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Abstract  

To optimize designs for longitudinal studies analyzed by mixed-effect models with binary 

outcomes, the Fisher information matrix (FIM) can be used. Optimal design approaches 

however require a priori knowledge of the model. We aim to propose, for the first time, a robust 

design approach accounting for model uncertainty in longitudinal trials with two treatment 

groups, assuming mixed-effect logistic models. To optimize designs given one model, we 

compute several optimality criteria based on FIM evaluated by the new approach based on 

Monte-Carlo/Hamiltonian Monte-Carlo (MC/HMC). We propose to use the DDS-optimality 

criterion as it ensures a compromise between the precision of estimation of the parameters, and 

hence the Wald test power, and the overall precision of parameter estimation. To account for 

model uncertainty, we assume candidate models with their respective weights. We compute 

robust design across these models using compound DDS-optimality. Using the FIM, we propose 

to predict the average power over these models. Evaluating this approach by clinical trial 

simulations, we show that the robust design is efficient across all models, allowing one to 

achieve good power of test. The proposed design strategy is a new and relevant approach to 

design longitudinal studies with binary outcomes, accounting for model uncertainty. 
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1. Introduction 

Nonlinear mixed effect models (NLMEMs) are frequently used in model-based drug 

development to analyze pharmacokinetic/pharmacodynamic data 1. The use of NLMEMs 

(i.e. the population approach) allows the estimation of mean parameters, inter and intra-subject 

variabilities as well as covariate effects, and is appropriate for exploiting the richness of 

longitudinal data 2–4. NLMEMs can compensate for the lack of individual information by 

borrowing the strength from the data in the whole population and therefore allow for precise 

parameter estimation even with sparse designs, where few samples are collected from each 

subject.  

NLMEMs are increasingly used for the analysis of longitudinal clinical studies, for both 

continuous and discrete data (binary, count or time-to-event). Binary outcomes are frequently 

encountered to characterize the clinical response in different therapeutic areas such as 

infectiology (virological success, bacterial carrying), and can be used for responder/non-

responder analysis as well as for toxicity analysis. For instance, the carriage of Streptococcus 

pneumoniae was studied in children between 2 months and 2 years, by collecting 

nasopharyngeal swabs and aspirates over 10 visits to detect the impact of determinants as age 

or health status on the proportion of positive bacterial samples 5. In another context, 6 recently 

proposed a binary outcome (corresponding to a minimal change in UDysRS Part III Impairment 

scale from baseline) to characterize the remission of dyskinesia in Parkinson’s disease. The 

analysis of the longitudinal data in these kind of outcomes required discrete response 

generalized linear mixed effect models (GLMMs) or discrete response NLMEMs and adequate 

estimation methods. 

Before modeling, it is crucial to choose an appropriate design in order to obtain good precision 

of parameter estimates. Indeed, the informativeness of a dataset for parameter estimation 

depends on the design choice. A design in NLMEMs, called a population design, is composed 

of the number of elementary designs, the specification of each elementary design and the 

associated number of subjects. In this settings, the term elementary design is used to describe a 

group of subjects with identical design characteristics such as the number of samples per subject 

and the allocation of informative times and doses. To evaluate and optimize designs, two 

approaches have been proposed. The first approach, based on clinical trial simulation (CTS) is 

very time-consuming and is therefore limited in term of designs that can be evaluated. 

Alternatively, the expected Fisher Information Matrix (FIM) can be used 7–9, as its inverse is 
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defined as the lower bound of the variance-covariance matrix of any unbiased estimated 

parameters, according to the Cramér-Rao inequality. However, the FIM has no analytical form 

in NLMEMs and its computation, which requires multiple integrations, can be challenging. A 

first method to evaluate the FIM in NLMEMs, based on first order (FO) linearization of the 

model around the expectation of random effects, was proposed 10 and implemented in several 

software programs 11. Although efficient in general, FO presents limitations when used with 

complex models, large variability 12,13 and when using longitudinal models for discrete data 13.  

Alternative to compute the FIM in continuous NLMEMs, without linearization, has been 

proposed using Monte Carlo (MC) integrations 14. There are also a large body of work on the 

FIM for GLMMs with random intercepts, using marginal quasi-likelihood, penalized quasi-

likelihood, complete enumeration-based or MC methods 15,16. More recently, new methods 

have been developed to compute the FIM for both continuous and discrete NLMEMs using MC 

methods combined with Adaptive Gaussian quadrature (AGQ) 17 or Hamiltonian Monte 

Carlo (HMC) 13. The latter approach (MC/HMC) was implemented in the R package 

MIXFIM 18, which uses functions written in the probabilistic language Stan 19, which was 

developed for Bayesian inference. This method, by efficiently drawing HMC samples and 

calculating partial derivatives of the log-likelihood, has been shown to be more suitable than 

MC/AGQ in complex models with a large number of random effects 13. 

From expression of the FIM evaluated by these approaches, different optimality criteria can 

then be computed to optimize designs. The widely used D-optimality criterion consists in 

maximizing the determinant of the FIM i.e. to optimize the precision of estimation for all model 

parameters. As an alternative to the D-optimality, the DS-optimality 20 can accommodate 

situations in which only a subset of the model parameters is of interest. This can be particularly 

useful to optimize the precision of a “treatment effect” parameter on the longitudinal evolution 

of biomarkers in clinical trials for example, which is directly linked to the power of the Wald 

test to detect this effect 21. However, Ds-optimal designs can lead to problem in estimation of 

all the parameters of the model because of lack of experimental identifiability 22. To find a 

balance between optimizing the precision of the parameters to be tested and the precision all 

the model parameters, a mixture of D- and DS-optimality, the DDS-optimality, can be used 20. 

However, these methods require a priori knowledge of the model and its parameter values, 

which can usually be obtained from previous studies, but lead to designs that are locally optimal. 

If the final model is very different from the a priori assumed model, the design optimized with 

the wrongly assumed model might not be informative enough to precisely estimate parameters 
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of the final model. Therefore, there is need to develop and evaluate new methods to optimize 

robust designs accounting for model uncertainty. In order to propose optimal designs across a 

set of candidate models, we make use of both the theory of compound optimal design 7 and the 

principle of model averaging 23. The compound optimal design theory was previously used to 

propose informative designs for both estimation and model discrimination 24, and recently to 

find a common design for cocktail of drugs 25. Meanwhile model averaging is a promising 

alternative approach to model selection when modeling data, which uses model weights 

(computed from AIC or BIC) to calculate a weighted average of the predictions 26–28.  

Combining these approaches, our main objective is to propose and evaluate a new 

methodological strategy for robust designs in longitudinal studies with discrete outcomes taking 

into account model uncertainty, based on the expected FIM in NLMEMs. We choose to use the 

MC/HMC method to compute the FIM without any linearization. From expression of the FIM, 

we predict the power of the Wald test to detect a treatment effect included in the model and to 

calculate the number of subjects needed for a required power. Our FIM-based strategy aims to 

find designs that are both informative to achieve good average power over several models and 

to precisely estimate the whole set of population parameters. We illustrate these methods 

through an example of designing a trial with repeated binary outcomes, inspired from a previous 

work within the team 29, considering several candidate models which include a treatment effect 

on the longitudinal response. The relevance of these approaches is evaluated by clinical trial 

simulations in terms of bias and imprecision of parameter estimates and power of the Wald test.  

In Section 2, we detail the notations and present different optimality criteria for a given model 

or for taking into account model uncertainty. In Section 3, we show an application of these 

methods to design a longitudinal trial with binary outcomes. In Section 4, we present a 

simulation study to evaluate the relevance of the proposed design strategy. Finally, we discuss 

the results and perspectives of this work in Section 5. 

 

2. Methods 

2.1. Basic concepts and Notation 

2.1.1. Population design 

The elementary design 𝜉𝑖  for the individual 𝑖 (𝑖 =  1, … , 𝑁) is defined by the number 𝑛𝑖 of 

samples and their allocation in time (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖
). The population design Ξ =  {𝑁, (ξ1, … , ξN)} is 
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defined by the number of individuals 𝑁, and the set of elementary designs to be performed in 

each individual (ξ1, … , ξN), with a total number of observations ∑ 𝑛𝑖
𝑁
𝑖=1 . 

2.1.2. Nonlinear mixed effect models for binary outcomes 

This work considers a set of candidate NLMEMs 𝑚 =  1, . . . , 𝑀 for binary data. Considering a 

given logistic model 𝑚, the logit of the conditional probability for observation 𝑦𝑖𝑗  of individual 

𝑖 at sample 𝑗 (𝑗 =  1, … , 𝑛𝑖) is written 

𝑙𝑜𝑔𝑖𝑡 (𝑝(𝑦𝑖𝑗 = 1|𝑏𝑖)) = 𝑓𝑚 (𝑡𝑖𝑗 , 𝑔(𝛍𝐦, 𝒃𝒊, 𝒛𝒊, 𝜷𝒎)) (1) 

In equation (1), 𝑓
𝑚

 is the function describing the logit-probability of 𝑦𝑖𝑗 given individual 

random effects 𝑏𝑖, for a time 𝑡𝑖𝑗 and a vector of subject-specific parameters modelled through 𝑔. 

