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FRANCE 

ABSTRACT 

Influenza infections remain a burden on health care systems despite vaccination programs 

and marketed antiviral drugs. Immunomodulation through activation of innate sensors could 

represent innovative approaches to fight the flu. This study evaluated the ability of flagellin, 

agonist of Toll-like receptor 5 (TLR5), to control the replication of influenza A virus (IAV) in 

mice. First, we showed that systemic or intranasal administration of flagellin activated 

transcription of anti-viral genes in lung tissue. Prophylactic and therapeutic flagellin 

administration resulted in decreased levels of viral RNA and infectious virus in the lungs of 

H3N2 IAV-infected mice. The effect of the flagellin on viral replication was also observed in 

Ifnar-/- and Il22-/- IAV-infected mice, suggesting a mechanism independent of type I 

interferon and interleukin 22 signaling. In addition, a combination therapy associating the 

neuraminidase inhibitor oseltamivir and flagellin was more effective than standalone 

treatments in reducing pulmonary viral replication. Thus, this study highlights the 

therapeutic potential of the flagellin to control the replication of the influenza virus.  
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INTRODUCTION 

Influenza viruses are responsible for human seasonal epidemics and pandemic 

outbreaks and cause respiratory illness in humans with the potential for severe 

complications in young children, the elderly, immuno-compromised individuals, and patients 

with chronic cardiovascular or respiratory diseases. Annually, 3–5 million cases of serious 

illness are caused by influenza virus infections resulting in 250,000 to 500,000 deaths 

worldwide (Horimoto and Kawaoka, 2005). Therapeutic interventions are limited to sub-

optimal vaccination and few drugs. Among them, neuraminidase inhibitors such as 

oseltamivir are widely used for the oral treatment of uncomplicated acute illness due to 

influenza but are also recommended for pre-exposure prophylaxis among at-risk individuals 

in contact with flu patients (Fiore et al., 2011). 

Because of the narrow therapeutic window of the neuraminidase inhibitors and the 

recurrent emergence of drug-resistant strains, new antiviral strategies are needed 

(Govorkova et al., 2013). The stimulation of innate immunity could be an alternative 

therapeutic approach to current treatments as it induces local production of antimicrobial 

molecules and the recruitment of effector cells involved in controlling infection (Hancock et 

al., 2012; Iwasaki and Pillai, 2014). The Toll-like receptors (TLRs) are sensors of innate 

immunity involved in the recognition of conserved microbe-associated molecular patterns 

(Kawai and Akira, 2010). The activation of TLRs by microbial components triggers signaling 

cascades and promotes the archetypal pro-inflammatory responses involved in 

antimicrobial defense (Kawai and Akira, 2010). In view of their broad cellular distribution 

and important role in immunity, TLRs have emerged as therapeutic targets against bacterial 

and viral infections (Hancock et al., 2012; Savva and Roger, 2013; Hedayat et al., 2011; 

Mifsud et al., 2014).  

In this context, experimental models showed that various agonists of TLRs could 

protect against influenza virus infections: agonists for TLR2, TLR3, TLR7, TLR8 and TLR9, 

as standalone treatments or in combination, stimulate innate immune responses able to 

protect against influenza A virus (IAV) infection in mammals as well as in poultry (Tan et al., 
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2012; Mifsud et al., 2016; Tuvim et al., 2012; Wong et al., 2009; Lau et al., 2010; Zhao et 

al., 2012; Jiang et al., 2011; Norton et al., 2010; Wu et al., 2007; Hammerbeck et al., 2007; 

Barjesteh et al., 2015). Interestingly, most of the agonists were administrated through the 

respiratory route as prophylaxis, indicating that the pre-stimulation of the local innate 

immune response can control the viral replication.  

TLR5 recognizes flagellin, the structural protein of bacterial flagella and is expressed 

at the surface of macrophages, dendritic cells and epithelial cells. Like other TLR agonists, 

flagellin has immunomodulatory properties that can control numerous bacterial infections 

(Munoz et al., 2010; Yu et al., 2010; Jarchum et al., 2011; Kinnebrew et al., 2010; Vijayan 

et al., 2018). Recently, it has also been shown that repeated systemic administration of 

flagellin prevents rotavirus infection in mice through a mechanism dependent on interleukin 

22 (IL-22) and IL-18 (Zhang et al., 2014). Prophylactic systemic administration of flagellin 

also protects mice against lethal infection with cytomegalovirus (Hossain et al., 2014). We 

recently demonstrated in mice that intranasal administration of flagellin improves the 

therapeutic index of antibiotics in the treatment of post-influenza virus bacterial pneumonia 

(Porte et al., 2015), but the role of flagellin in the control of influenza virus replication has 

never been studied. However, the capacity of flagellin to trigger the production of host 

antimicrobial molecules and the recruitment of innate cells after intranasal administration 

presages a role for flagellin against influenza viruses (Porte et al., 2015; Vijayan et al., 2018; 

Van Maele et al., 2014a). 

In the present study, we analyzed the pulmonary antiviral response in mice upon 

respiratory or systemic flagellin administration, and tested the ability of flagellin to interfere 

with IAV replication. We also evaluated the role of type I interferons and IL-22 in the flagellin-

mediated antiviral mechanism, as well as the potential impact of a combination of flagellin 

with oseltamivir on IAV production.   
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MATERIALS & METHODS 

 

Mouse model of infection 

Female or male C57BL/6J (6- to 12-week-old) mice (Janvier Laboratories, Saint-Berthevin, 

France) and female or male Il22-/- and Ifnar-/- mice (backcrossed on C57BL/6J) were 

maintained in individually ventilated cages and handled in a vertical laminar flow cabinet 

(class II A2; Esco, Hatboro, PA). All experiments complied with current national and 

institutional regulations and ethical guidelines (B59-350009, Institut Pasteur de Lille protocol 

number: 2015121722376405). For the viral infection, mice were anesthetized by 

intraperitoneal injection of 1.25 mg of ketamine plus 0.25 mg of xylazine in 250 µl of 

phosphate buffered saline (PBS), and then intranasally infected with 50 µl of PBS containing 

30 plaque forming units (PFU) of the highly pathogenic murine-adapted H3N2 influenza A 

virus strain Scotland/20/74 (Ivanov et al., 2013; Paget et al., 2012). The lethal dose 50 

(LD50) of the H3N2 strain is 68 PFU in C57BL/6 mice. At selected time-points, mice were 

sacrificed through intraperitoneal injection of 5.47 mg of sodium pentobarbital in 100 µl of 

PBS, and their lungs were aseptically recovered. 

 

Flagellin administration 

The native flagellin (FliC, GenBank accession no. AAL20871) was isolated from the 

Salmonella enterica Serovar Typhimurium strain SIN22, as described previously (Nempont 

et al., 2008; Didierlaurent et al., 2008). Using the Limulus assay (Associates of Cape Cod, 

Inc., East Falmouth, MA), the residual LPS concentration was determined to be < 20 pg per 

µg of flagellin. To ensure that flagellin was mostly monomeric, it was heated for 10 min at 

65°C before use. Flagellin was administered either intranasally (5 µg of FliC in 30 µl of 

PBS), under light anesthesia by inhalation of isoflurane (Axience, Pantin, France) either 

intraperitoneally (5 µg of FliC in 200 µl of PBS). 
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Oseltamivir administration 

Tablets of oseltamivir phosphate (Tamiflu® 30 mg, Roche Pharma AG, Grenzach-Wyhlen, 

Germany) were solubilized in 1 ml of sterile water to a 30 mg/ml stock concentration, 

vortexed, and sonicated in a water bath at room temperature for 5 min. Mice were given 

oseltamivir by oral gavage once a day at 4 mg/kg/day diluted in sterile water, in a total 

volume of 200 µl. 

