. Previous work has demonstrated that it is possible to

decode the task being performed by an individual, in a way that generalizes across individuals

[12], but this does not provide insight into the specific cognitive functions being engaged,

which is necessary if we wish to infer mental functions associated with novel tasks. The goal of

decoding cognitive functions rather than tasks requires that the data are annotated using an

ontology of cognitive functions [13–15], which can then become the target for decoding. Some

recent work has used a similar approach in restricted domains, such as pain [16], and was able

to isolate brain networks selective to physical pain. Extending this success to the entire scope

of cognition requires modeling a broad range of experiments with sufficient annotations to

serve as the basis for decoding.

To date, the construction of human functional brain atlases has primarily relied upon the

combination of resting-state fMRI and coordinate-based meta-analyses. This approach is

attractive because of the widespread availability of resting-state fMRI data (from which brain

functional networks can be inferred through statistical approaches [17]), and the ability to link

function to structure through the use of annotated coordinate-based data (such as those in the

BrainMap [18] and Neurosynth [9] databases). This approach has identified a set of large-scale

networks that are consistently related to specific sets of cognitive functions [19, 20], and pro-

vides decompositions of specific regions [21, 22]. However, resting-state analysis is limited in

the set of functional states that it can identify [23], and meta-analytic databases are limited in

the specificity of their annotation of task data, as well as in the quality of the data, given that it

is reconstructed merely from activation coordinates reported in published papers.

A comprehensive functional brain atlas should link brain structures and cognitive functions

in both forward and reverse inferences [7]. To build such a bilateral mapping, we introduce

the concept of “ontology-based decoding,”, in which the targets of decoding are specific cogni-

tive features annotated according to an ontology. This idea was already present in [9, 12, 24];

here we show how an ontology enables scaling it to many cognitive features, to increase

breadth. In the present case, we use the Cognitive Paradigm Ontology (CogPO) [15], that pro-

vides a common vocabulary of concepts related to psychological tasks and their relationships

(see S1 Text Distribution of terms in our database). Forward inference then relies on ontology-

defined contrasts across experiments, while reverse inference is performed using an ontology-

informed decoder to leverage this specific set of oppositions (see Fig 1 and methodological

details). We apply these forward and reverse inferences to the individual activation maps of a

large task-fMRI database: 30 studies, 837 subjects, 196 experimental conditions, and almost

7000 activation maps (see S1 Text Distribution of terms in our database). We use studies from

different laboratories, that cover various cognitive domains such as language, vision, decision

making, and arithmetics. We start from the raw data to produce statistical brain maps, as

this enables homogeneous preprocessing and thorough quality control. The results of this

approach demonstrate that it is possible to decode specific cognitive functions from brain

activity, even if the subject is performing a task not included in the database.

Materials and methods

An ontology to describe cognitive neuroimaging studies

The main challenge to accumulate task fMRI is to account for the disparity in experimental

paradigms. One solution is the use of cognitive ontologies that define terms describing the cog-

nitive tasks at hand and enable to relate them. The choice of the ontology must meet two

Atlases of cognition with large-scale brain mapping
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opposite goals: have a good coverage of the cognitive space, and document overlap between

studies. In practice, each cognitive term describing mental processes must be expressed in sev-

eral studies of our database to ensure the generalizability of our inference.

Terms. The cognitive ontologies currently being developed in the neuroimaging commu-

nity follow two directions. The Cognitive Paradigm Ontology (CogPO) [15], which is derived

from the BrainMap taxonomy [18], concentrates on the description of the experimental condi-

tions that characterize an experimental paradigm. A taxonomy is a special case of ontology in

which links between concepts are captured in categories: high-level concepts from categories

that encompass lower-level concepts. In CogPO, experimental tasks are described via different

categories that represent the stimuli, the expected responses, and the instructions given to the

subjects, e.g., “stimulus modality”, “explicit stimulus”, “explicit response”. The CogPO terms

are rather broad, but enable to find common task descriptors regardless of the original intent

of the study. More tailored towards cognitive processes, the Cognitive Atlas [14] lists a large

number of cognitive tasks and concepts, and increasingly links them together. We decide to

mainly use terms from CogPO, and extend it where our database can benefit from more pre-

cise or high-level descriptions. Not all terms of CogPO in our database are present over multi-

ple studies, and thus we only use a subset of CogPO. Similarly, with the limited number of