The function 𝑔 depends on the vector of fixed effects μ
m

, 𝑏𝑖 as well as the vector of covariates 

𝑧𝑖 and the vector of covariate effects 𝛽
𝑚

. The random effects are assumed to follow a normal 

distribution with mean zero and variance-covariance matrix 𝛺𝑚 which accounts for the inter-

individual variability, i.e. 𝑏 ~ 𝑁 (0, 𝛺𝑚). We denote by 𝝍𝒎 the vector of population parameters 

i.e. 𝜓𝑚 = (𝛍𝑻, 𝜷𝒎
𝑻, 𝜴𝒎,𝒖

𝑻)
𝑇
, where 𝜴𝒎,𝒖 is a vector containing all unique elements of 𝛺𝑚. Let P𝑚 

denote the length of the vector 𝝍𝒎. Observations are usually assumed to be independent 

conditionally upon the random effects, i.e. the joint conditional probability for the vector of 

observations for individual 𝑖 (𝑦𝑖 = (𝒚𝒊𝟏
𝑻, … , 𝒚𝒊𝒏𝒊

𝑻)
𝑇

) is:  

𝑝(𝑦𝑖|𝑏𝑖, 𝜓) = ∏ ℎ𝑚 (𝑦𝑖𝑗 , 𝑓
𝑚

(𝑡𝑖𝑗, 𝑔(𝛍
𝐦

, 𝒃𝒊, 𝒛𝒊, 𝜷
𝒎

)))

𝑛𝑖

𝑗=1

 

2.1.3. Fisher Information Matrix 

For a model 𝑚 and its parameter values 𝜓𝑚, if the 𝑁 subjects are independent, the population 

FIM ℳ(𝜓𝑚, Ξ), is the sum of 𝑁 elementary FIMs, ℳ(𝜓𝑚,  ξi), i.e. ℳ(𝜓𝑚, Ξ) =  ∑ ℳ(𝜓𝑚,  ξi)
𝑁
𝑖=1 . 

In this work, we assume the same elementary design for all individuals, i.e.  ξi = ξ for 𝑖 =

 1, … , 𝑁, then Ξ = {𝑁, ξ} and ℳ(𝜓𝑚, Ξ) = 𝑁 ℳ(𝜓𝑚, ξ). The elementary FIM for 𝝍𝒎 can be 

expressed as  

ℳ(𝜓𝑚, 𝜉) = 𝐸𝑦 (
𝜕 log (𝐿(𝑦|𝜓

𝑚
))

𝜕𝜓
𝑚

𝜕 log (𝐿(𝑦|𝜓
𝑚

))

𝜕𝜓
𝑚

𝑇

), (2) 
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where the likelihood 𝐿 of the observations vector 𝒚 of an individual (subscript 𝑖 is omitted for 

simplicity) is given by 

𝐿(𝑦|𝜓
𝑚

) =  ∫ 𝑝(𝑦|𝑏, 𝜓
𝑚

)𝑝(𝑏|𝜓
𝑚

)𝑑𝑏
𝑏

, (3) 

with 𝑝(𝑦|𝑏, 𝜓𝑚) the probability density function (p.d.f.) of 𝑦 given the random effects 𝑏, and 

𝑝(𝑏|𝜓𝑚) the p.d.f. of 𝑏. To evaluate the FIM in equation (2), one needs to compute two 

integrations: one over the observations 𝑦 and one in equation (3) over the distribution of random 

effects. We evaluate the former by MC integrations and the latter by HMC, as proposed in 13, 

using the package MIXFIM 18 in R v3.2.1. MIXFIM calls functions of the R package rstan 

written in the probabilistic language Stan 19 to draw HMC samples and calculate partial 

derivatives of the log-likelihood. 

2.2. Optimality criteria 

The methods we propose to find robust designs are presented in this section. Different criteria 

to find an optimal design are presented, according to different purposes. For a given model, 

based on the determinant of the FIM, the D-optimality is used to obtain informative designs for 

a precise estimation of all parameters of a model, the DS-optimality accommodates situations 

in which only a subset of parameters is of interest, and the compound DDS-optimality offers a 

compromise between the D- and the DS­criteria. Averaging over several models and weighting 

each one, the compound CD-, CDS- and CDDS-optimalities accounts for model uncertainty.  

2.2.1. Optimality criteria for a given model 

To optimize the estimation precision for the whole set of population parameters 𝜓𝑚, we 

maximize the widely used 7 D-optimality criterion ΦD,𝑚(Ξ) (equation (4), Table 1). 

Let 𝝍𝑺,𝒎, a subset of 𝝍𝒎, be the vector of parameters of interest of length 𝑆𝑚. To optimize the 

estimation precision for the 𝑆𝑚 parameters, we use the DS-optimality ΦDS,m(Ξ) (equation (5), 

Table 1) 7. This criterion is particularly useful to find a design which maximizes the predicted 

power of the Wald test or minimizes the number of subjects needed to detect a significant 

treatment effect 𝛽𝑚, by focusing on the precision of estimation for 𝛽𝑚. 

Let 𝝍𝑻,𝒎 be the remaining parameters of 𝝍𝒎 beside 𝝍𝑺,𝒎. To find a compromise between 

precision of 𝝍𝑺,𝒎 and 𝝍𝑻,𝒎, the compound DDS-optimality criterion 7,20, ΦDDS,m(Ξ, 𝛼𝑚) is used 

(equation (6), Table 1). 𝛼𝑚 is a term between 0 and 1 which quantifies the interest in the 
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estimation precision of 𝝍𝑺,𝒎. When 𝛼𝑚 = 1/𝑃𝑚,the DDS-criterion coincides with the 

D-criterion, thus, all the parameters of the model are of equal interest. When 𝛼𝑚 = 1, the 

compound DDS-criterion coincides with the DS-criterion. When 𝛼𝑚 = 0, the precision of the 

parameters 𝝍𝑻,𝒎 is optimized. Maximizing the DDS-criterion with 1/𝑃𝑚 < 𝛼𝑚 < 1 provides a 

compromise between the D- and the DS-criteria.  

For any given optimality criterion 𝑋, the relative efficiency E𝑋,𝑚(Ξ) of a design Ξ, with respect 

to the 𝑋-optimal design Ξ𝑋,𝑚 for model 𝑚, is computed as 

E𝑋,𝑚(Ξ) =  
Φ𝑋,𝑚(Ξ)

Φ𝑋,𝑚(Ξ𝑋,𝑚)
.  

2.2.2. Robust optimality criteria accounting for model uncertainty 

We propose to account for uncertainty in the model choice by computing optimality criteria 

based on the theory of compound optimality 7 and of model averaging 23. We assume that a set 

of 𝑀 candidate models is available, with each model associated to a weight 𝑤𝑚 (∑ 𝑤𝑚 = 1𝑀
𝑚=1 ) 

quantifying the balance between the 𝑀 models. To find a common optimal design for the 𝑀 

models, according to the 𝑋-optimality, we maximize the weighted product of efficiencies 

∏ E𝑋,𝑚
𝑤𝑚𝑀

𝑚=1 , with 𝑋 being the D-, DS- or DDS-optimality criterion. Maximizing the weighted 

product of efficiencies is equivalent to maximizing the weighted product of the criteria, hence 

the definition of compound optimality criteria 7, ΦCD(Ξ), ΦCDS
(Ξ) or ΦCDDS

(Ξ, 𝛼𝑚) as provided 

(equations (7-9), Table 1). Of note, it is also equivalent to minimizing the weighted sum of 

minus-log-criteria, that is a convex function to which the General Equivalence Theorem can be 

applied 30. 

3. Application to design a longitudinal trial with binary response 

In this section, we present how the methods introduced in Section 2 are applied to design a 

longitudinal study over one year, with two balanced treatment groups and binary response. 

Candidate NLMEMs including a treatment effect and describing the response probability over 

time are considered, inspired by 29,31. We aim to determine the optimal location of a limited 

number of measurement times chosen among a discrete design composed of (0, 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12) in month unit, according to different optimality criteria. We investigate the 

predicted efficiency of the various optimal designs obtained as well as the power of the Wald 

test to detect a treatment effect over all the candidate models.  
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3.1. Models and Parameters 

The studied models describe binary responses (𝑦𝑖𝑗 = 1, responder or 0, non responder) recorded 

over time (𝑡𝑖𝑗  = 0 to 12 months) in two different treatment groups. The response probability at 

time 𝑡𝑖𝑗 is given by equation (1).  