 

Viral and murine RNA analysis 

Total RNA was extracted with the NucleoSpin RNA II kit (Macherey-Nagel, Duren, 

Germany). For H3N2 RNA detection, 500 ng of total lung RNA were reverse transcribed 

with Superscript II Reverse Transcriptase (Invitrogen) in the presence of IAV specific 

primers targeting the segment 7 which encodes the matrix protein 1 (M1) (5’ 

TCTAACCGAGGTCGAAACGTA 3’). The cDNA was amplified by Taqman real-time PCR 

using Taqman probe FAM-TTTGTGTTCACGCTCACCGTGCC-TAMRA with forward 

primer: AAGACCAATCCTGTCACCTCTGA and reverse primer: 

CAAAGCGTCTACGCTGCAGTCC. A plasmid coding the M1 gene was serially diluted to 

establish a standard curve (Ct values / plasmid copies) (Meyer et al., 2017). Equivalent of 

12.5 ng of total lung RNA was thoroughly used to determine the level of M1 RNA in the lung 

of infected animals by absolute quantification (Meyer et al., 2017). 

For mouse gene expression quantification, total lung RNAs were reverse transcribed with 

the high-capacity cDNA archive kit and random primers (Applied Biosystems, Foster City, 

CA). The cDNA was amplified using SYBR green-based real-time PCR using primers listed 

in Supplementary Table 1. Relative mRNA levels (2-∆∆Ct) were determined by comparing 

first the PCR cycle thresholds (Ct) for the gene of interest and -actin, the housekeeping 

gene (∆Ct) and second, the ∆Ct values for the treated and untreated (mock) groups (∆∆Ct). 

The Ct threshold was set to 35 cycles. 
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PCR experiments were all performed and analyzed using a QuantStudio 12K Flex Real-

Time PCR System (Applied Biosystems). 

 

Determination of infectious lung viral titers 

For determination of the viral load in the lungs, mice were sacrificed at the indicated time 

point and lungs were collected, weighted and immediately frozen in liquid nitrogen. Lungs 

were then homogenized with an Ultra-Turrax homogenizer (IKA-Werke, Staufen, Germany), 

centrifuged (2500 x g, 5 min, 4°C), and the supernatants were kept at 80°C until viral titration 

by standard plaque assay (Hatakeyama et al., 2005). Briefly, 6 serial 10-fold dilutions of 

samples were prepared in Eagle’s Minimum Essential Medium (EMEM, Lonza, Verviers, 

Belgium) complemented with trypsin 1 µg/ml, and subsequently inoculated onto confluent 

Madin-Darby Canine Kidney (MDCK) cell monolayers prepared in 6-well plates. After 1h 

incubation for viral adsorption, the inoculum was removed and wells were covered with 2 

ml of overlay medium (1% Noble agar in EMEM) with trypsin 1 µg/ml. The plates were 

incubated at 37°C under 5% CO2 and viral titers in plaque forming units (PFU) were 

determined 3 days after inoculation.  

 

Cytokine assays 

Serum IL-22 levels were measured by enzyme-linked immunosorbent assay (ELISA) 

following manufacturer’s instructions (eBioscience, Thermo Fisher Scientific, Waltham, 

MA). 

 

Statistical analysis 

The results are expressed as means or medians +/- standard deviations (SD). Statistical 

differences were analyzed using the Mann-Whitney test or one-way ANOVA assay with 

Dunnett’s multiple comparison test (GraphPad Prism5.0a) and were considered to be 

statistically significant for P values < 0.05.  
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RESULTS 

 

Flagellin induces expression of anti-viral genes in the lung 

Previously, microarrays were performed on lungs of C57BL/6 mice at 2, 4 and 18 h after a 

single intranasal administration of flagellin. Analysis of the transcriptional changes upon 

flagellin treatment were compared to PBS (mock)-treated animals and highlighted gene 

pathways related to granulocyte adhesion and diapedesis, acute phase response, or 

recognition of microbes through pattern recognition receptors, among others 

(http://mace.ihes.fr, accession no. 2176499768) (Fougeron et al., 2015). The transcriptomic 

analysis also revealed that flagellin activates the pathways involved in antiviral responses, 

the impact of flagellin on these pathways appearing to be greater at 4 h than at 2 or 18 h 

(Table 1). We then focused on the genes involved in the different pathways and identified 

a set of genes which the expression significantly increased upon flagellin stimulation (fold 

increase > 2) (Table 2). Different profiles of gene expression were observed. The gene 

encoding for the cholesterol 25-hydroxylase (Ch25h), which converts cholesterol to a 

soluble 25-hydroxycholesterol and blocks viral fusion (Blanc et al., 2013; Liu et al., 2013) 

was found to be upregulated at 2 and 4 h compared to the mock group. Expression of some 

genes was gradually upregulated from 2 to 4 h post-treatment. This includes the interferon 

gamma inducible 47 and 204 genes (Ifi47 and Ifi204) encoding antiviral GTPase and an 

antiviral innate immune sensor (Collazo et al., 2001; Conrady et al., 2012), and the 

interferon-induced transmembrane protein 5 and 6 (Ifitm5 and Ifitm6) that belong to a family 

of inhibitors of viral entry (Huang et al., 2011; Brass et al., 2009). Finally, other genes were 

exclusively upregulated at 4 h post-treatment. This is the case of the genes encoding the 

radical S-adenosyl methionine domain containing 2 (Rsad2) and the interferon-stimulated 

gene 15 ubiquitin-like modifier (Isg15) which products interferes with the formation of the 

lipid raft during the virus budding (Wang et al., 2007) and targets newly translated viral 
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proteins for modification, respectively (Lenschow et al., 2007; Morales and Lenschow, 

2013). For all the genes, the baseline expression was recovered after 18h indicating a 

transient effect of the flagellin. 

The transcriptomic study was confirmed by testing the expression of the identified genes by 

real time qPCR, in the lung at 2 and 4 h after intranasal instillation of flagellin (Fig. 1A). We 

also analyzed the transcriptional response of the selected genes after systemic 

administration of flagellin (Fig. 1B). Interestingly, the transcriptomic response for the 

selected genes was globally similar between the two routes of administration, 

demonstrating that a systemic administration of flagellin can activate antiviral genes in the 

lung tissue. We also observed (i) a reduced variation in the gene expression after the 

systemic route compared to the intranasal route and (ii) a peak expression at 4h post-

flagellin administration thus confirming the transcriptomic analysis. As expected, flagellin 

was able to stimulate >50-fold expression of Ccl20 and Saa3, surrogate markers of effective 

stimulation of lung innate immunity by flagellin (Van Maele et al., 2010).  

 

Systemic and mucosal flagellin treatment induces a decrease of influenza genomic 

RNA levels  

We then tested in an experimental model of infection whether the flagellin-mediated antiviral 

transcriptomic response was associated with a decrease in IAV replication in the lung. The 

model consists of the intranasal inoculation of mice with a sublethal dose of H3N2 influenza 

A virus (IAV, 30 PFU), combined with intranasal treatments with 5 µg of flagellin (or PBS as 

control intervention) every 24 h, starting 12 h prior infection (Fig. 2A). Viral replication was 

followed by measuring the RNA levels of M1 genomic RNA in lung homogenates at 24, 48 

and 96 h post-infection, through absolute quantification using Taqman-based real time PCR 

with a calibrating curve. We found an increase in H3N2 M1 RNA levels from 24 to 96 h post-

infection, hence indicating efficient viral replication (Fig. 2B). At 48 h post-infection, the level 

of M1 RNA copies in lung of flagellin-treated animals was 7.3 fold lower than in mice 

receiving PBS, indicating an effect of the flagellin on the viral RNA replication. A similar yet 
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milder trend (2.3 fold decrease compared to PBS-treated mice) was also observed at 96 h 

post-infection (Fig. 2B).  

As flagellin showed antiviral properties through the systemic route (Zhang et al., 2014; 

Hossain et al., 2014), we also treated the H3N2-infected animals with 5 µg of flagellin 

through the intraperitoneal route (Fig. 2C). Interestingly, when IAV-infected animals were 

treated by flagellin, we observed an 18.3 fold decrease on viral RNA levels at 48 h post-

infection compared to the PBS-treated group. A significant decrease (1.9 fold) of the M1 

RNA levels was also observed at 96 h post-infection in the flagellin-treated group. These 

results indicate that systemic administration of flagellin has a stronger effect on viral 

replication than intranasal administration. 