Fig 1. Brain mapping with a cognitive ontology. Our approach characterizes the task conditions that correspond to each

brain image with terms from a cognitive ontology. Forward inference maps differences between brain responses for a given

term and its neighbors in the ontology, i.e. closely related psychological notions. Reverse inference is achieved by predicting

the terms associated with the task from brain activity. The figure depicts the analysis of visual object perception tasks with

motor response. A forward inference captures brain responses in motor, primary visual and high-level visual areas. Reverse

inference captures which regions or neural substrate are predictive of different terms, discarding common response to

different tasks, here in the primary visual cortex.

https://doi.org/10.1371/journal.pcbi.1006565.g001
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studies in our database, there is only little overlap in high-level cognition. We added only the

“language” label from the Cognitive Atlas.

It should be noted that the ontology does not have a full hierarchical structure, as stimulus
modality, explicit stimulus and explicit response convey different level of information. Further

work with growing databases will however need to add more and more terms. Finding a con-

sistent structure underlying all these terms is a hard task.

Categories. Functional MRI experiments are carefully designed to balance conditions of

interest with control conditions to cancel out effects related to the stimulation. As we do not

want to ignore the designs, but rather leverage them in the context of a large-scale inference,

we introduce an additional category level for our terms, that groups together terms –or condi-

tions– that are typically contrasted in individual studies. These new categories strongly relate

to the paradigm classes from BrainMap and the tasks from the Cognitive Atlas. The categories

we choose are relevant to our database, and reflect the contrasts found in the studies. They

nonetheless could be modified or extended further to test other hypotheses. This hierarchy of

terms enables to co-analyze heterogeneous studies. S4 Table references the categories and asso-

ciated terms used in this paper.

Forward inference

Standard forward inference in functional neuroimaging uses the GLM (general linear model),

which models brain responses as linear combinations of multiple effects. We use a one-hot-
encoding of the concepts, i.e. we represent their presence in the tasks by a binary design matrix.

We test for response induced by each concept with a second-level analysis using cross-studies

contrasts.

To disentangle various experimental factors, brain mapping uses contrasts. Individual stud-

ies are crafted to isolate cognitive processes with control conditions, e.g. a face-recognition

study would rely on a “face versus place” or a “face versus scrambled picture” contrast. To sep-

arate cognitive factors without a strong prior on control conditions, the alternative is to con-

trast a term against all related terms, e.g., “face versus place and scrambled picture”.

We use the categories of our ontology to define such contrasts in a systematic way for the

wide array of cognitive concepts touched in our database. This approach yields groups of

terms within the task categories, as described in Table 1: the task categories are used to define

the conditions and their controls. Inside each group, we perform a GLM analysis with all the

“one versus others” contrasts. We denote these ontology contrasts. Compared to a standard

group analysis, the benefit of this GLM is that the control conditions for each effect studied

span a much wider range of stimuli than typical studies.

Reverse inference

For reverse inference, we rely on large-scale decoding [12]. Prior work [12, 24] tackles this

question using a multi-class predictive model, the targets of the classification being separate

cognitive labels. Our formulation is different as our goal is to predict the presence or absence

of a term, effectively inverting the inference of our forward model based on one-hot-encoding.

This implies that each image is associated with more than a single label, which corresponds to

multi-label classification in a decoding setting.