We denote 𝑓𝑚(𝑡𝑖𝑗) = 𝑓𝑚 (𝑡𝑖𝑗 , 𝑔(𝛍𝐦, 𝒃𝒊, 𝒛𝒊, 𝜷𝒎)) and omit index 𝑖𝑗 for simplicity in the followings. 

We consider four candidate models 𝑓𝑚 describing the evolution of the logit-probability of the 

response over time (Figure 1), which are the linear model (M1), loglinear model (M2), quadratic 

model (M3) and exponential model (M4). 

M1: 𝑓1(𝑡) = θ1 + θ2(1 + 𝛽 × 1𝑇)𝑡.  

M2: 𝑓2(𝑡) = θ1 + θ2(1 + 𝛽 × 1𝑇) log(𝑡 + 1).  

M3: 𝑓3(𝑡) = θ1 + θ2(1 + 𝛽 × 1𝑇)𝑡2.  

M4: 𝑓4(𝑡) = θ1 + θ2(1 + 𝛽 × 1𝑇)(exp(θ3𝑡) − 1).  

1𝑇 is a treatment group indicator variable (with 1𝑇 = 0 if control group, 1𝑇 = 1 if treated group). 

We denote 𝛽 the effect size of the treatment on parameter θ2. Model M1 and its parameters are 

inspired by 29. Values of 𝝍𝟏 are given in Table 2, θ1 and θ2 follow a normal distribution: 

θp = μp + 𝑏𝑝 where 𝑏p ~ 𝑁 (0, ωp
2) for p = {1,2}. Models M2 to M4 are alternative models with 

parameters normally distributed as in M1. Values of their fixed parameters are chosen to give 

the same mean value of the logit of the response probability as for M1 at the beginning (𝑡 = 0 

month) and the end (𝑡 = 12 months) of the study in the two treatment groups. Similar treatment 

effect value and a standard deviation ω2 equal to 188% of 𝜇2 for are assumed for all models. 

Assumed values of population parameters 𝝍𝒎 for each model 𝑚 (𝑚 = 1, … ,4) are given in 

Table 2. 

3.2. Design optimization and power evaluation 

We aim to propose an informative design with 4 measurement times identical in all subjects, 

denoted ξ = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒}, first, for each candidate model separately, then, by averaging over 

the four candidate models, given the parameters values 𝝍𝒎 given in Table 2.  

3.2.1. Choice of MC-HMC samples for FIM evaluation 

To perform design optimization for the presented models, we need to compute different 

optimality criteria, based on the FIM evaluated by MC/HMC. Since this is a stochastic 

approach, we can quantify uncertainty in the computation of the determinant of the FIM, 
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according to the MC and HMC samples. For instance, the 95% uncertainty intervals of the 

D-criterion can be computed from the 2.5th and 97.5th percentiles of the distributions generated 

using non-parametric bootstrap. According to 13 the FIM evaluation method implemented in 

MIXFIM performs well with 5000 Monte Carlo samples and 200 Hamiltonian Monte Carlo 

samples, for a longitudinal logistic model for binary response (similar to our model M1) and a 

rich design. To ensure that these settings are appropriate for all candidate models even for 

sparser design (4 measurement times), the convergence of the D-criterion is studied with respect 

to the MC samples increasing from 50 to 10000 (see Supplementary Material, Figure S1), with 

a non-optimized equispaced design ξES = {𝟎, 𝟒, 𝟖, 𝟏𝟐}. Two different configurations were 

studied: 1000 HMC samples and 1000 burn-in vs. 200 HMC and 500 burn-in. We found that 

the convergence plots of D-criterion shows a similar trend between the two configurations. 

Moreover, 5000 MC samples seems sufficient for a good convergence of the D-criterion. We 

therefore set the number of MC samples to 5000 and the number of HMC samples to 200 with 

500 burn-in in MIXFIM to evaluate the FIM and to calculate the different optimality criteria 

with all the designs and the models of the study. 

To ensure that these settings are satisfying, convergence of the D-criterion is also verified with 

an optimized design (Supplementary Material, Figure S2). 

3.2.2. Design optimization 

As in 29, we assumed that 𝑡1 and 𝑡4 are fixed to 0 and 12 months (i.e. the end of the study), only 

two times 𝑡2 and 𝑡3 are optimized among the following set: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 months. 

No repetition is considered, i.e. four measurement times must be different. Combinatorial 

optimization is performed for different optimality criteria. This corresponds to (
11
2

) = 55 

possible elementary designs to be evaluated and the optimal one is chosen according to each 

considered criterion. We considered N=100 subjects equally distributed in the two treatment 

groups for design optimization, although this number as no influence on optimal sampling time 

or loss of efficiency in design comparisons, but only on the specific value of relative standard 

errors when reported. 

3.2.2.1. D-, DS- and DDS-optimal designs for each model 

Using the D-, DS- or DDS-optimality, the optimal location of measurement times are obtained 

and compared between the four models and between these optimality criteria. The relative 
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D- ,DS- or DDS-efficiencies of each optimal design are also computed assuming each of the 

four models to evaluate the impact of model misspecification on design performance. 

The DS- and the DDS-criteria are computed with a particular interest on the treatment effect 

(𝜓𝑆,𝑚 =  𝛽). The preliminary step to compute compound DDS-optimal designs is to find an 

appropriate 𝛼𝑚 value for each model. For each model, we therefore compute the DDS-optimal 

designs ΞDD𝑆,𝑚 for 𝛼𝑚  values from 0 to 1 by increment of 0.05. Then, we compare the 

DDS-optimal allocations of measurement times and the D- and DS-efficiencies of these 

DDS-optimal designs over 𝛼𝑚. We consider that for a DDS-design to be satisfactory, 𝛼𝑚 should 

maximize ED,𝑚 × EDS,𝑚. Moreover, both the D- and DS-efficiencies should be above 0.8 (other 

threshold values are not investigated in this work). The final DDS-optimal design is computed 

with the retained 𝛼𝑚 value.  

3.2.2.2. Robust optimal designs 

To propose a robust design accounting for model uncertainty, different compound criteria 

(CD-, CDS- and CDDS-optimality) are evaluated for a combination of the four candidate 

models. The same weight 𝑤𝑚 is assigned for each model (total uncertainty) i.e. 𝑤𝑚 = 1/4. 

3.2.3. Expected average power using FIM 

We aim to evaluate the average power of the Wald test for a design Ξ =  {𝑁, ξ} to detect a 

significant treatment effect over all the candidate models varying the total number of subject 

from 50 to 450. We also computed the number of subjects to achieve an average power of 0.9.  

For that, first, we derive for each model 𝑚 the SE (Standard Error) of 𝛽 from the expected FIM 

and we compute the power 𝜋𝑚(Ξ) to detect the treatment effect in that model, following what 

has been done in 21. Then the average power 𝜋𝑎𝑣𝑒𝑟𝑎𝑔𝑒(Ξ) over 𝑀 candidate models is evaluated 

as 

𝜋𝑎𝑣𝑒𝑟𝑎𝑔𝑒(Ξ) = ∑ 𝑤𝑚 × 𝜋𝑚(Ξ)

𝑀

𝑚=1

,  

where 𝑤𝑚 is the weight associated to each model 𝑚 used in the computation of the optimality 

criteria (here 1/𝑀, with 𝑀 = 4). 
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3.3. Results 

Figure 2 displays, for each model, the efficiencies with respect to each criterion, obtained with 

the different combinations of the second and third samples out of four measurement times. 

3.3.1. D- and DS-optimal designs for each model 

Different models lead to different optimal designs. Table 3 reports the D- and DS-efficiencies 

respectively of the D-optimal designs ΞD,𝑚 and DS-optimal design ΞDS,𝑚, when the model used 

for data analysis is model 𝑚 or another one. For instance, the design (𝟎, 𝟒, 𝟓, 𝟏𝟐) is D-optimal 

for M3 but underperforms for M4 with a low D-efficiency of only 0.646 and the design 

(𝟎, 𝟏, 𝟏𝟏, 𝟏𝟐) is DS-optimal for M2 but conduces to a low DS-efficiency of only 0.389 for M3. 

In this work, the DS-optimality focuses on the estimation precision of the treatment effect 𝛽. 

We notice that using this criterion could lead to different optimal measurement times than those 

obtained with the D-criterion, as in the case of M2 or M4 (Figure 2). For M2, the allocations of 

informative measurement times leading to a D- and DS-efficiency above 0.8 are very similar 

and the respective optimal designs are ξD,2 =  (𝟎, 𝟏, 𝟖, 𝟏𝟐) vs ξDS,2 =  (𝟎, 𝟏, 𝟏𝟏, 𝟏𝟐). However we 

notice quite different efficient designs between D- and DS-criterion for 

M4 (ξD,4 =  (𝟎, 𝟔, 𝟏𝟏, 𝟏𝟐) vs ξDS,4 =  (𝟎, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐)). This could be explained by the shape of the 

model curve (Figure 1, the second measurement time should be more tardive to better 

distinguish the two treatment groups), and by the higher number of parameters of this model 

compared to others (the importance of estimating 𝛽 is thus relatively reduced when using 

D-optimality).  