 

The decrease of viral RNA levels upon flagellin administration is independent of 

type I interferon signaling 

Most of the genes identified in the transcriptomic study (Table 2) are under the control of 

type I interferon (IFNand IFN), therefore suggesting a role of these interferons in the 

flagellin-mediated effect. To assess the putative role of type I IFN signaling, the levels of 

viral RNA were quantified after flagellin treatment in mice deficient in the type I interferon 

receptor (Ifnar-/-). These mice were infected by IAV H3N2 and treated with flagellin by 

systemic administration before monitoring viral RNA in lungs as mentioned before (Fig. 2A). 

Flagellin induced significant 3.6 and 9 fold decrease of IAV M1 RNA at 48 and 96 h, 

respectively (Fig. 3). These results show that type I IFN signaling is not required for the 

flagellin-mediated reduction of IAV replication. This is also consistent with microarray data 

that did not indicate any upregulation of IFNor IFN-specific transcripts in the lungs of 

flagellin-treated animals (http://mace.ihes.fr, accession no. 2176499768). Furthermore, 

systemic or respiratory administration of flagellin did not increase the pulmonary expression 

of Ifnl2 or Ifnl3 coding for type III IFN that were previously associated with influenza virus 

clearance in mice (data not shown) (Mordstein et al., 2008). Altogether, these results 

http://mace.ihes.fr/
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strongly suggest that interferons are not associated with the flagellin-mediated antiviral 

effect. 

 

The effect of flagellin on viral RNA replication is independent of interleukin 22 (IL-22) 

Flagellin has previously been shown to protect against rotavirus intestinal infection through 

production of IL-22 together with IL-18 (Zhang et al., 2014). First, we found that flagellin did 

not stimulate Il18 transcription in the lungs after intraperitoneal administration of flagellin 

both in naive and IAV-infected animals, thus ruling out the possible role of IL-18 in flagellin-

mediated anti-IAV effect (Supplementary Fig.). We next evaluated the role of IL-22 upon 

flagellin-administration in the IAV respiratory infection context. We first showed that 

systemic administration of flagellin induced a strong production of IL-22 in the blood 2 h 

post administration both in non-infected and H3N2-infected animals (Fig. 4A-B). Strong 

expression of Il22 was also observed in the lungs of naïve mice treated with flagellin 

(Supplementary Fig.). The contribution of IL-22 in the flagellin-mediated anti-viral effect 

was then analyzed in Il22-/- mice by measuring the levels of viral RNA at 48 h post infection 

after flagellin treatments (Fig. 4A). As in IL-22 proficient mice, IAV RNA levels were 

significantly lower (7.5 fold decrease) in flagellin-treated Il22-/- mice than in PBS-receiving 

Il22-/- mice (Fig. 4C). These results indicate that IL-22, which is produced upon flagellin 

stimulation, is not required for the effect of flagellin on viral RNA production.  
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Systemic administration of flagellin boosts the anti-viral effect of oseltamivir 

We then investigated whether the reduction of viral RNA induced by flagellin could be 

improved by combination with a specific virus-targeted antiviral drug such as the 

neuraminidase inhibitor oseltamivir. This first line antiviral agent is recommended as per os 

administration to populations exposed to IAV-infected individuals for either prophylaxis 

and/or therapy. Mice were treated 12 h prior H3N2 infection and then 12 and 36 h post 

infection with either flagellin, oseltamivir or a combination of both compounds. A group of 

mice received PBS as untreated control. Viral RNA replication and virus production were 

analyzed 48h post viral challenge (Fig. 5A). First, we found that flagellin treatment 

statistically decreased the infectious virus titer by 4.5 fold thus confirming the impact of 

flagellin on the viral RNA levels (Fig. 5B, C). Interestingly, 5 µg of intranasal flagellin was 

as efficient as 4 mg/ml of oral oseltamivir to control the RNA replication and IAV production. 

The combination of flagellin and oseltamivir significantly reduced the levels of viral RNA and 

viral infectious particles by 38 and 163 fold, respectively, compared to untreated animals 

(Fig. 5B, C). The combination therapy is also more effective at reducing RNA replication 

than flagellin or oseltamivir standalone treatments. We did not observe any significant 

reduction of the infectious particles with the combination therapy compared to the 

standalone treatments. However, in 50% of flagellin + oseltamivir-treated animals, PFU 

numbers were below the limit of detection compared to 28 % for the oseltamivir group and 

0% for the flagellin group. These results suggest that a combination of flagellin and 

oseltamivir may enhance the antiviral effect of each compound taken separately. 

 

DISCUSSION 

 

Immunomodulation targeting TLR signaling represents a promising approach to control 

infectious diseases (Savva and Roger, 2013; Hedayat et al., 2011; Mifsud et al., 2014). In 

the present study, we showed for the first time that treatment of mice with the TLR5 agonist 
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flagellin alters influenza virus replication in the lung, independently of the route of 

administration (systemic or respiratory). We know from several infectious models that the 

biological effect of flagellin is at least in part dependent on the administration route (Vijayan 

et al., 2018): mucosal administration rather stimulates the epithelium, resulting in the 

recruitment of neutrophils and the production of antimicrobial molecules, while a systemic 

treatment activates dendritic cells that lead to the activation of T helper and type 3 innate 

lymphoid cells.  

Nevertheless, the mechanism by which flagellin reduces influenza replication is yet 

unknown. As flagellin mainly affects viral RNA production, one can speculate that the TLR5 

agonist affects the genomic transcription and replication of the influenza virus. Replication 

of IAV is a complex mechanism involving many host factors (Villalon-Letelier et al., 2017). 

It would be relevant to know whether these molecules are modulated upon flagellin 

stimulation and what stage(s) of the viral RNA production is impacted by flagellin (negative-

sense viral RNA replication, complementary positive sense RNA production or viral RNA 

transcription). 

Our results also reinforced the proof-of-concept that flagellin is able to trigger antiviral 

defenses (Zhang et al., 2014; Hossain et al., 2014). Hossain et al. showed in a model of 

liver colonization by the murine CMV that the decrease of viral load by flagellin correlated 

with the presence of NK cells suggesting a major role of these cells (Hossain et al., 2014). 

A detailed analysis of pulmonary cellular populations is required to evaluate the participation 

of NK cells but also other immune cells in flagellin-mediated control of IAV replication. In 

the case of rotavirus intestinal infection, Zhang et al. demonstrated that IL-22 was required 

for flagellin-mediated protection (Zhang et al., 2014). IL-22 is involved in host defense 

mechanisms at the respiratory and intestinal mucosal surfaces and is produced after 

systemic administration of flagellin in mice. (Van Maele et al., 2010; Van Maele et al., 2014b; 

Kinnebrew et al., 2012). In our study, although we confirmed the IL-22 production after 

flagellin administration, IL-22-deficient mice still managed to reduce M1 RNA upon flagellin 

treatment, indicating that this cytokine was dispensable for the antiviral effect of flagellin. 
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These results are in accordance with prior studies showing that IL-22, produced in the blood 

and lungs during IAV infection, is not involved in the control of the IAV replication (Guo and 

Topham, 2010; Ivanov et al., 2013).  

Surprisingly, we also demonstrated that the effect of flagellin on viral replication was 

independent of type I IFN, yet recognized as the main first line of defense against viruses. 

This type I IFN independent anti-influenza response was also demonstrated with TLR2 

agonists as well as with the association of TLR2/6 and TLR9 agonists, hence suggesting 

that antiviral pathways induced through stimulation of these TLRs and TLR5 are 

independent of the canonical IFN response (Tan et al., 2012; Tuvim et al., 2012). 

Nevertheless, we found that flagellin activates several interferon-stimulated genes (ISG), 

which may indicate the possibility of a TLR5-dependent, interferon-independent activation 

of these genes.  