A hierarchical decoder. Linear models are widely used for decoding as they give good

prediction and their parameters form brain maps. However, in a multi-label setting, they give

rise to a profusion of separate one-versus-all (OvA) problems and cannot exploit the shared

information between each label. We use a method based on stacked regressions [25]: two lay-

ers of linear models (logistic regressions) discriminating different cognitive terms. The first

Atlases of cognition with large-scale brain mapping
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layer is tuned to specific oppositions between terms related in the ontology, while the second is

tuned to predict which specific term is most relevant. This peculiar classifier architecture is tai-

lored to the ontology that defines the structure of the targeted cognitive information. In the

future, more complex cognitive ontologies may entail further refinements of the classifier.

First layer. First, we stack the decisions of the OvA classifiers, that capture specific activa-

tion patterns across all tasks. This allows to relate cognitive processes across independent cog-

nitive disciplines. Second, we build one-versus-one (OvO) classifiers by opposing terms that

belong to the same task category (see S4 Table). This enables to generalize the notion of con-

trasts and subtraction-logic that is implicit to the majority of fMRI experiments. Finally, we

build classifiers predicting the actual task categories from S4 Table. It enables to build a hierar-

chical decoding framework, that combines the decisions of simpler problems, namely classify-

ing the task categories, and more subtle, within-category problems: the OvO classifiers. There

may be better choices of classifiers, but the final predictor weights them, and therefore miti-

gates the introduction of unnecessary or sub-optimal classifiers. We list in S2 Table all the clas-

sifiers that we use in the first level to learn the feature space capturing the ontology.

Second layer. In a second layer, we learn the terms on the reduced representation with an

OvA scheme, which also uses ℓ1-penalized logistic regression. The final output of this method

is one linear classifier per term, that can be recovered by the linear combination of the coeffi-

cients of the base classifiers, with the coefficients of the final classifiers. The resulting ontology-

informed decoder combines fined-grain information captured by opposing matching condi-

tions in the first level with more universal decisions in the second level that outputs the pres-

ence or absence of a term. This combination is itself a linear classifier per label, and thus yields

Table 1. Contrasts used to characterize tasks effects in our database. We used CogPO categories for task-related description, and add necessary terms from Cognitive

Atlas to describe higher-level cognitive aspect. Here we report only terms that were present in more than one study –aside from the “left foot”, which maps in the analysis

as maps in “feet” task category, but not “right foot”. The task categories group terms typically used as conditions and their controls to test a hypothesis. The stimulus modal-
ity category stands for CogPO and task categories. Some terms do not belong to any task category and are referred to as such. The arithmetics task category spans across

the response modality and instructions CogPO categories.

CogPO Categories Task Categories Terms contrasts

Stimulus modality - visual visual—auditory

auditory auditory—visual

Explicit stimulus Sounds human voice human voice—sound

sound sound—human voice

Retinotopy vertical checkerboard vertical checkerboard—horizontal checkerboard

horizontal checkerboard horizontal checkerboard—vertical checkerboard

Object recognition faces faces—1

3
(places + object + scramble)

places places—1

3
(faces + object + scramble)

objects object—1

3
(faces + places + scramble)

scramble scramble—1

3
(faces + places + object)

Symbol recognition words words—digits

digits digits—words

Response modality Motor—hands left hand left hand—right hand

right hand right hand—left hand

Motor—feet left foot left foot—right foot

right foot right foot—left foot

Arithmetics saccades saccades

Instructions Arithmetics calculation calculation

Cognitive Atlas term No category language language

https://doi.org/10.1371/journal.pcbi.1006565.t001
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discriminant brain patterns for each term. Fig 2 summarizes this decoding procedure and S4

Text Reverse inference: Decoding with cognitive ontologies gives more specific details.

Such a two-step classification is important because binary classifiers opposing one term to

another exhibit undesirable properties in rich output settings: for instance a binary classifier

that would detect occurrences of right hand task would typically classify all left hand task

occurrence as right hand, given that the negative class for this problem typically involved

mostly non-manual tasks. Leveraging a two- instead of one-layer classification architecture

creates the possibility to capture more subtle effects, a trick systematically used in recent deep

learning models.