3.3.2. DDS-optimal design for each model 

For each model, Figure 3 shows allocated measurement times as well as D- and DS-efficiencies 

of the DDS-optimal designs over 𝛼𝑚 possible values varying between 0 and 1. The third 

measurement time tends to 11 with increasing 𝛼𝑚 for all models. These results emphasize the 

necessity to get tardive measurements to better distinguish the responses between the control 

and the treated group, and thus to better estimate the treatment effect 𝛽. The product of D- and 

DS-efficiencies are respectively maximal when 𝛼1 ∈ [0.2,1], 𝛼2 ∈ [0.3,1], 𝛼3 ∈ [0.25,1] and 

𝛼4 ∈ [0.6,1]. For these values of 𝛼𝑚, D- and DS-efficiencies are over 0.8 excepted for M4. With 

M4, D- and DS-efficiencies are over 0.8 when 0.5 ≤ 𝛼4 ≤ 0.55. In order to conserve the same 

range of importance for estimating the precision of parameters between the four models, we 
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choose 0.5 as the same 𝛼𝑚 value with each model. Thus, DDS-optimal design for each model 

are computed with 𝛼𝑚  =  0.5, this value satisfying our two conditions. 

We notice that the DDS-criterion could lead to different optimal measurement times than those 

obtained with the D- or DS-criterion (Figure 2), as in the case of M4 (ξD,4 =  (𝟎, 𝟔, 𝟏𝟏, 𝟏𝟐), 

ξDS,4 =  (𝟎, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐), ξDDS,4 =  (𝟎, 𝟗, 𝟏𝟏, 𝟏𝟐)). These 3 designs lead to different predicted 

relative standard errors (RSE) of 𝛽, which for 100 patients, are 60% ,50%, 52%, respectively; 

illustrating the impact of using DS- or DDS-criterion on power to detect a treatment effect. For 

this model, we also studied the influence of the number of sampling times. We found that the 

DDS-optimal design with 5 samples is ξDDS
=  (𝟎, 𝟔, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐)), leading to a RSE of 𝛽 of 50%, 

whereas the design with all 13 points lead to a RSE of 40%. For M1, M2 and M3, the 

DDS-efficient designs coincide with the DS-efficient designs. In the same way as for previous 

criteria (D- and DS-efficiencies), different models lead to different DDS-efficient designs. 

However, all the DDS-optimal designs include the 11th month, which again emphasizes the 

importance of tardive measurement times (𝑡3 and 𝑡4) in estimating the treatment effect. Table 3 

reports the DDS-efficiencies of the DDS-optimal design ΞDDS,𝑚 when the true model is 𝑚 or 

another one. For instance, the design (𝟎, 𝟏, 𝟏𝟏, 𝟏𝟐) is DDS-optimal for M2 but underperforms 

for M3 with a low DDS-efficiency of 0.611. Therefore, this design provides poor precision on 

parameters of M3, especially 𝛽. With 100 individuals, the predicted relative standard error of 𝛽 

is 65% with this design vs. 41% with the DDS-optimal for M3  (ξDDS,3 = (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐)). 

3.3.3. Robust optimal designs 

The CD-, CDS- and CDDS-efficiencies of every possible designs as well as the corresponding 

optimal design are reported in the last column of Figure 2. First, we can note that efficient robust 

designs are nearly the same using CDS- or CDDS-optimality.  

Assuming model uncertainty leads to a robust CD-optimal design (ξCD = (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐)) which 

is different from the four D-optimal designs for each model. The most CD-efficient designs are 

closer to the D-efficient designs for the quadratic model (M3) than for other models. Table 3 

presents D-efficiencies for each model. The robust CD-optimal design conducts to a 

D-efficiency above 0.8 regardless of the selected model. A model misspecification can lead to 

loss of efficiencies of up to 0.354. 

In the same way as using CD-optimality, assuming model uncertainty leads to CDS-optimal 

design close to DS-optimal design for model M3: ξCDS
= (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐)  and ξDS,3 =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐). 
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Furthermore, CDS-efficient designs include mostly more tardive measurement times than the 

CD-efficient designs (Figure 2). The robust CDS-optimal design also conducts to a D-efficiency 

above 0.8 regardless of the candidate model and reduces in average the maximal loss of 

DS-efficiency as compared to the DS-optimal designs obtained separately for each model 

(Table 3, 0.363 vs respectively 0.566, 0.619, 0.4 and 0.481 with ξDS,1, ξDS,2, ξDS,3 and ξDS,4). The 

CDS-optimal design could be particularly appropriate to precisely estimate 𝛽, especially if the 

final model is M3 (DS-efficiency of 0.906). 

Assuming model uncertainty leads to a robust CDDS-optimal design (ξCDDS
= (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐)) 

which is different from the 4 local DDS-optimal designs for each model. The robust 

CDDS-optimal design is the same as the CDS- and thus conducts to a D-efficiency above 0.8 

regardless of the candidate model. It also reduces the maximal loss of DDS-efficiency as 

compared to the DDS-optimal design obtained separately for each model (Table 3, 0.249 vs 

respectively 0.356, 0.389, 0.278 and 0.328 with ξ
DDS,1

, ξ
DDS,2

, ξ
DDS,3

 and ξ
DDS,4

), and shows 

DDS-efficiencies above 0.8 for M1, M3 and M4. 

3.3.4. Expected average power using FIM 

Expected power over number of subjects N, under each model and in average, are presented 

with different designs in Figure 4: the CDDS-optimal or robust design (ξCDDS
= (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐)), 

the DDS-optimal design for M1 (ξDDS,1 = (𝟎, 𝟐, 𝟏𝟏, 𝟏𝟐)) and the non-optimized equispaced 

design (ξES = (𝟎, 𝟒, 𝟖, 𝟏𝟐)). The exponential model (M4) presents the worst expected power 

among the 4 candidate models, especially with ξES, mainly because this model involves one 

more estimated parameter than the three other models. Among these 3 designs, the ξCDDS
 

presents the closest curves of power under the four models. Moreover, to reach a 𝜋𝑎𝑣𝑒𝑟𝑎𝑔𝑒 of 

0.9, the predicted NSN (Number of Subjects Needed) is 274 with ξCDDS
 vs. 320 with ξDDS,1 and 

358 with ξES. In our example, the CDDS-criterion is able to propose design giving decent 

performances in terms of predicted power whatever the model chosen among the candidates.  

4. Evaluation by simulation 

In this section, we perform simulations to assess the relevance of the design strategy presented 

above. For this purpose, with simulated datasets of 274 subjects (i.e. the NSN to reach an 

average power of 0.9 with the robust design ξCDDS
), we 1) compare performances of ξCDDS

 vs. a 

locally optimal design for the linear model M1 ξDDS,1 and a non-optimized equispaced design 
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ξES in terms of bias and precision of estimates and 2) evaluate the type I error and power as well 

as the adequacy between predictions and simulation results with the robust design. 

4.1. Clinical trial simulation 

4.1.1. Designs and models 

Repeated binary response trials of 274 individuals (137 per treatment group) are simulated 

under each model 𝑚 (M1 to M4) with their respective population parameters values indicated 

in Table 2.  

For the first objective (to compare different designs performances), with ξCDDS
, ξDDS,1 and ξES, 

𝐾1,𝑚 = 500 datasets are simulated with each model under H1 (treatment effect 𝛽 = 5) and each 

one of these 3 designs. 

To achieve the second objective, with the robust design ξCDDS
, 𝐾0,𝑚 = 500 additional datasets 

are simulated with each model under H0 (without treatment effect, 𝛽 = 0), in order to evaluate 

the type I error.  

4.1.2. Evaluation 

For each dataset, population parameters are estimated by the SAEM algorithm 32 implemented 

in MONOLIX 2016R1 (www.lixoft.eu), a software devoted to maximum likelihood estimation 

of parameters in NLMEMs. 

First, from the analysis of the 𝐾1,𝑚 simulated datasets, we calculate the inverse of the variance-

covariance matrix computed from 500 estimated parameter vectors, for each of the three 

designs. We defined the observed relative D-efficiency between designs as the ratio of 

determinants of these matrices, normalized by the number of parameters. We also compare the 

distribution of the relative estimation error of parameters for each model (associated with the 

relative bias values) between the three designs.  

Then, with the design ξCDDS
, the adequacy between FIM predictions and CTS observations is 

evaluated (in terms of parameter precision and power). The empirical standard errors (SECTS) 

of each parameter of each model is defined as the standard deviation of all estimated values. 