We previously showed that administration of flagellin through the respiratory tract could 

improve the therapeutic index of antibiotics in the context of pneumococcal infection and 

post-IAV bacterial pneumonia (Porte et al., 2015). Here, we demonstrated that the 

combination of flagellin and oseltamivir strongly decreases the level of viral M1 RNA, 

significantly enhancing the antiviral effect of each standalone treatment. In that regard, the 

effect of a therapy combining a TLR agonist and a specific influenza-targeted antiviral 

molecule like oseltamivir has been described elsewhere. Indeed, Lau et al. showed that co-

administration of TLR3 agonist with oseltamivir reduced pulmonary viral titers of mice 

infected with H5N1 virus, compared to oseltamivir alone (Lau et al., 2010). More recently, 

Leiva-Suarez et al. reported that aerosol administration of TLR2/6 and TLR9 agonists 

associated with oseltamivir improved mouse survival after lethal influenza A pneumonia 

(Leiva-Juarez et al., 2018). Altogether, our data contribute to highlight the therapeutic 

potential of the association of molecules with distinct modes of action : a neuraminidase 

inhibitor with a direct effect on viral infectivity but with a narrow therapeutic window, and 

stimulators of innate immunity acting on host cells by inducing antiviral pathways with longer 

lasting effect.  
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FIGURE LEGENDS 

 

Figure 1: Intranasal or systemic administration of flagellin activates antiviral genes 

in the lung. C57BL/6 male mice (n=4) were treated intranasally (A) or intraperitoneally (B) 

with 5 µg of flagellin in phosphate-buffered saline. Lungs were sampled at 2h and 4h and 

mRNA was quantified by qRT-PCR. Relative expression was normalized to the expression 

of mock animals (arbitrarily set to a value of 1). Results are represented as the mean. 

Statistical significance relative to mock group was assessed by one-way ANOVA with 

Dunnett’s multiple comparison test (*: P <0,05 ; **: P <0,01, ***: P <0.001) 

 

Figure 2: Systemic and mucosal administration of flagellin altered viral RNA 

replication in the lung. 

(A) Male C57BL/6 mice (n=5 to 6) were infected intranasally with H3N2 (30 PFU). Twelve 

hours before infection and 12, 36, 60 and 84 h post-infection, mice received 5 µg of flagellin 

intranasally (B) or intraperitoneally (C). Lungs were sampled 24, 48 or 96 h post infection 

for viral RNA quantification using quantitative RT-PCR. Values correspond to the absolute 

copy number of the M1 viral RNA / 12.5 ng of total lung RNA. The solid line corresponds to 

the median value and the dashed line represents the detection threshold. A representative 

experiment out of two is shown. Statistical significance was assessed by Mann-Whitney test 

(**: P <0,01). 

 

Figure 3: The type I interferon pathway is not required for the flagellin-mediated effect 

on viral RNA production. Ifnar-/- mice (n=4 to 6) were infected intranasally with H3N2 (30 

PFU) and treated intraperitoneally with 5 µg of flagellin twelve hours before infection and 

12, 36, 60 and 84 h post-infection. Lungs were sampled 48 and 96 h post infection for viral 

RNA quantification using quantitative RT-PCR. Values correspond to the absolute copy 

number of the M1 viral RNA / 12.5 ng of total lung RNA. The solid line corresponds to the 
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median value and the dashed line represents the detection threshold. Statistical significance 

was assessed by Mann-Whitney test (*: P <0.05 ; **: P <0.01) 

 

Figure 4 : IL-22 is not required for flagellin-mediated decrease of viral H3N2 M1 RNA 

levels. (A) Male C57BL/6 or Il22-/- mice (n = 7) were infected intranasally with H3N2 (30 

PFU). Twelve hours before infection and 12 and 36h post-infection, mice received 

intraperitoneally 5 µg of flagellin or PBS as control. (B) Blood was sampled in C57BL/6 mice 

10 h before infection and 38 h post-viral challenge for serum cytokine analysis. IL-22 levels 

in serum were measured by ELISA. Results are given as mean with standard deviation. As 

expected IL-22 was not detected in Il22-/- mice (data not shown). Statistical significance (**: 

P <0.01) compared to PBS-treated group was assessed by Mann-Whitney test. (C) Lungs 

were sampled at 48 h post-infection for viral RNA quantification using quantitative RT-PCR. 

Values correspond to the absolute copy number of M1 viral RNA / 12.5 ng of total lung RNA. 

The solid line corresponds to the median value and the dashed line represents the detection 

threshold. One representative experiment out of two is shown. Statistical significance was 

assessed by Mann-Whitney test (**: P <0.01, ***: P <0.001). 

 

Figure 5 : Systemic administration of flagellin boosts the effect of oseltamivir 

(A) Male C57BL/6 mice (n = 11) were infected intranasally with H3N2 (30 PFU). Twelve 

hours before infection and 12 and 36 h post-infection, mice received either 5 µg of flagellin 

intraperitoneally, 4 mg/kg of oseltamivir (OSL 4) intragastrically, or a combination of flagellin 

with oseltamivir. A group of mice was left untreated (PBS). Lungs were sampled 48 h post 

infection. (B) Viral RNA quantification using quantitative RT-PCR. Values correspond to the 

absolute copy number of M1 viral RNA / 12.5 ng of total lung RNA. (C) Infectious viral titers 

defined as plaque forming units (PFU) / g of lung tissue. The solid line corresponds to the 

median value. The dashed line represents the detection threshold. Statistical significance 

was assessed by Mann-Whitney test (*: P <0.05; **: P <0.01; ***: P <0.001). 

 



Highlights for “Toll-like receptor 5 agonist flagellin reduces Influenza A Virus replication 

independently of type I interferon and interleukin 22 and improves antiviral efficacy of 

oseltamivir” 

 Flagellin, agonist of Toll-like receptor 5 (TLR5), induces expression of anti-viral genes 

in lungs. 

 Systemic and mucosal flagellin treatment reduces of influenza A virus replication in 

mice. 

 The decrease of IAV RNA levels upon flagellin administration is independent of type I 

interferon and IL-22 signaling. 

 Systemic administration of flagellin boosts the anti-viral effect of oseltamivir. 
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FRANCE

ABSTRACT

Influenza infections remain a burden on health care systems despite vaccination programs 

and marketed antiviral drugs. Immunomodulation through activation of innate sensors could 

represent innovative approaches to fight the flu. This study evaluated the ability of flagellin, 

agonist of Toll-like receptor 5 (TLR5), to control the replication of influenza A virus (IAV) in 

mice. First, we showed that systemic or intranasal administration of flagellin activated 

transcription of anti-viral genes in lung tissue. Prophylactic and therapeutic flagellin 

administration resulted in decreased levels of viral RNA and infectious virus in the lungs of 

H3N2 IAV-infected mice. The effect of the flagellin on viral replication was also observed in 

Ifnar-/- and Il22-/- IAV-infected mice, suggesting a mechanism independent of type I 

interferon and interleukin 22 signaling. In addition, a combination therapy associating the 

neuraminidase inhibitor oseltamivir and flagellin was more effective than standalone 

treatments in reducing pulmonary viral replication. Thus, this study highlights the 

therapeutic potential of the flagellin to control the replication of the influenza virus. 
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INTRODUCTION

Influenza viruses are responsible for human seasonal epidemics and pandemic 

outbreaks and cause respiratory illness in humans with the potential for severe 

complications in young children, the elderly, immuno-compromised individuals, and patients 

with chronic cardiovascular or respiratory diseases. Annually, 3–5 million cases of serious 

illness are caused by influenza virus infections resulting in 250,000 to 500,000 deaths 

worldwide (Horimoto and Kawaoka, 2005). Therapeutic interventions are limited to sub-

optimal vaccination and few drugs. Among them, neuraminidase inhibitors such as 

oseltamivir are widely used for the oral treatment of uncomplicated acute illness due to 

influenza but are also recommended for pre-exposure prophylaxis among at-risk individuals 

in contact with flu patients (Fiore et al., 2011).

Because of the narrow therapeutic window of the neuraminidase inhibitors and the 

recurrent emergence of drug-resistant strains, new antiviral strategies are needed 

(Govorkova et al., 2013). The stimulation of innate immunity could be an alternative 

therapeutic approach to current treatments as it induces local production of antimicrobial 

molecules and the recruitment of effector cells involved in controlling infection (Hancock et 

al., 2012; Iwasaki and Pillai, 2014). The Toll-like receptors (TLRs) are sensors of innate 

immunity involved in the recognition of conserved microbe-associated molecular patterns 

(Kawai and Akira, 2010). The activation of TLRs by microbial components triggers signaling 

cascades and promotes the archetypal pro-inflammatory responses involved in 

antimicrobial defense (Kawai and Akira, 2010). In view of their broad cellular distribution 

and important role in immunity, TLRs have emerged as therapeutic targets against bacterial 

and viral infections (Hancock et al., 2012; Savva and Roger, 2013; Hedayat et al., 2011; 

Mifsud et al., 2014). 