Cross validation. To evaluate the procedure, we perform the classification in randomized

leave-3-study-out cross validation scheme. Cross-study prediction ensures that the representa-

tion of the cognitive labels generalizes across paradigms. We run 100 iterations of the cross val-

idation to get a good estimate of the classifier’s performance.

Results

An atlas of areas linked to function

Using a database of 30 studies, we demonstrate that our approach captures a rich mapping of

the brain, identifying networks with a specific link to cognitive concepts. Prediction of cogni-

tive components in new paradigms validates this claim.

Linking brain networks and cognitive concepts

We combine forward and reverse inference to construct a one-to-one mapping between brain

structures and cognitive concepts. Forward inference across studies requires adapting brain

mapping analysis to leverage the ontology. Mapping the brain response to the presence of a

concept in tasks selects unspecific regions, as it captures other related effects, e.g. selecting the

Fig 2. Ontology informed decoding. The hierarchical decoding procedure reduces the dimensionality by stacking the decision functions of

several simple binary classifiers, which mimic study-level contrasts by opposing each term to matching ones. A second level of one-versus-all

(OvA) classifiers predicts the presence of terms using the output of the first level. The first layer may be seen as capturing whether a given brain

activity map looks more like face or place recognition, objects or scrambled images, visual or motor stimuli. The second layer combines this

information to conclude on what cognitive terms best describe the given activity. Final linear classifiers may be recovered by combining the

coefficients of the first and second level classifiers.

https://doi.org/10.1371/journal.pcbi.1006565.g002
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primary visual cortex for any visual task (Fig 3). To obtain a more focal mapping, we remove

these effects by opposing the concept of interest to related concepts in the ontology. Reverse

inference narrows down to regions specific to the term. However, as we use a multivariate pro-

cedure, some of its variables may model sources of noise [26]. For instance, when using visual

n-back tasks with a motor response to map the visual system, the motor response creates con-

founding signals. A multivariate procedure could use signal from regions that capture these

confounds to subtract them from vision-specific activity, leading to better prediction. As such

regions are not directly related to the task, they are well filtered with a standard GLM (General

Linear Model) used in forward inference. For this reason, our final maps combine statistics

from forward and reverse inference: functional regions are composed of voxels that are both

recruited by the cognitive process of interest and predictive of this process; see S5 Text Con-

sensus between forward and reverse inference for statistical arguments and [27] for more fun-

damental motivations regarding causal inference. Fig 3a–3d shows how the neural-activity

patterns for the “places” label progressively narrow on the PPA with the different approaches.

Thus we link each cognitive concept to a set of focal regions, resulting in a brain-wide func-

tional atlas.

Atlases with various mapping approaches

To build functional atlases, it is important to clearly identify the regions associated with differ-

ent cognitive concepts. Fig 3e shows that reverse-inference meta-analysis with Neurosynth

also associates the PPA with the “place” term, but the region is not as well delineated as with

our approach. Fig 4 shows functional atlases of auditory and visual regions extracted with vari-

ous mapping strategies. The relative position and overlap of the various maps is clearly visible.

Forward-inference mapping of the effect of each term versus baseline on our database gives

regions that strongly overlap (Fig 4a). Indeed, the maps are not functionally specific and are

dominated by low-level visual mechanisms in the occipital cortex and language in the temporal

cortex. Using contrasts helps decreasing this overlap (Fig 4b), and hence reveals some of the

functional segregation of the visual system. However, as the stimuli are not perfectly balanced

across experiments, contrasts also capture unspecific regions, such as responses in the lateral

occipital cortex (LOC) for faces or places. Reverse inference with a logistic-regression decoder

gives well separated regions, albeit small and scattered (Fig 4c). The ontology-informed

approach identifies well-separated regions that are consistent with current knowledge of brain

functional organization (Fig 4d). Finally, meta analysis with NeuroSynth separates maps

Fig 3. Maps for the different inference types. Left (a–d): maps of the different inferences on our database for the “place” concept. The

consensus between reverse inference and forward inference based on contrasts defined from the ontology singles out the “parahippocampal

place area” (PPA) for the “place” concept. Right (d): the NeuroSynth reverse-inference map for this concept. Reverse inference with Neurosynth

also narrows well on the PPA, but is more noisy.

https://doi.org/10.1371/journal.pcbi.1006565.g003
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related to the various terms better than forward analysis on our database of studies (Fig 4e).