The empirical relative standard errors (RSE) are then calculated as the ratio of the SECTS to the 

parameter simulated values. The 95% confidence intervals for each empirical RSE are given as 

[√
𝑞1×𝑅𝑆𝐸²

𝐾1,𝑚−1
 ;  √

𝑞2×𝑅𝑆𝐸²

𝐾1,𝑚−1
], with 𝑞1 and 𝑞2 respectively the 2.5% and 97.5% quantiles of the χ² 

http://www.lixoft.eu/
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distribution with 𝐾1,𝑚 − 1 = 499 degrees of freedom. To evaluate the relevance of 

MC/HMC-based approach to evaluate the expected FIM (see Section 2.1.3.) and the parameter 

estimation method, predicted RSE obtained using the expected FIM are compared with 

empirical RSE and RRMSE (Relative Root Mean Square Error) obtained with CTS. Thus, the 

type I error and the power are evaluated. From the 𝐾0,𝑚 datasets simulated with 𝛽 = 0, the type 

I error of the Wald test on the treatment effect is evaluated as the proportion of trials for which 

H0 is rejected, and compared with 0.05. The 95% prediction interval (95% PI) for proportion 𝜋 

of H0 rejection (type I error or power) is computed by binomial test 33. As explained in Section 

3.2.1., we can evaluate the uncertainty in the computation of the D-criterion and the expected 

power derived from FIM, according to the MC and HMC samples. Under H1, we can thus give 

a confidence interval as 2.5th and 97.5th percentiles of bootstrap obtained with our FIM 

computation approach, around the FIM expected power value. The observed proportion of 

significant Wald tests is compared with the FIM expected power value and its (respectively 

prediction or confidence) intervals, by binomial test or by bootstrap. 

4.2. Results 

4.2.1. Comparison of robust design with non-optimized and non-robust design 

Informativeness of the three designs is investigated here. For each model, ratios of observed 

normalized determinant of the variance-covariance matrix of these designs are computed with 

the robust design ξCDDS
 as reference.  

As presented in the Table 4, overall, the estimations of parameters are more precise with the 

robust design than with the equispaced design for all the models (observed D-efficiency with 

respect to ξCDDS
 is below 1). With the optimal design for M1 ξDDS,1, the parameters of M1 and 

M2 are slightly more precise than with the robust design, but this design induces important loss 

of precision for the parameters of M3 and M4 compared to the robust design.  

The three designs shows acceptable and similar distribution of relative estimation errors (REE, 

Figure 5) under M1, M2 and M3. REE under M4 are larger than other models with the three 

designs. The robust design performs better on M4 than the other designs, especially for the 

parameters μ
2 and ω2 which present larger range of whiskers. Moreover, the maximal relative 

bias with ξCDDS
 is 15% but is over 20% with ξDDS,1 (37% for μ2 and 35% for ω2 on M4) and ξES 

(47% for μ2 and 35% for ω2 on M4). 
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4.2.2. Adequation between FIM predictions and CTS results with the robust design 

As shown in Figure 6 for all models, the predicted RSE by the FIM computation (RSEFIM) are 

in the same range as empirical RSE from CTS (RSECTS) especially for the fixed effect 

parameters (μ) and for standard deviations of random effects parameters (ω), even when the 

model is more complex (M4, excepted μ3). RSE of the covariate effect 𝛽 are however slightly 

under-predicted. Nevertheless, the maximal differences between RSEFIM and RSECTS are at 

most 4%. Moreover, the population parameters of all candidate models could be estimated with 

reasonable estimation error for the proposed robust design (RSE around 30% for the fixed 

effects and 50% for the random effects) excepted M4 which contains 6 parameters: θ2 is quite 

difficult to be estimated with such a sparse design. 

Table 5 displays the type I error of the Wald test on the treatment effect in each candidate 

model, using the estimated or empirical SE. For the Wald tests using estimated SE, it can be 

seen that the type I error lies in the 95% PI of the nominal level [0.033,0.073] for all models. 

Table 5 shows also the predicted power from FIM vs observed power from CTS under H1. Two 

different kinds of intervals are built around the FIM predicted power: as under H0 using the 

binomial test or as percentiles of bootstrap performed with FIM evaluation. We can note that 

the interval built by bootstrap is smaller than the binomial test one. The choice of MC and HMC 

samples seems therefore appropriate for power predictions (see convergence plots in 

Supplementary Material, Figure S2). Nevertheless, for each model, the observed power is 

slightly above the predicted power. These results are partly due to the positive bias on 𝛽 

(Figure 5) and developed further in the discussion. 

5. Application to a real study  

5.1. Presentation of the study 

We applied the proposed approach to a clinical study conducted by the National Institute on 

Aging 34 using the published model, i.e. not assuming model uncertainty. The study EPESE 

(Established Populations for Epidemiologic Studies of the Elderly) was a longitudinal study 

with 4162 persons aged of 65 years or older involved. The outcome of interest was the 

instrumental activities of daily living (IADL). The IADL was measured once a year during 3 

years. The evolution of IADL was compared between those who were cognitively impaired at 

baseline and those who were cognitively intact. 
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In 35, the IADL tasks (traveling, shopping, preparing meals, doing housework and managing 

finances without assistance) were dichotomized: individuals unable to perform 4 or 5 tasks were 

classified as disabled (𝑦𝑖𝑗 = 1) and those able to perform at least 2 tasks were not classified as 

disabled (𝑦𝑖𝑗 = 0). This dichotomous outcome was measured at 0, 1, 2 and 3 years. They studied 

the cognitive impairment at baseline on the outcome. The proposed model in 35 to describe 

probability to be disabled at time 𝑡𝑖𝑗 was  

𝑙𝑜𝑔𝑖𝑡 (𝑝(𝑦𝑖𝑗 = 1|𝑏𝑖)) = θ1 + 𝛽1 × 1𝐵𝐼 + (θ2 + 𝛽2 × 1𝐵𝐼)𝑡.  

where 1𝐵𝐼 is the cognitive impairment at baseline (1𝐵𝐼 = 0 if no impairment, 1𝐵𝐼 = 1 if 

impairment). 𝛽1 was the impairment effect on the intercept parameter θ1 and 𝛽2 the impairment 

effect on the slope parameter θ2. θ1 follow a normal distribution: θ1 = μ1 + 𝑏1, where 

𝑏1 ~ 𝑁 (0, ω1
2). No interindividual variability was considered on θ2 (θ2 = μ2). 

5.2. Design evaluation and optimization 

5.2.1. Methods 

To evaluate the relevance of the FIM-based approach, using the EPESE design ξEPESE =

 (𝟎, 𝟏, 𝟐, 𝟑) and the provided model described above, we compared the SE predicted using 

MC/HMC (see Section 2.1.3) and the SE reported in 35 after data fitting.  

Then, based on the DDS-criterion (with the subset of parameters of interests 𝜓𝑆 composed of μ2 

and 𝛽2), we propose an optimized design of 4 measuring times, assuming that 𝑡1 and 𝑡4 are fixed 

to 0 and 3 years (i.e. the end of the study), and that only two times 𝑡2 and 𝑡3 are optimized 

among 0.2 to 2.8 years by increment of 0.2 years. No repetition is considered, i.e. four 

measurement times must be different. Combinatorial optimization is performed for different 

optimality criteria. This corresponds to (
14
2

) = 91 possible elementary designs to be evaluated 

and the optimal one is chosen according to each considered criterion.  

Finally, we computed the power of the Wald test and the NSN are calculated (as explained 

Section 3.2.3) for the effect of cognitive impairment on the slope, 𝛽2,. for the slope parameter 

μ2. 

5.2.2. Results 

The comparison of the observed and the FIM computed SE of the parameters is reported in 

Table 6. SE of each fixed or random effect are close between FIM predictions and results 

reported in 35. 
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According to the D-criterion, the D-optimal design with the provided model is 

 ξD =  (𝟎, 𝟏. 𝟐, 𝟐. 𝟖, 𝟑). The evolution of the probability to be disabled and the cognitive 

impairment effect on this evolution were particularly of interest in this study. Thus, we compute 

the DS-criterion with μ2 and 𝛽2 in the subset of parameters 𝜓𝑆 (see equation (5) in Table 1). The 

DS-optimal design is ξDS
 =  (𝟎, 𝟏. 𝟐, 𝟐. 𝟖, 𝟑), i.e. the same measuring times allocation of the 

D-optimal design. Moreover, using the DDS-criterion with 𝛼 between 0.4 (i.e. D-criterion) and 

1 (i.e. DS-criterion) leads to the same optimal design (ξDDS
 =  (𝟎, 𝟏. 𝟐, 𝟐. 𝟖, 𝟑)). As for the linear 

model M1 of Section 3, all the possible designs leads to D-efficiencies higher than 0.8. For 

instance, with the ξEPESE, the D-efficiency is 0.944.  