In this context, experimental models showed that various agonists of TLRs could 

protect against influenza virus infections: agonists for TLR2, TLR3, TLR7, TLR8 and TLR9, 

as standalone treatments or in combination, stimulate innate immune responses able to 

protect against influenza A virus (IAV) infection in mammals as well as in poultry (Tan et al., 
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2012; Mifsud et al., 2016; Tuvim et al., 2012; Wong et al., 2009; Lau et al., 2010; Zhao et 

al., 2012; Jiang et al., 2011; Norton et al., 2010; Wu et al., 2007; Hammerbeck et al., 2007; 

Barjesteh et al., 2015). Interestingly, most of the agonists were administrated through the 

respiratory route as prophylaxis, indicating that the pre-stimulation of the local innate 

immune response can control the viral replication. 

TLR5 recognizes flagellin, the structural protein of bacterial flagella and is expressed 

at the surface of macrophages, dendritic cells and epithelial cells. Like other TLR agonists, 

flagellin has immunomodulatory properties that can control numerous bacterial infections 

(Munoz et al., 2010; Yu et al., 2010; Jarchum et al., 2011; Kinnebrew et al., 2010; Vijayan 

et al., 2018). Recently, it has also been shown that repeated systemic administration of 

flagellin prevents rotavirus infection in mice through a mechanism dependent on interleukin 

22 (IL-22) and IL-18 (Zhang et al., 2014). Prophylactic systemic administration of flagellin 

also protects mice against lethal infection with cytomegalovirus (Hossain et al., 2014). We 

recently demonstrated in mice that intranasal administration of flagellin improves the 

therapeutic index of antibiotics in the treatment of post-influenza virus bacterial pneumonia 

(Porte et al., 2015), but the role of flagellin in the control of influenza virus replication has 

never been studied. However, the capacity of flagellin to trigger the production of host 

antimicrobial molecules and the recruitment of innate cells after intranasal administration 

presages a role for flagellin against influenza viruses (Porte et al., 2015; Vijayan et al., 2018; 

Van Maele et al., 2014a).

In the present study, we analyzed the pulmonary antiviral response in mice upon 

respiratory or systemic flagellin administration, and tested the ability of flagellin to interfere 

with IAV replication. We also evaluated the role of type I interferons and IL-22 in the flagellin-

mediated antiviral mechanism, as well as the potential impact of a combination of flagellin 

with oseltamivir on IAV production. 
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MATERIALS & METHODS

Mouse model of infection

Female or male C57BL/6J (6- to 12-week-old) mice (Janvier Laboratories, Saint-Berthevin, 

France) and female or male Il22-/- and Ifnar-/- mice (backcrossed on C57BL/6J) were 

maintained in individually ventilated cages and handled in a vertical laminar flow cabinet 

(class II A2; Esco, Hatboro, PA). All experiments complied with current national and 

institutional regulations and ethical guidelines (B59-350009, Institut Pasteur de Lille protocol 

number: 2015121722376405). For the viral infection, mice were anesthetized by 

intraperitoneal injection of 1.25 mg of ketamine plus 0.25 mg of xylazine in 250 µl of 

phosphate buffered saline (PBS), and then intranasally infected with 50 µl of PBS containing 

30 plaque forming units (PFU) of the highly pathogenic murine-adapted H3N2 influenza A 

virus strain Scotland/20/74 (Ivanov et al., 2013; Paget et al., 2012). The lethal dose 50 

(LD50) of the H3N2 strain is 68 PFU in C57BL/6 mice. At selected time-points, mice were 

sacrificed through intraperitoneal injection of 5.47 mg of sodium pentobarbital in 100 µl of 

PBS, and their lungs were aseptically recovered.

Flagellin administration

The native flagellin (FliC, GenBank accession no. AAL20871) was isolated from the 

Salmonella enterica Serovar Typhimurium strain SIN22, as described previously (Nempont 

et al., 2008; Didierlaurent et al., 2008). Using the Limulus assay (Associates of Cape Cod, 

Inc., East Falmouth, MA), the residual LPS concentration was determined to be < 20 pg per 

µg of flagellin. To ensure that flagellin was mostly monomeric, it was heated for 10 min at 

65°C before use. Flagellin was administered either intranasally (5 µg of FliC in 30 µl of 

PBS), under light anesthesia by inhalation of isoflurane (Axience, Pantin, France) either 

intraperitoneally (5 µg of FliC in 200 µl of PBS).
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Oseltamivir administration

Tablets of oseltamivir phosphate (Tamiflu® 30 mg, Roche Pharma AG, Grenzach-Wyhlen, 

Germany) were solubilized in 1 ml of sterile water to a 30 mg/ml stock concentration, 

vortexed, and sonicated in a water bath at room temperature for 5 min. Mice were given 

oseltamivir by oral gavage once a day at 4 mg/kg/day diluted in sterile water, in a total 

volume of 200 µl.

Viral and murine RNA analysis

Total RNA was extracted with the NucleoSpin RNA II kit (Macherey-Nagel, Duren, 

Germany). For H3N2 RNA detection, 500 ng of total lung RNA were reverse transcribed 

with Superscript II Reverse Transcriptase (Invitrogen) in the presence of IAV specific 

primers targeting the segment 7 which encodes the matrix protein 1 (M1) (5’ 

TCTAACCGAGGTCGAAACGTA 3’). The cDNA was amplified by Taqman real-time PCR 

using Taqman probe FAM-TTTGTGTTCACGCTCACCGTGCC-TAMRA with forward 

primer: AAGACCAATCCTGTCACCTCTGA and reverse primer: 

CAAAGCGTCTACGCTGCAGTCC. A plasmid coding the M1 gene was serially diluted to 

establish a standard curve (Ct values / plasmid copies) (Meyer et al., 2017). Equivalent of 

12.5 ng of total lung RNA was thoroughly used to determine the level of M1 RNA in the lung 

of infected animals by absolute quantification (Meyer et al., 2017).

For mouse gene expression quantification, total lung RNAs were reverse transcribed with 

the high-capacity cDNA archive kit and random primers (Applied Biosystems, Foster City, 

CA). The cDNA was amplified using SYBR green-based real-time PCR using primers listed 

in Supplementary Table 1. Relative mRNA levels (2-∆∆Ct) were determined by comparing 

first the PCR cycle thresholds (Ct) for the gene of interest and -actin, the housekeeping 

gene (∆Ct) and second, the ∆Ct values for the treated and untreated (mock) groups (∆∆Ct). 

The Ct threshold was set to 35 cycles.
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PCR experiments were all performed and analyzed using a QuantStudio 12K Flex Real-

Time PCR System (Applied Biosystems).

Determination of infectious lung viral titers

For determination of the viral load in the lungs, mice were sacrificed at the indicated time 

point and lungs were collected, weighted and immediately frozen in liquid nitrogen. Lungs 

were then homogenized with an Ultra-Turrax homogenizer (IKA-Werke, Staufen, Germany), 

centrifuged (2500 x g, 5 min, 4°C), and the supernatants were kept at 80°C until viral titration 

by standard plaque assay (Hatakeyama et al., 2005). Briefly, 6 serial 10-fold dilutions of 

samples were prepared in Eagle’s Minimum Essential Medium (EMEM, Lonza, Verviers, 

Belgium) complemented with trypsin 1 µg/ml, and subsequently inoculated onto confluent 

Madin-Darby Canine Kidney (MDCK) cell monolayers prepared in 6-well plates. After 1h 

incubation for viral adsorption, the inoculum was removed and wells were covered with 2 

ml of overlay medium (1% Noble agar in EMEM) with trypsin 1 µg/ml. The plates were 

incubated at 37°C under 5% CO2 and viral titers in plaque forming units (PFU) were 

determined 3 days after inoculation. 