Yet some overlap remains, for instance in the LOC for maps related to visual concepts. In addi-

tion, the outline of regions is ragged, as the corresponding maps are noisy (Fig 3e), probably

because they are reconstructed from peak coordinates. Note that overlaps across term-specific

topographies are ultimately expected to remain, especially in associative cortices. In the follow-

ing, we first discuss quantitative validation of the reverse-inference atlases, and then study in

detail the atlas obtained with the ontology-informed approach.

Fig 4. Different functional atlases. Regions outlined using different functional mapping approaches, from left to right: a. forward term

mapping; b. forward inference with ontology contrasts (standard analysis); c. reverse inference with logistic regression; d. NeuroSynth

reverse inference; and e. our approach, mapping with decoding and an ontology. The top part shows visual regions, and the lower one

auditory regions in the left hemisphere. Forward term mapping outlines overlapping regions, as brain responses capture side effects such as

the stimulus modality: for visual and auditory regions every cognitive term is represented in the corresponding primary cortex. Forward

mapping using contrasts removes the overlap in primary regions, but a large overlap persists in mid-level regions, as control conditions are

not well matched across studies. Standard reverse inference, specific to a term, creates overly sparse regions though with little overlap.

Reverse inference with Neurosynth also displays large overlap in mid-level regions. Finally, ontology-based decoding maps recover known

functional areas the visual and auditory cortices.

https://doi.org/10.1371/journal.pcbi.1006565.g004
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Decoding cognition validates the atlas

Upon qualitative inspection, the regions extracted by our mapping approach provide a good

functional segmentation of the brain. For an objective test of this atlas, we quantify how well

these regions support reverse inference. For this, we use the ontology-informed decoder to

predict cognitive concepts describing tasks in new paradigms and measure the quality of the

prediction. This approach was tested using a cross-validation scheme in which 3 studies were

held out of each training fold for subsequent testing. Fig 5 shows the corresponding scores:

ontology-informed decoding accurately predicts cognitive concepts in unseen tasks. It predicts

these concepts better than other commonly used decoders (logistic regression and naive Bayes,

see also S6 Text Evaluating prediction accuracy: cross-validation) and NeuroSynth decoding

based on meta-analysis. This confirms that the corresponding atlas captures areas specialized

in cognitive functions better than conventional approaches.

Very general labels such a “visual” are found in most studies, and therefore easy to predict.

However, higher-level or more specialized cognitive concepts such as viewing digits or moving

the left foot are seldom present (see S1 Text Distribution of terms in our database). For these

rare labels, the fraction of prediction errors is not a useful measure. Indeed, simply assigning

them to zero images would lead to a small fraction of errors. For this reason, Fig 5 reports the

area under the receiver operating characteristic (ROC) curve. This is a standard metric that

summarizes both false positives and false negatives and is not biased for rare labels. This analy-

sis showed that even for relatively rare concepts, successful decoding was possible.

Regions in our functional atlas

Our approach links different cognitive terms to functionally-specialized brain regions:

Visual regions. (Fig 6a) Visual object recognition is linked to the ventral stream of spe-

cialized regions: primary visual areas associated with vertical and horizontal checkerboards in

a basic but accurate retinotopic mapping; regions in the LOC linked to objects and scrambled

objects; the Fusiform Face Area (FFA) and parahippocampal place area (PPA) associated

respectively with “faces” and “places” terms; the region called visual word form area (VWFA)

[28] linked to word recognition. Interestingly, both amygdalas also appear related to faces,

which could be due to emotional effects of face processing not modeled in the ontology. Digit-

viewing does not outline meaningful regions. Corresponding decoding scores are poor (Fig 5):