The provided model in 35 shows that the slope μ2 is non null. Moreover, only 31 individuals 

would have been needed with ξDDS
 (vs. 33 with ξEPESE) to reach a power of 0.8. However, the 

covariate 𝛽2 is not significant. With the ξEPESE, the number of subjects needed to detect this 

covariate with a power of 0.8 would be 484,518 subjects. With the optimized design  ξDDS
 =

 (𝟎, 𝟏. 𝟐, 𝟐. 𝟖, 𝟑), it would be 437,087 subjects. Recruiting this number of individuals, even with 

the optimized design, would be not feasible. Nevertheless, this result highlights that the DDS-

optimal design can reduce the NSN compared to a non-optimized design.  

6. Discussion 

In this paper, we propose a new methodological strategy based on MC/HMC and compound 

optimality theory to design longitudinal trials with discrete outcomes. Our approach accounts 

for model uncertainty when assuming a set of candidate models and ensures a compromise 

between the overall precision of estimation and the power of the Wald test to detect a covariate 

effect. To our knowledge, this is the first time that a robust optimal design approach, based on 

MC/HMC to compute the FIM without any linearization, is evaluated by extensive clinical trial 

simulations. The relevance of using the FIM to efficiently predict the power of the Wald test 

has been evidenced before but only in the context of repeated continuous outcomes 21,36. We 

have now confirmed the utility of this FIM-based method to predict average power across 

several candidate models, with an example of repeated discrete outcomes including two 

treatment groups. Although the considered example is quite theoretical here (Sections 3. and 

4), the proposed method is illustrated with a published study analyzing real data (Section 5). In 

this study, the repeated binary outcome was the ability to undertake life tasks (based on the 

Instrumental Activities Daily Living tasks). The chosen settings can also easily be extended to 

clinical longitudinal studies with binary outcomes such as remission of dyskinesia in 
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Parkinson’s Disease. In such cases, it is not possible to obtain dense measuring times because 

medical tests to evaluate this scale are very time-consuming. In another context, a method to 

design longitudinal studies was proposed when dynamics is modelled by a binary Markov 

process, using examples of infection by Streptococcus pneumoniae 37. 

To determine informative designs, we study different optimality criteria, according to different 

purposes of the study. The D-optimality is used to optimize the precision of the whole set of 

population parameters. The DS-optimality to accommodate situations in which only a subset of 

the model parameters is of interest, which is particularly useful to minimize the standard error 

on the treatment effect, thus to maximize the power of the Wald test of the study and therefore 

to reduce the number of subjects needed. A parameter which is a primary end-point (i.e. 

treatment effect) or a key secondary end-point (i.e. time effect) of a study should be included 

in the subset of parameters of interest. This subset could also be defined based on the future use 

of the model. For example, in clinical trial simulations, if outcomes are sensitive to some 

specific parameters, they should be included in the subset of parameters of interest. However, 

this criterion usually leads to designs that do not ensure the experimental identifiability 22. To 

overcome this issue, the DDS-optimality allows the experimenter to find a compromise between 

the D- and the DS-criterion 20, by weighting each one according to the importance given to each 

model parameter. The weight for each criterion depends of the objective of the study, and its 

meaning is further discussed in 38. In spite of its usefulness, the DDS-optimality was mostly 

used with continuous standard nonlinear regression models 39,40 but has not been reported so far 

in the context of discrete NLMEMs, to our knowledge. Another novelty of this work is to extend 

these standard optimal criteria to account for model uncertainty, using their weighted product 

to propose compound CD-, CDS- and CDDS-criterion over a set of candidate models.  

In the motivation example, we considered several candidate binary NLMEMs to describe the 

logit-probability of response over time: linear (M1), loglinear (M2), quadratic (M3) and 

exponential (M4). M4 contains one more parameter than other models and therefore provides 

information about the predicting abilities of the MC/HMC method with a more complex model. 

The non-optimized equispaced design in our example provides D-efficiencies > 0.8 under each 

candidate model. This design shows however very poor DS-efficiency of 0.393 under 

M4 (Table 3). When optimizing designs, we find that accounting or not for uncertainty in 

models and focusing or not on the estimation precision of the covariate effect may lead to 

different optimal locations of measurement times. Moreover, misspecification of models in case 

of local design optimization (i.e. assuming a given model) can lead to D-, DS- or DDS-efficiency 
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respectively as low as 0.666, 0.389 or 0.611 for some models. The proposed compound CD-, 

CDS- or CDDS-optimal designs provides a better compromise for different candidate models 

and greatly reduces the loss of efficiency. These three compound optimal designs conduce all 

to D-efficiencies of at least 0.8 for each model. Furthermore, in terms of ability to detect the 

treatment effect, choosing the robust design ξCDDS
 instead of the design optimal for the linear 

model ξDDS,1 or either a non-optimized ξES reduces the required sample size of the study. The 

NSN for an average power of 0.9 is indeed 274 with ξCDDS
 vs. 320 with ξDDS,1 and 358 with ξES. 

The NSN is however close with either the CDDS- or the CD-design (274 vs. 280). This could 

be explained by the fact that these two designs only differ by their respective second time point 

(respectively at 4th and 5th month). However, the gain in power could be larger in other 

examples, with more differences in allocation of sampling times between the CDDS- and the 

CD-design. The three optimal designs using compound criteria CD-, CDS- or CDDS- are close, 

which is partly explained by the use of a combinatorial optimization, with only one possible 

measurement per month, limiting the total number of possible designs. Surprisingly, the 

CD-design includes a second measurement time which is latter than the one of the CDS-design 

which maximizes the average power. It is explained by the loglinear model (M2) for which 

early measurement seems already informative to distinguish the logit probability of response 

between the two treatment groups. Overall, we notice that with this set of models, picking only 

tardive measurement could be very suboptimal to maximize the precision of the parameter 𝛽 

and thus the power to detect a treatment effect. The closeness of D- and DS-optimal 

measurement times under each model and averaging over the 4 models (using CD- and CDS-

optimality) indicates that a precise estimation of all the parameters (and probably, even more 

the “trend” parameters μ2 and ω2 on which 𝛽 acts) is necessary to reach a satisfactory power. 

In the optimization procedure, it would also be interesting to consider reducing the duration of 

the study.  

We also evaluate our approach by simulating clinical trials under each candidate model. To 

assess the relevance of the robust design, we compare performances between three different 

designs: a non-optimized design with a measurement time every 4 months, a design optimal for 

a linear model (M1, maximizing the DDs-optimality) and a robust design accounting for model 

uncertainty (maximizing the compound DDs-optimality). In our example, choosing the robust 

design avoids important loss of information on parameters, especially when the right model was 

exponential (M4). Other scenarios could have been examined e.g. simulating data under another 

model M5 and fit under each candidate model M1 to M4. We also could evaluate the power 
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performances of model averaging 23 vs. model selection as in 28 but it is not the purpose of the 

present work. Furthermore, a method has been recently proposed to optimize designs when the 

analysis is done by model averaging 41. 

With the CDDS-design and 274 individuals, in spite of a slight under or over-prediction of RSE 

for some parameters, the discrepancy is at most 4%, thus, the prediction using the FIM 

evaluated by MC/HMC is accurate. This approach avoids extensive CTS and can efficiently 

help to easily detect non-informative designs in case of large predicted RSE values. Using the 

predicted SE given by FIM, we predict the power of the Wald test to show significant difference 

between treatment groups. Under H0, we note a good control of the type I error by CTS, despite 

the asymptotic properties of the Wald test (explained in 42) and our sparse measurement design. 

Under H1, we found differences in predicted power between the different models: respectively 

0.967, 0.889, 0.973 and 0.769 under M1, M2, M3 and M4. Whereas the SE for treatment effect 

(𝛽) are not over-predicted, powers are under-predicted under all the models M1 to M4 

(especially M2 and M4): observed power are respectively 0.988, 0.988, 0.996 and 0.86. 

However, we note that the power is never over-predicted. Moreover, the FIM predicted Wald 

statistic is close to the median of the observed Wald statistic distribution, even with M2 and M4 

(Supplementary Material, Figure S2). We investigated the possibility that the number of 

MC/HMC samples would be insufficient under our design to adequately predict the precision 

on parameter 𝛽 (and thus of the power). However the convergence plots of the determinant of 

the FIM and of the SE on 𝛽 showed acceptable results (Figure S3, Supplementary Material). 

Discrepancies between predicted and observed power are mainly explained by the positive bias 

on 𝛽 in CTS. If 𝛽 would be estimated at its true simulated value (5), the estimated power would 

be close to the predicted values (Supplementary Material, Table S1). Other settings of the 

SAEM algorithm of MONOLIX were investigated, but none provided more satisfactory relative 

bias. To our knowledge, an evaluation of different algorithms for repeated binary responses has 

never been published, as it has been done for ordered categorical 43 or continuous data 44. The 

analysis of this kind of data is challenging, requires informative design to avoid problem of 

bias. Further research works on the estimation and design method for this kind of data are 

necessary. It could thus lead to fair measures of discrepancies between FIM prediction and CTS 

observations, and also to a fair comparison of different designs in terms of average power.   