Cytokine assays

Serum IL-22 levels were measured by enzyme-linked immunosorbent assay (ELISA) 

following manufacturer’s instructions (eBioscience, Thermo Fisher Scientific, Waltham, 

MA).

Statistical analysis

The results are expressed as means or medians +/- standard deviations (SD). Statistical 

differences were analyzed using the Mann-Whitney test or one-way ANOVA assay with 

Dunnett’s multiple comparison test (GraphPad Prism5.0a) and were considered to be 

statistically significant for P values < 0.05. 
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RESULTS

Flagellin induces expression of anti-viral genes in the lung

Previously, microarrays were performed on lungs of C57BL/6 mice at 2, 4 and 18 h after a 

single intranasal administration of flagellin. Analysis of the transcriptional changes upon 

flagellin treatment were compared to PBS (mock)-treated animals and highlighted gene 

pathways related to granulocyte adhesion and diapedesis, acute phase response, or 

recognition of microbes through pattern recognition receptors, among others 

(http://mace.ihes.fr, accession no. 2176499768) (Fougeron et al., 2015). The transcriptomic 

analysis also revealed that flagellin activates the pathways involved in antiviral responses, 

the impact of flagellin on these pathways appearing to be greater at 4 h than at 2 or 18 h 

(Table 1). We then focused on the genes involved in the different pathways and identified 

a set of genes which the expression significantly increased upon flagellin stimulation (fold 

increase > 2) (Table 2). Different profiles of gene expression were observed. The gene 

encoding for the cholesterol 25-hydroxylase (Ch25h), which converts cholesterol to a 

soluble 25-hydroxycholesterol and blocks viral fusion (Blanc et al., 2013; Liu et al., 2013) 

was found to be upregulated at 2 and 4 h compared to the mock group. Expression of some 

genes was gradually upregulated from 2 to 4 h post-treatment. This includes the interferon 

gamma inducible 47 and 204 genes (Ifi47 and Ifi204) encoding antiviral GTPase and an 

antiviral innate immune sensor (Collazo et al., 2001; Conrady et al., 2012), and the 

interferon-induced transmembrane protein 5 and 6 (Ifitm5 and Ifitm6) that belong to a family 

of inhibitors of viral entry (Huang et al., 2011; Brass et al., 2009). Finally, other genes were 

exclusively upregulated at 4 h post-treatment. This is the case of the genes encoding the 

radical S-adenosyl methionine domain containing 2 (Rsad2) and the interferon-stimulated 

gene 15 ubiquitin-like modifier (Isg15) which products interferes with the formation of the 

lipid raft during the virus budding (Wang et al., 2007) and targets newly translated viral 
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proteins for modification, respectively (Lenschow et al., 2007; Morales and Lenschow, 

2013). For all the genes, the baseline expression was recovered after 18h indicating a 

transient effect of the flagellin.

The transcriptomic study was confirmed by testing the expression of the identified genes by 

real time qPCR, in the lung at 2 and 4 h after intranasal instillation of flagellin (Fig. 1A). We 

also analyzed the transcriptional response of the selected genes after systemic 

administration of flagellin (Fig. 1B). Interestingly, the transcriptomic response for the 

selected genes was globally similar between the two routes of administration, 

demonstrating that a systemic administration of flagellin can activate antiviral genes in the 

lung tissue. We also observed (i) a reduced variation in the gene expression after the 

systemic route compared to the intranasal route and (ii) a peak expression at 4h post-

flagellin administration thus confirming the transcriptomic analysis. As expected, flagellin 

was able to stimulate >50-fold expression of Ccl20 and Saa3, surrogate markers of effective 

stimulation of lung innate immunity by flagellin (Van Maele et al., 2010). 

Systemic and mucosal flagellin treatment induces a decrease of influenza genomic 

RNA levels 

We then tested in an experimental model of infection whether the flagellin-mediated antiviral 

transcriptomic response was associated with a decrease in IAV replication in the lung. The 

model consists of the intranasal inoculation of mice with a sublethal dose of H3N2 influenza 

A virus (IAV, 30 PFU), combined with intranasal treatments with 5 µg of flagellin (or PBS as 

control intervention) every 24 h, starting 12 h prior infection (Fig. 2A). Viral replication was 

followed by measuring the RNA levels of M1 genomic RNA in lung homogenates at 24, 48 

and 96 h post-infection, through absolute quantification using Taqman-based real time PCR 

with a calibrating curve. We found an increase in H3N2 M1 RNA levels from 24 to 96 h post-

infection, hence indicating efficient viral replication (Fig. 2B). At 48 h post-infection, the level 

of M1 RNA copies in lung of flagellin-treated animals was 7.3 fold lower than in mice 

receiving PBS, indicating an effect of the flagellin on the viral RNA replication. A similar yet 
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milder trend (2.3 fold decrease compared to PBS-treated mice) was also observed at 96 h 

post-infection (Fig. 2B). 

As flagellin showed antiviral properties through the systemic route (Zhang et al., 2014; 

Hossain et al., 2014), we also treated the H3N2-infected animals with 5 µg of flagellin 

through the intraperitoneal route (Fig. 2C). Interestingly, when IAV-infected animals were 

treated by flagellin, we observed an 18.3 fold decrease on viral RNA levels at 48 h post-

infection compared to the PBS-treated group. A significant decrease (1.9 fold) of the M1 

RNA levels was also observed at 96 h post-infection in the flagellin-treated group. These 

results indicate that systemic administration of flagellin has a stronger effect on viral 

replication than intranasal administration.

The decrease of viral RNA levels upon flagellin administration is independent of 

type I interferon signaling

Most of the genes identified in the transcriptomic study (Table 2) are under the control of 

type I interferon (IFN and IFN), therefore suggesting a role of these interferons in the 

flagellin-mediated effect. To assess the putative role of type I IFN signaling, the levels of 

viral RNA were quantified after flagellin treatment in mice deficient in the type I interferon 

receptor (Ifnar-/-). These mice were infected by IAV H3N2 and treated with flagellin by 

systemic administration before monitoring viral RNA in lungs as mentioned before (Fig. 2A). 

Flagellin induced significant 3.6 and 9 fold decrease of IAV M1 RNA at 48 and 96 h, 

respectively (Fig. 3). These results show that type I IFN signaling is not required for the 

flagellin-mediated reduction of IAV replication. This is also consistent with microarray data 

that did not indicate any upregulation of IFN or IFN-specific transcripts in the lungs of 

flagellin-treated animals (http://mace.ihes.fr, accession no. 2176499768). Furthermore, 

systemic or respiratory administration of flagellin did not increase the pulmonary expression 

of Ifnl2 or Ifnl3 coding for type III IFN that were previously associated with influenza virus 

clearance in mice (data not shown) (Mordstein et al., 2008). Altogether, these results 
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strongly suggest that interferons are not associated with the flagellin-mediated antiviral 

effect.

The effect of flagellin on viral RNA replication is independent of interleukin 22 (IL-22)

Flagellin has previously been shown to protect against rotavirus intestinal infection through 

production of IL-22 together with IL-18 (Zhang et al., 2014). First, we found that flagellin did 

not stimulate Il18 transcription in the lungs after intraperitoneal administration of flagellin 

both in naive and IAV-infected animals, thus ruling out the possible role of IL-18 in flagellin-

mediated anti-IAV effect (Supplementary Fig.). We next evaluated the role of IL-22 upon 

flagellin-administration in the IAV respiratory infection context. We first showed that 

systemic administration of flagellin induced a strong production of IL-22 in the blood 2 h 

post administration both in non-infected and H3N2-infected animals (Fig. 4A-B). Strong 

expression of Il22 was also observed in the lungs of naïve mice treated with flagellin 

(Supplementary Fig.). The contribution of IL-22 in the flagellin-mediated anti-viral effect 

was then analyzed in Il22-/- mice by measuring the levels of viral RNA at 48 h post infection 

after flagellin treatments (Fig. 4A). As in IL-22 proficient mice, IAV RNA levels were 

significantly lower (7.5 fold decrease) in flagellin-treated Il22-/- mice than in PBS-receiving 

Il22-/- mice (Fig. 4C). These results indicate that IL-22, which is produced upon flagellin 

stimulation, is not required for the effect of flagellin on viral RNA production. 
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Systemic administration of flagellin boosts the anti-viral effect of oseltamivir

We then investigated whether the reduction of viral RNA induced by flagellin could be 

improved by combination with a specific virus-targeted antiviral drug such as the 

neuraminidase inhibitor oseltamivir. This first line antiviral agent is recommended as per os 

administration to populations exposed to IAV-infected individuals for either prophylaxis 

and/or therapy. Mice were treated 12 h prior H3N2 infection and then 12 and 36 h post 

infection with either flagellin, oseltamivir or a combination of both compounds. A group of 

mice received PBS as untreated control. Viral RNA replication and virus production were 

analyzed 48h post viral challenge (Fig. 5A). First, we found that flagellin treatment 

statistically decreased the infectious virus titer by 4.5 fold thus confirming the impact of 

flagellin on the viral RNA levels (Fig. 5B, C). Interestingly, 5 µg of intranasal flagellin was 

as efficient as 4 mg/ml of oral oseltamivir to control the RNA replication and IAV production. 