Fig 5. Prediction scores for different methods. Area under the ROC curve (1 is perfect prediction, while chance is at

0.5); a score for each term; b score relative to the average per term for each decoding approach. As the terms in

NeuroSynth do not fully overlap with the terms used in our database, not every term has a prediction score with

NeuroSynth. The ontology-informed decoder is almost always able to assign the right cognitive concepts to an

unknown task and clearly out-performs standards decoders: logistic regression and naive Bayes classifier trained on

our database. It also outperforms the NeuroSynth decoding based on meta-analysis.

https://doi.org/10.1371/journal.pcbi.1006565.g005
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our database is not suited to cross-study mapping of digit viewing. This example confirms that

decoding scores can serve as Occam’s razor, validating or falsifying functional regions.

Auditory regions. (Fig 6b) Four cognitive terms are represented in the temporal lobe:

“auditory”, “sounds”, “language”, and “human voice”. These correspond to increasingly spe-

cific concepts in our ontology, and map increasingly focal regions: The “auditory” label

denotes the stimulus modality, a fairly general concept, and is linked to the entire auditory cor-

tex. The more precise “sounds” label is associated with Heschl’s gyrus. The “language” label

highlights a prototypical left-lateralized language network: anterior and posterior superior

temporal sulcus (STS), temporal lobe, supramarginal gyrus, and Broca’s area. The “human

voice” label reveals regions in the upper bank of the STS that were previous identified as voice-

selective regions by contrasting human voices with closely-matched scrambled voices control

conditions [29]. That the mapping singles out such regions from the data is an impressive feat

given that only one study in our database [30] features both human voices and non-voice audi-

tory conditions.

Motor regions. (Fig 6c) Motor labels reveal the lateralized hands and feet representations

in the primary motor cortex, as well as in the cerebellum.

Parietal regions. (Fig 6d) Saccadic eye movements and mental arithmetic are known to

recruit almost overlapping parietal areas [2], which are difficult to separate with standard

Fig 6. Functional atlases with decoding in an ontology. Regions linked to the various cognitive terms by our mapping approach. They are

displayed in 5 different panels depending on their location in the brain: a. visual regions; b. auditory regions; c. motor regions; d. parietal

regions; e.cerebellum regions.

https://doi.org/10.1371/journal.pcbi.1006565.g006
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analysis. In the IPS (intra-parietal sulcus), we find bilateral regions for saccades but calculation

appears left lateralized, consistent with previous reports [31]. Cross-study analysis of activation

maps is important to study such nearly-colocalized functions from different cognitive

domains. Indeed, meta-analysis based on coordinates suffers a loss of spatial resolution

(Fig 3e).

Cerebellar regions. While the cerebellum is involved in a variety of mental processes,

there are very few systematic mapping results. Previous work [32] studied the somatotopic

organization of the cerebellum visible on Fig 6c, with an inverted laterality of functional areas

with respect to cortical somatotopy. Other higher-level cognitive functions are represented in

the cerebellum with the same inversion. Notably our analysis links the “language” term to a

right-lateralized cerebellum region in Crus II (Fig 6e), consistent with language studies [33].

Finally, the “calculation” term is also represented in the right cerebellar cortex, in the superior

medial section of the lobule VI. This location has been linked to working memory [34]. It

appears here linked to calculation, consistent with the fact that mental arithmetic has a strong

working-memory component [35], and our cognitive ontology does not explicitly model

working memory.

Discussion

The inference framework introduced here represents a new approach to developing functional

atlases of the human brain. It formally characterizes representations for various cognitive pro-

cesses that evoke overlapping brain responses, and makes it possible to pool many task-fMRI

experiments probing different cognitive domains. Existing meta-analysis approaches face the

risk of being unspecific, as demonstrated by our standard analysis results on our database

(Figs 3 and 4). Databases of coordinates, such as NeuroSynth, can more easily accumulate data

on many different cognitive concepts and support formal reverse inference. This data accumu-

lation is promising, but existing reverse-inference approaches do not suffice to fully remove

the overlap in functional regions (Fig 6). Our approach gives more differentiated maps for cog-

nitive concepts by analyzing them in a way that leverages the cognitive ontology. They are also

sharper, presumably because they are derived from images rather than coordinates. In a multi-

modal framework [17], these maps could be combined with resting-state and anatomical data

to provide cognitive resolution to brain parcellations. Note that our framework is meant to be

used at the population level and does not address individual brain mapping or decoding.