We apply the described FIM based methods, using a published logistic model built on real 

data 35. This model is describing the evolution of the disability probability over time, including 

parameters as the baseline (fixed and random effect), the time effect or the cognitive impairment 
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effect. With the model and the design elements provided in the study, we find that the SE 

predicted by FIM are close to those provided in the study, showing that the FIM evaluation 

method by MC/HMC is relevant. The provided model is the only one mixed model which is 

reported. If other possible models would have been proposed, we would be able to compute 

compound criteria, with each model weight depending on its likelihood, in accordance with the 

model averaging principle 23. Therefore, a robust design based on the CDDS-criterion would 

have been proposed. However, with the given model, we propose to optimize the choice of the 

measuring times according to the DDS-criterion. We also predict the number of subjects that 

would be needed to reach a power of 0.8 to detect the time effect and the cognitive impairment. 

We show that, instead of using a non-optimized equispaced design, optimizing the design using 

the DDS-criterion can reduce the number of subjects needed. 

In this work, we perform combinatorial optimization by evaluating FIM for every possible 

design, an alternative approach would consist in implementing an optimization algorithm to 

improve computing time as suggested in 13. More efficient algorithms could also be explored, 

such as stochastic approximation, annealing methods, randomized exchange algorithm 45, 

multiplicative method 46 or particle swarm optimization 47,48. It is also important to account for 

uncertainty in parameters in addition to uncertainty in models 49,50, by evaluating the 

expectation of the FIM over the distribution of population parameters instead of assuming 

known values of these parameters. We also plan to integrate these robust design methods (over 

the parameter distribution and over the models) in a next version of  PFIM, which is the software 

program for designing longitudinal studies developed by our team (www.pfim.biostat.fr) 51. 

Furthermore, robust design methods studied in this paper could be combined with adaptive 

designs 52,53, by using the accumulated information at each stage of the study to update 

knowledge of the candidate models and of the parameter distributions to be taken into account 

in design optimization. 

The proposed design strategy based on the expected FIM evaluated by MC/HMC and the 

compound optimality theory is a relevant approach, which enables, for the first time, 

optimization of informative sparse designs for longitudinal binary data, over several candidate 

models. This approach can also be applied to other type of discrete data models, such as multi-

category or Poisson count data 54. A robust design method and application using MIXFIM for 

Poisson models was studied in 50 but not for the comparison of two treatment groups hence 

using CD-optimality. The approach described in this article also aims to propose design 

http://www.pfim.biostat.fr/
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providing good power to detect the treatment effect and acceptable precision of all parameters 

while accounting for model uncertainty. 
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Figures 

 

Figure 1. Plots of the logit of the response probability (𝑝) over 12 months in each treatment group for 

the four candidate models: M1 linear (in orange), M2 loglinear (in blue), M3 quadratic (in green) and 

M4 exponential (in purple), using the fixed effect values indicated in Table 2. Solid lines represent the 

control group and dashed lines the treated group. 

 

 

Figure 2. Heatmaps of design efficiencies, for each candidate model (M1 in red, M2 in blue, M3 in 

green, M4 in purple, by column) according to different considered optimality criterion (D-, DS- or 

DDS-optimality, by row). The fifth column (in grey) represents the robust criteria CD-, CDS- or 

CDDS-efficiencies. For each heatmap, the second measurement time is in abscissa and the third in 

ordinate. The filled black square shows the optimal design (i.e. efficiency = 1), which is also specified 

below each heatmap. 
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Figure 3. Results of the DDS-optimal designs as function of the weight 𝛼𝑚, which quantifies the balance 

between the D- and the DS-criteria, varying between 0 and 1. Results for each candidate model are 

represented by column (M1 in orange, M2 in blue, M3 in green, M4 in purple). First row, location of 

DDS-optimal measurement times (in months): the symbol x represents the xth measurement in each 

design. Second row, corresponding D- (solid line) and DS-efficiency (dotted line), with respect to the 

D- and DS-optimal design respectively. 

 

 

Figure 4. Predicted power for each model and in average with different designs, for varying total number 

of subjects from 50 to 450. From the left to the right, with the robust design ξCDDS
, the design optimized 

for model M1 ξDDS,1, and the non-optimized design ξES, the expected power from FIM for varying 

number of subjects is displayed in orange for M1, blue for M2, green for M3 and purple for M4. The 

average power over the 4 models is in dashed line. The dotted line crossing the x-axis shows the number 

of individuals needed to obtain an average power of 0.9. 
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Figure 5. Boxplot of the relative estimation error (REE, in %, whiskers from 5th to 95th percentile) for 

each parameter of the four models: M1 in orange, M2 in blue, M3 in green and M4 in purple. From the 

top to the bottom with 500 datasets and 274 subjects by dataset, the robust design ξCDDS
, the optimal 

design of M1 ξDDS,1, and the equispaced design ξES. The relative bias (RB, in %) of each parameter are 

positioned under each corresponding boxplot, the values in bold font highlight the RB over 20%. μ are 

the fixed effects, 𝛽 the covariate effect and ω the standard deviation of random effects. 
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Figure 6. Comparison of predicted and observed estimation errors on all parameters of the four 

candidate models with 274 subjects and the robust design ξCDDS
. Relative standard error RSE (%) for 

the candidate models M1 to M4 are predicted using the expected FIM (full bar). Empirical RSE 

(hatched bar) are obtained by clinical trial simulations (CTS) with 500 datasets. μ are the fixed effects, 

𝛽 the covariate effect and ω the standard deviation of random effects. 

  



31 

 

Tables 

Table 1. Various optimality criteria used depending on parameters of interest and accounting or not 

for model uncertainty. 

Parameters 

of interest 
Given model 𝒎 

Set of candidate models 
𝒎 =  𝟏, … , 𝑴 

All the 

parameters 
𝜓𝑚 

D-optimality 

ΦD,𝑚(Ξ) = 𝐷𝑒𝑡(ℳ(𝜓𝑚, Ξ))
1/P𝑚

 (4) 

CD-optimality 7,24,25 

ΦCD(Ξ)  =  ∏ (ΦD,𝑚(Ξ))
𝑤𝑚

𝑀
𝑚=1  (7) 

Subset of 

parameters 
𝜓𝑆,𝑚 

DS-optimality 

ΦDS,𝑚(Ξ) = (
𝐷𝑒𝑡(ℳ(𝜓𝑚,Ξ))

𝐷𝑒𝑡(ℳ(𝜓𝑇,𝑚,Ξ))
)

1/S𝑚

(5) 

CDS-optimality 

ΦCDS
(Ξ)  =  ∏ (ΦDS,𝑚(Ξ))

𝑤𝑚
𝑀
𝑚=1  (8) 

Compromise 

between 𝜓𝑆,𝑚 

and 𝜓𝑇,𝑚  

DDS-optimality 

ΦDDS,𝑚(Ξ, 𝛼𝑚) =

(𝐷𝑒𝑡 (ℳ(𝜓𝑇,𝑚, Ξ)))

1−𝛼𝑚
P𝑚−S𝑚

 (
𝐷𝑒𝑡(ℳ(𝜓𝑚,Ξ))

𝐷𝑒𝑡(ℳ(𝜓𝑇,𝑚,Ξ))
)

𝛼𝑚
S𝑚

(6) 

CDDS-optimality 

ΦCDDS
(Ξ)  =  ∏ (ΦDDS,𝑚(Ξ))

𝑤𝑚
𝑀
𝑚=1  (9) 

𝜓𝑚 is the vector of population parameters (of size P𝑚) for a model 𝑚: 𝜓𝑆,𝑚 the subset of parameters of 

interest (of size S𝑚) and 𝜓𝑇,𝑚 which are not of interest. ℳ(𝜓𝑚, Ξ) is the Matrix containing the Fisher 

information for all the parameters 𝜓𝑚 and ℳ(𝜓𝑇,𝑚, Ξ) is obtained by truncation of ℳ(𝜓𝑚, Ξ) and keeping 

only the rows and columns corresponding to 𝜓𝑇,𝑚. 𝛼𝑚 (0 ≤ 𝛼𝑚 ≤ 1) is a term which quantifies the 

balance between the D- and the DS-optimality criteria, and expresses the interest in the precision of 

estimation for 𝜓𝑆,𝑚. 𝑤𝑚 is the weight for the model 𝑚 (∑ 𝑤𝑚 = 1𝑀
𝑚=1 ).  
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Table 2. Population parameter values 𝜓𝑚 for each candidate model 𝑚 (𝑚 = 1, … ,4): M1 is the linear 

model, M2 the loglinear model, M3 the quadratic model and M4 the exponential model. 