The combination of flagellin and oseltamivir significantly reduced the levels of viral RNA and 

viral infectious particles by 38 and 163 fold, respectively, compared to untreated animals 

(Fig. 5B, C). The combination therapy is also more effective at reducing RNA replication 

than flagellin or oseltamivir standalone treatments. We did not observe any significant 

reduction of the infectious particles with the combination therapy compared to the 

standalone treatments. However, in 50% of flagellin + oseltamivir-treated animals, PFU 

numbers were below the limit of detection compared to 28 % for the oseltamivir group and 

0% for the flagellin group. These results suggest that a combination of flagellin and 

oseltamivir may enhance the antiviral effect of each compound taken separately.

DISCUSSION

Immunomodulation targeting TLR signaling represents a promising approach to control 

infectious diseases (Savva and Roger, 2013; Hedayat et al., 2011; Mifsud et al., 2014). In 

the present study, we showed for the first time that treatment of mice with the TLR5 agonist 
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flagellin alters influenza virus replication in the lung, independently of the route of 

administration (systemic or respiratory). We know from several infectious models that the 

biological effect of flagellin is at least in part dependent on the administration route (Vijayan 

et al., 2018): mucosal administration rather stimulates the epithelium, resulting in the 

recruitment of neutrophils and the production of antimicrobial molecules, while a systemic 

treatment activates dendritic cells that lead to the activation of T helper and type 3 innate 

lymphoid cells. 

Nevertheless, the mechanism by which flagellin reduces influenza replication is yet 

unknown. As flagellin mainly affects viral RNA production, one can speculate that the TLR5 

agonist affects the genomic transcription and replication of the influenza virus. Replication 

of IAV is a complex mechanism involving many host factors (Villalon-Letelier et al., 2017). 

It would be relevant to know whether these molecules are modulated upon flagellin 

stimulation and what stage(s) of the viral RNA production is impacted by flagellin (negative-

sense viral RNA replication, complementary positive sense RNA production or viral RNA 

transcription).

Our results also reinforced the proof-of-concept that flagellin is able to trigger antiviral 

defenses (Zhang et al., 2014; Hossain et al., 2014). Hossain et al. showed in a model of 

liver colonization by the murine CMV that the decrease of viral load by flagellin correlated 

with the presence of NK cells suggesting a major role of these cells (Hossain et al., 2014). 

A detailed analysis of pulmonary cellular populations is required to evaluate the participation 

of NK cells but also other immune cells in flagellin-mediated control of IAV replication. In 

the case of rotavirus intestinal infection, Zhang et al. demonstrated that IL-22 was required 

for flagellin-mediated protection (Zhang et al., 2014). IL-22 is involved in host defense 

mechanisms at the respiratory and intestinal mucosal surfaces and is produced after 

systemic administration of flagellin in mice. (Van Maele et al., 2010; Van Maele et al., 2014b; 

Kinnebrew et al., 2012). In our study, although we confirmed the IL-22 production after 

flagellin administration, IL-22-deficient mice still managed to reduce M1 RNA upon flagellin 

treatment, indicating that this cytokine was dispensable for the antiviral effect of flagellin. 
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These results are in accordance with prior studies showing that IL-22, produced in the blood 

and lungs during IAV infection, is not involved in the control of the IAV replication (Guo and 

Topham, 2010; Ivanov et al., 2013). 

Surprisingly, we also demonstrated that the effect of flagellin on viral replication was 

independent of type I IFN, yet recognized as the main first line of defense against viruses. 

This type I IFN independent anti-influenza response was also demonstrated with TLR2 

agonists as well as with the association of TLR2/6 and TLR9 agonists, hence suggesting 

that antiviral pathways induced through stimulation of these TLRs and TLR5 are 

independent of the canonical IFN response (Tan et al., 2012; Tuvim et al., 2012). 

Nevertheless, we found that flagellin activates several interferon-stimulated genes (ISG), 

which may indicate the possibility of a TLR5-dependent, interferon-independent activation 

of these genes. 

We previously showed that administration of flagellin through the respiratory tract could 

improve the therapeutic index of antibiotics in the context of pneumococcal infection and 

post-IAV bacterial pneumonia (Porte et al., 2015). Here, we demonstrated that the 

combination of flagellin and oseltamivir strongly decreases the level of viral M1 RNA, 

significantly enhancing the antiviral effect of each standalone treatment. In that regard, the 

effect of a therapy combining a TLR agonist and a specific influenza-targeted antiviral 

molecule like oseltamivir has been described elsewhere. Indeed, Lau et al. showed that co-

administration of TLR3 agonist with oseltamivir reduced pulmonary viral titers of mice 

infected with H5N1 virus, compared to oseltamivir alone (Lau et al., 2010). More recently, 

Leiva-Suarez et al. reported that aerosol administration of TLR2/6 and TLR9 agonists 

associated with oseltamivir improved mouse survival after lethal influenza A pneumonia 

(Leiva-Juarez et al., 2018). Altogether, our data contribute to highlight the therapeutic 

potential of the association of molecules with distinct modes of action : a neuraminidase 

inhibitor with a direct effect on viral infectivity but with a narrow therapeutic window, and 

stimulators of innate immunity acting on host cells by inducing antiviral pathways with longer 

lasting effect. 
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FIGURE LEGENDS

Figure 1: Intranasal or systemic administration of flagellin activates antiviral genes 

in the lung. C57BL/6 male mice (n=4) were treated intranasally (A) or intraperitoneally (B) 

with 5 µg of flagellin in phosphate-buffered saline. Lungs were sampled at 2h and 4h and 

mRNA was quantified by qRT-PCR. Relative expression was normalized to the expression 

of mock animals (arbitrarily set to a value of 1). Results are represented as the mean. 

Statistical significance relative to mock group was assessed by one-way ANOVA with 

Dunnett’s multiple comparison test (*: P <0,05 ; **: P <0,01, ***: P <0.001)

Figure 2: Systemic and mucosal administration of flagellin altered viral RNA 

replication in the lung.

(A) Male C57BL/6 mice (n=5 to 6) were infected intranasally with H3N2 (30 PFU). Twelve 

hours before infection and 12, 36, 60 and 84 h post-infection, mice received 5 µg of flagellin 

intranasally (B) or intraperitoneally (C). Lungs were sampled 24, 48 or 96 h post infection 

for viral RNA quantification using quantitative RT-PCR. Values correspond to the absolute 

copy number of the M1 viral RNA / 12.5 ng of total lung RNA. The solid line corresponds to 

the median value and the dashed line represents the detection threshold. A representative 

experiment out of two is shown. Statistical significance was assessed by Mann-Whitney test 

(**: P <0,01).