Reverse inference mapping

Our analysis framework overcomes the loss in specificity typical of data aggregation. As a

result, it enables analyzing jointly more cognitive processes. These richer models can map

qualitatively different information. Analyzing more diverse databases of brain functional

images can bring together two central brain-mapping questions: where is a given cognitive

process implemented, and what cognitive processes are represented by a given brain structure.

Answers to the “what” question have traditionally been provided by invasive studies or neuro-

logical lesion reports. Indeed, in a given fMRI study, brain activity results from the task. Con-

cluding on what processes are implied by the observed activity risks merely capturing this task.

Decoding across studies can answer this question, by demonstrating the ability to perform

accurate inference from brain activity to cognitive function [36].

Reverse-inference maps are essential to functional brain mapping. A key insight comes

from the analysis in NeuroSynth [9]: some brain structures are activated in many tasks. Hence,

a standard analysis –forward inference– showing such a structure as activated does not provide

much information about what function is being engaged. Reverse inference puts the observed
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brain activity in a wider context by characterizing the behavior that it implies. The analysis

performed in NeuroSynth accounts for the multiple tasks that activate a given structure, per-

forming a Bayesian inversion with the so-called Naive Bayes model; however, it does not

account for other activation foci in the brain that characterize the function. Put differently,

our approach departs from the model used by NeuroSynth for reverse inference by what it

conditions upon: NeuroSynth’s model asserts functional specialization conditional to other

terms, while we condition on other brain locations when predicting concept occurrence. This

difference should be kept in mind when interpreting differences between the two types of

approaches. The Inferior Temporal Gyrus (ITG), for instance, is more active in object-recogni-

tion tasks than in other paradigms. However, observing activity in the ITG does not help

deciding whether the subject is recognizing faces or other types of objects: the information is

in the Fusiform gyrus. An important difference between reverse-inference maps with a Naive

Bayes –as in Neurosynth– and using a linear model –as in our approach– is that the Naive

Bayes maps do no capture dependencies across voxels. On the opposite, linear models map

how brain activity in a voxel relates to behavior conditionally on other voxels. Technically, this

is the reason why Neurosynth reverse-inference maps related to object recognition overlap in

the IT cortex (Fig 3e) while maps produced by our approach separate the representations of

the various terms in the ventral mosaic (Fig 3d).

Another, more subtle, benefit of the two-layer model over more classical multi-label

approaches is that it combines the decisions of classifiers based on subsets of the data, such as

the OvO classifiers, which helps learning relevant local discriminative information.

In sum, our mapping approach provides a different type of brain maps: They quantify how

much observing activity in a given brain location, as opposed to other brain locations, informs

on whether the subject was engaged in a cognitive operation.

Generalizing beyond single studies

Brain functional atlases are hard to falsify: is a functional atlas specific to the experimental par-

adigms employed to build it, or is it more generally characteristic of human brain organiza-

tion? The success of statistically-grounded reverse inference, which generalizes to new

paradigms from unseen studies, suggests that there must be some degree of generality in the

present atlas. In demonstrating this generalization, the present work goes beyond previous

work that had shown generalization to new subjects under known task conditions [12], but

not to unknown protocols. However, it is worth noting that here too we found that it was eas-

ier to predict on held-out subjects (from one of the training studies) than on held-out studies

(see S6 Text Evaluating prediction accuracy: cross-validation), consistent with a substantial

effect of the specific task (see S2 Text Similarities of activations across the database). Despite

this, our ontology-enabled approach was able to successfully predict cognitive processes for

new tasks. Interestingly, it opens the possibility to perform prospective decoding analyses on

novel data, hence makes it easier to grasp the added information of incoming data.