 M1 M2 M3 M4 

μ1 -2 -2 -2 -2 

μ2 0.09 0.42 7.50×10-3 2.01×10-2 

μ3 - - - 0.33 

𝛽 5 5 5 5 

ω1 0.70 0.70 0.70 0.70 

ω2 0.17 0.79 1.41×10-2 3.79×10-2 
μ are the fixed effects, ω the standard deviation of random effects, and 𝛽 the effect of the treatment 

covariate. 
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Table 3. D-, DS- and DDS-efficiencies for different optimal designs, accounting or not for model 

uncertainty. 

Design 𝚵 

𝚵 =  {𝑵 = 𝟏𝟎𝟎, 𝛏} 
𝐄𝐃,𝟏 𝐄𝐃,𝟐 𝐄𝐃,𝟑 𝐄𝐃,𝟒 

ξES =  (𝟎, 𝟒, 𝟖, 𝟏𝟐) 0.908 0.926 0.975 0.869 

ξD,1 =  (𝟎, 𝟐, 𝟏𝟏, 𝟏𝟐) 1 0.898 0.812 0.706 

ξD,2 =  (𝟎, 𝟏, 𝟖, 𝟏𝟐) 0.932 1 0.875 0.787 

ξD,3 =  (𝟎, 𝟒, 𝟓, 𝟏𝟐) 0.916 0.839 1 0.646 

ξD,4 =  (𝟎, 𝟔, 𝟏𝟏, 𝟏𝟐) 0.829 0.802 0.960 1 

ξCD =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐) 0.860 0.805 0.994 0.958 

ξCDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.910 0.828 0.977 0.882 

ξCDDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.910 0.828 0.977 0.882 

 E𝐃𝐒,𝟏 E𝐃𝐒,𝟐 E𝐃𝐒,𝟑 E𝐃𝐒,𝟒 

ξES =  (𝟎, 𝟒, 𝟖, 𝟏𝟐) 0.841 0.646 0.835 0.393 

ξDS,1 =  (𝟎, 𝟐, 𝟏𝟏, 𝟏𝟐) 1 0.806 0.434 0.619 

ξDS,2 = (𝟎, 𝟏, 𝟏𝟏, 𝟏𝟐) 0.751 1 0.389 0.627 

ξDS,3 =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐) 0.774 0.600 1 0.667 

ξDS,4 =  (𝟎, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐) 0.529 0.519 0.611 1 

ξCD =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐) 0.774 0.600 1 0.667 

ξCDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.865 0.637 0.906 0.655 

ξCDDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.865 0.637 0.906 0.655 

 E𝐃𝐃𝐒,𝟏 E𝐃𝐃𝐒,𝟐 E𝐃𝐃𝐒,𝟑 E𝐃𝐃𝐒,𝟒 

ξES =  (𝟎, 𝟒, 𝟖, 𝟏𝟐) 0.882 0.754 0.924 0.723 

ξDDS,1 =  (𝟎, 𝟐, 𝟏𝟏, 𝟏𝟐) 1 0.863 0.644 0.765 

ξDDS,2 =  (𝟎, 𝟏, 𝟏𝟏, 𝟏𝟐) 0.859 1 0.611 0.755 

ξDDS,3 =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐) 0.827 0.722 1 0.947 

ξDDS,4 =  (𝟎, 𝟗, 𝟏𝟏, 𝟏𝟐) 0.683 0.672 0.761 1 

ξCD =  (𝟎, 𝟓, 𝟏𝟏, 𝟏𝟐) 0.827 0.722 1 0.947 

ξCDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.893 0.751 0.954 0.894 

ξCDDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐) 0.893 0.751 0.954 0.894 

D-, DS- and DDS-efficiencies (respectively ED,𝑚, EDS,𝑚 and EDDS,𝑚) and their corresponding compound 

efficiencies (ECD, ECDS
 and ECDDS

) computed for each optimal  design when ignoring model uncertainty 

(ξD,𝑚, ξDS,𝑚, ξDDS,𝑚) or accounting for model uncertainty (ξCD, ξCDS
 and ξCDDS

) with each model 𝑚 

(𝑚 = 1, … ,4 ). The efficiencies are highlighted in lightgrey if between 0.5 and 0.8 and in darkgrey if 

below 0.5. 
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Table 4. Observed D-efficiency computed from clinical trial simulations for each model, with respect 

to the robust design. 

 M1 M2 M3 M4 
ξCDDS

 : reference 1 1 1 1 
ξDDS,1 1.11 1.06 0.79 0.74 

ξES 0.98 0.94 0.98 0.84 
For each model M1 to M4, the inverse of the variance-covariance matrix of parameter estimates is 

calculated for each of the three designs: the DDS-optimal design for M1 (ξDDS,1), the non-optimized 

equispaced design (ξES) and the robust design (ξCDDS
). The observed D-efficiency between designs is 

defined as the ratio of determinants of these matrices, normalized by the number of parameters. 
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Table 5. Wald tests predictions and simulations on the covariate effect, under H0 and under H1. 

 Under H0 Under H1 

 
Nominal type I 

error 

Observed 

type I error 

FIM predicted power 
Observed 

power   
Binomial 

PI95 

Bootstrap 

CI95 

M1 

0.05 

[0.033,0.073] 

0.048 0.967 [0.949,0.982] [0.963,0.971] 0.988 

M2 0.060 0.889 [0.859,0.916] [0.873,0.902] 0.988 

M3 0.068 0.973 [0.959,0.986] [0.969,0.976] 0.996 

M4 0.036 0.769 [0.731,0.806] [0.741,0.792] 0.860 

Under H0, the 95% prediction interval calculated by binomial test is [0.033,0.073] for 500 simulations. 

For each model M1 to M4, the predicted power to detect a covariate effect 𝛽 under H1 using the Fisher 

information matrix (FIM) is calculated with the design Ξ =  {𝑁 = 274, ξCDD𝑆
= (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐)}. Two 

intervals are presented around the predicted power: a prediction interval obtained by binomial test (PI) 

and an uncertainty interval (CI) using bootstrap from MC/HMC method for FIM evaluation. The 

observed power from clinical trial simulations (CTS) is given as the observed proportion of significant 

Wald tests performed on the covariate effect 𝛽 with estimated standard error from 500 simulated clinical 

trials with a type I error of 5%. 
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Table 6. Parameter estimation precision in EPESE analysis (Observed) in 35 and FIM 

evaluation (Predicted). 

 
Parameter 

values 
Observed SE Predicted SE 

μ1 -7.205 0.372 0.270 

μ2 1.677 0.107 0.074 

𝛽1 5.604 0.384 0.367 

𝛽2 0.034 0.140 0.157 

ω1
2 15.017 1.757 1.316 

μ are the fixed effects, ω the standard deviation of random effect, and 𝛽 the effect of the cognitive 

imparment. 
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Supplementary Material 

 

Figure S1. Convergence plots of D-criterion with a non-optimized design. The D-criterion is plotted in 

black as a function of the number of Monte Carlo samples, with the equispaced design 

ξES = (𝟎, 𝟒, 𝟖, 𝟏𝟐), for each model M1 to M4 by column. For the computation of the Fisher information 

matrix, two different algorithm settings are displayed by row (1000 Hamiltonian Monte-Carlo (HMC) 

samples with 1000 burn-in on the left or 200 HMC with 500 burn-in on the right). The red dotted lines 

represent the 2.5th and the 97.5th percentiles of the D-optimality values using bootstrap. 
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Figure S2. Convergence plots of D-criterion and power with the robust design. For each model M1 to 

M4 by column, the D-criterion on the top part and the power on the bottom part, are plotted in black as 

a function of the number of Monte Carlo samples with the robust design ξCDDS
 =  (𝟎, 𝟒, 𝟏𝟏, 𝟏𝟐). Different 

algorithm settings for the computation of the Fisher information matrix are represented (1000 

Hamiltonian Monte-Carlo (HMC) samples and 1000 burn-in on the first row of each part or 200 HMC 

and 500 burn-in on the second row of each part), The red dotted lines represent the 2.5th and the 97.5th 

percentiles of the bootstrap values 
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Figure S3. Distribution of observed Wald test statistic with the robust design. For each model M1 to 

M4, the distribution of the 500 observed Wald test statistic W is represented as histograms. For each 

model, the solid line is the FIM predicted W and the dashed line is the median of observed W. 
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Table S1. Observed power of the Wald test without bias on 𝛽 with the robust design. 

 M1 M2 M3 M4 

FIM predicted 

power 
0.968 0.889 0.973 0.77 

CTS observed 

power  
0.988 0.988 0.996 0.86 

CTS observed 

power using 

simulated 𝛽 

0.976 0.914 0.992 0.746 

FIM predicted power are obtained using the true value of 𝛽 (5) and the SE(𝛽) calculated from FIM 

evaluation. CTS observed power are obtained using estimated 𝛽 and their SE(𝛽) as given by the SAEM 

algorithm. CTS observed power using simulated 𝛽 are obtained using the true value of 𝛽 (5) and SE(𝛽) 

as given by the SAEM algorithm. 

 