Figure 3: The type I interferon pathway is not required for the flagellin-mediated effect 

on viral RNA production. Ifnar-/- mice (n=4 to 6) were infected intranasally with H3N2 (30 

PFU) and treated intraperitoneally with 5 µg of flagellin twelve hours before infection and 

12, 36, 60 and 84 h post-infection. Lungs were sampled 48 and 96 h post infection for viral 

RNA quantification using quantitative RT-PCR. Values correspond to the absolute copy 

number of the M1 viral RNA / 12.5 ng of total lung RNA. The solid line corresponds to the 
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median value and the dashed line represents the detection threshold. Statistical significance 

was assessed by Mann-Whitney test (*: P <0.05 ; **: P <0.01)

Figure 4 : IL-22 is not required for flagellin-mediated decrease of viral H3N2 M1 RNA 

levels. (A) Male C57BL/6 or Il22-/- mice (n = 7) were infected intranasally with H3N2 (30 

PFU). Twelve hours before infection and 12 and 36h post-infection, mice received 

intraperitoneally 5 µg of flagellin or PBS as control. (B) Blood was sampled in C57BL/6 mice 

10 h before infection and 38 h post-viral challenge for serum cytokine analysis. IL-22 levels 

in serum were measured by ELISA. Results are given as mean with standard deviation. As 

expected IL-22 was not detected in Il22-/- mice (data not shown). Statistical significance (**: 

P <0.01) compared to PBS-treated group was assessed by Mann-Whitney test. (C) Lungs 

were sampled at 48 h post-infection for viral RNA quantification using quantitative RT-PCR. 

Values correspond to the absolute copy number of M1 viral RNA / 12.5 ng of total lung RNA. 

The solid line corresponds to the median value and the dashed line represents the detection 

threshold. One representative experiment out of two is shown. Statistical significance was 

assessed by Mann-Whitney test (**: P <0.01, ***: P <0.001).

Figure 5 : Systemic administration of flagellin boosts the effect of oseltamivir

(A) Male C57BL/6 mice (n = 11) were infected intranasally with H3N2 (30 PFU). Twelve 

hours before infection and 12 and 36 h post-infection, mice received either 5 µg of flagellin 

intraperitoneally, 4 mg/kg of oseltamivir (OSL 4) intragastrically, or a combination of flagellin 

with oseltamivir. A group of mice was left untreated (PBS). Lungs were sampled 48 h post 

infection. (B) Viral RNA quantification using quantitative RT-PCR. Values correspond to the 

absolute copy number of M1 viral RNA / 12.5 ng of total lung RNA. (C) Infectious viral titers 

defined as plaque forming units (PFU) / g of lung tissue. The solid line corresponds to the 

median value. The dashed line represents the detection threshold. Statistical significance 

was assessed by Mann-Whitney test (*: P <0.05; **: P <0.01; ***: P <0.001).
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Georgel et al. Supplementary figure  

 

Supplementary figure: Flagellin treatment does not activate expression of IL-18 

encoding gene. (A) C57BL/6 mice (n=4) were treated intraperitoneally with 5 µg of flagellin in 

PBS. Lungs were sampled at 2h and 4h and mRNA was quantified by RT-qPCR. (C) C57BL/6 

mice (n=5 to 6) were infected intranasally with H3N2 (30 PFU). Twelve hours before infection 

and 12 and 36h post-infection, mice received 5 µg of flagellin intraperitoneally. Lungs were 

sampled 24 and 48 h post-infection (12h post-flagellin administration) and mRNA was 

quantified by RT-qPCR. (B, D) The relative gene expression was normalized to the expression 

of PBS-treated animals (arbitrarily set to a value of 1. Results are represented as the median 

with standard deviation.  

 

 



Table 1 : Antiviral canonical pathways up-regulated by flagellin

p-valuesa

 Canonical pathways
2h 4h 18h

Role of Pattern Recognition Receptors in Recognition of Bacteria 
and Viruses 3.55 10-9 7.08 10-10 7.24 10-4

Activation of IRF by Cytosolic Pattern Recognition Receptors 4.68 10-7 3.31 10-9 4.92 10-1

Role of PKR in Interferon Induction and Antiviral Response 1.02 10-6 7.94 10-12 2.30 10-2

Role of RIG1-like Receptors in Antiviral Innate Immunity 3.63 10-6 9.33 10-6 1.12 10-1

NF-κB Activation by Viruses 6.76 10-3 1.29 10-6 1.82 10-4

    

a Whole-genome expression microarrays were performed using lungs from C57BL/6 mice (n=3-5 per 

group) that were treated intranasally with flagellin for 2h, 4h and 18h and compared to mock-treated 

mice (http://mace.ihes.fr; accession no. 2176499768) (Fougeron, et al., 2015). After NeoNORM 

analysis, the gene lists containing group means of expression, p-values and standard fold changes 

were utilized as input for analysis of canonical pathways with Ingenuity Pathway Analysis 1.0 

software (IPA, Ingenuity Systems).

http://mace.ihes.fr


Table 2 : Intranasal administration of flagellin induces the transcription of anti-viral genes in 

the lung

 
Fold increasea

 Gene ID
Gene 

symbol Gene name

2h 4h 18h

12642 Ch25h cholesterol 25-hydroxylase 13.44 12.42 2.88

875318 Ifi204 interferon gamma-inducible protein 16 4.64 7.07 < 2

213002 Ifitm6 interferon induced transmembrane protein 6 4.23 7.82 < 2

73835 Ifitm5 interferon induced transmembrane protein 5 3.24 3.45 < 2

15953 Ifi47 interferon gamma inducible protein 47 3.08 4.42 < 2

58185 Rsad2 radical S-adenosyl methionine domain containing 2 < 2 10.94 < 2

100038882 Isg15 ISG15 ubiquitin-like modifier < 2 6.93 < 2
      

Whole-genome expression microarrays were performed using lungs from C57BL/6 mice (n=3-5 per 

group) that were treated intranasally with flagellin for 2h, 4h and 18h and compared to mock-treated 

mice (http://mace.ihes.fr; accession no. 2176499768) (Fougeron, et al., 2015). a The fold increase 

values correspond to the differential expression of genes at the indicated time after flagellin 

stimulation compared to mock-treated condition.

http://mace.ihes.fr
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Supplementary Table : Sequences of primers used for qRT-PCR  

 Actin 
Forward sequence : CGTCATCCATGGCGAACTG 

Reverse sequence : GCTTCTTTGCAGCTCCTTCGT 

Ccl20 
Forward sequence : TTTTGGGATGGAATTGGACAC 

Reverse sequence : TGCAGGTGAAGCCTTCAACC 

Ch25h 
Forward sequence : CCGGATCACATTACCTGGTC 

Reverse sequence : AAGACCTGGGCTGTTCCAG 

Ifi204 
Forward sequence : GCCAGCCCTAAGATCTGTGA 

Reverse sequence : TCTTTCGGTTCACTGTTTTCTTG 

Ifi47 
Forward sequence : GCGTTTCCTCCATCTTCACT 

Reverse sequence : ACCGGGTCTGTTTCTCACTG 

Ifitm5 
Forward sequence : GGTCTGTCTTCAGCACGATG 

Reverse sequence : CAGCCATCTTCTGGTCTCG 

Ifitm6 
Forward sequence : CCGGATCACATTACCTGGTC 

Reverse sequence : CATGTCGCCCACCATCTT 

Ifnb 
Forward sequence : CCTACAGGGCGGACTTCAAG 

Reverse sequence : GATGGCAAAGGCAGTGTAACTCT 

Ifnl2   
Forward sequence : AGGTCTGGGAGAACATGACTG 

Reverse sequence : CTGTGGCCTGAAGCTGTGTA 

Ifnl3 
Forward sequence : TCAGCCCTGACCACCATC 

Reverse sequence : CTGTGGCCTGAAGCTGTGTA 

Il18 
Forward sequence : CAAACCTTCCAAATCACTTCCT 

Reverse sequence : TCC-TTG-AAG-TTG-ACG-CAA-GA 

Isg15 
Forward sequence : AGTCGACCCAGTCTCTGACTCT 

Reverse sequence : CCCCAGCATCTTCACCTTTA 

Oasl1 
Forward sequence : GGTCATCGAGGCCTGTGT 

Reverse sequence : TGGGTCCAGGATGATAGGC 

Rsad2 
Forward sequence : GTGGACGAAGACATGAATGAAC 

Reverse sequence : TCAATTAGGAGGCACTGGAAA 

Saa3 
Forward sequence : GCCTGGGCTGCTAAAGTCAT 

Reverse sequence : TGCTCCATGTCCCGTGAA 

 