To enable this generalization across paradigms, we characterize each task by the multiple

cognitive concepts that it recruits, that are specified in the ontology. Departing from the sub-

tractions often used in brain mapping, our framework relies on quantifying full descriptions of

the tasks. In the context of decoding, this approach leads to multi-label prediction, predicting

multiple terms for an activation map, as opposed to multi-class prediction, used in prior works

[12, 16], that assigns each new map to a single class. The use of the multi-label approach com-

bined with an ontology capturing the relationships between terms provides a principled way of

modeling the multiple components of cognition and thus avoids the need for hand-crafted

oppositions that are customarily used in subtraction studies. Defining good ontologies is yet
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another challenge for the community, but it is not unlikely that brain imaging will become

part of that process [36, 37]. Providing a methodological approach founded on an explicit hier-

archy of cognitive concepts would allow to test for different cognitive ontologies, and, pro-

vided with a comparison metric, select the best ontology according to the available data.

Although the present analysis is limited to a relatively small set of cognitive functions, such an

approach will be essential as the field attempts to scale such analyses to the breadth of human

cognition.

Conclusion

To build brain functional atlases that map many cognitive processes, we have found that

reverse inference and an ontology relating these processes were key ingredients. Indeed,

because of the experimental devices used in cognitive neuroimaging, some regions –e.g. atten-

tional or sensory regions– tend to be overly represented in forward inferences. An ontology

encodes the related cognitive processes that must be studied together to best establish forward

or reverse inferences.

Using a relatively small number of independent task fMRI datasets, our brain-mapping

approach reconciles the conundrum of multiple cognitive processes/labels mapping to often

overlapping brain regions in activation studies. More data will enable even more fine-grained

process-region mappings. In particular higher-level cognitive processes elude the present

work, limited by the amount and the diversity of the studies in our database. Indeed, high-level

terms form very rare classes in the datasets employed here (see S1 Text Distribution of terms

in our database). With increased data sharing in the neuroimaging community [38], there is

a growing opportunity to perform this kind of analysis on a much larger scale, ultimately pro-

viding a comprehensive atlas of neurocognitive organization. A major challenge to such analy-

ses is the need for detailed task annotation; whereas annotation of task features such as the

response effector is relatively straightforward, annotation of complex cognitive processes (e.g.,

whether a task involves attentional selection or working memory maintenance) is challenging

and often contentious. The utility of the ontology in the present work suggests that this effort

is worthwhile, and that the increased utilization of ontologies in cognitive neuroscience may

be an essential component to solving the problem of how cognitive function is organized in

the brain.
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S3 Table. Prediction scores for different methods. AUC (area under the curve) of the ROC

curve. OD: ontology decoding, LOG: logistic regression, NB: Naive Bayes, NS: NeuroSynth.

The OD (ontology decoding) method performs very well (chance is at .5), including when pre-

dicting to new studies. Leave-subject-out cross-validation scheme tend to display a higher pre-

diction score than with a leave-study-out cross-validation. This higher prediction accuracy

corroborates the observation that activations in the same study are more similar than activa-

tions related to the same cognitive term (S3 Fig).
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database. We used CogPO categories for task-related description, and add necessary terms

from Cognitive Atlas to describe higher-level cognitive aspect. Here we report only terms that

were present in more than one study—aside from the “left foot”, which maps in the analysis as

maps in “feet” task category, but not “right foot”. The task categories group terms typically

used as conditions and their controls to test a hypothesis. The stimulus modality category

stands for CogPO and task categories. Some terms do not belong to any task category and are

referred as such. The arithmetics task category spans across the response modality and instruc-
tions CogPO categories.
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Methodology: Gaël Varoquaux, Yannick Schwartz, Bertrand Thirion.

Project administration: Bertrand Thirion.

Resources: Yannick Schwartz, Russell A. Poldrack, Bertrand Thirion.
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