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Abstract

Recurrent networks of non-linear units display a variety of dynamical regimes depending on

the structure of their synaptic connectivity. A particularly remarkable phenomenon is the

appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly

connected rate units. How this type of intrinsically generated fluctuations appears in more

realistic networks of spiking neurons has been a long standing question. To ease the com-

parison between rate and spiking networks, recent works investigated the dynamical

regimes of randomly-connected rate networks with segregated excitatory and inhibitory pop-

ulations, and firing rates constrained to be positive. These works derived general dynamical

mean field (DMF) equations describing the fluctuating dynamics, but solved these equations

only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory archi-

tecture in which DMF equations are more easily tractable, here we show that the presence

of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory net-

works. In presence of excitation, intrinsically generated fluctuations induce a strong increase

in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Exci-

tation moreover induces two different fluctuating regimes: for moderate overall coupling,

recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are

stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than

excitation. These results extend to more general network architectures, and to rate networks

receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the sec-

ond dynamical regime appear in networks of integrate-and-fire neurons.

Author summary

Electrophysiological recordings from cortical circuits reveal strongly irregular and highly

complex temporal patterns of in-vivo neural activity. In the last decades, a large number

of theoretical studies have speculated on the possible sources of fluctuations in neural

assemblies, pointing out the possibility of self-sustained irregularity, intrinsically gener-

ated by network mechanisms. In particular, a seminal study showed that purely determin-

istic, but randomly connected rate networks intrinsically develop chaotic fluctuations due
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to the recurrent feedback. In the simple and highly symmetric class of models considered

in classical works, the transition from stationary activity to chaos is characterized by the

behavior of the auto-correlation function and the critical slowing down of fluctuations.

Following up on recent works, here we combine analytical and numerical tools to investi-

gate the macroscopic dynamics generated by more realistic models of excitatory and

inhibitory rate units. We show that the presence of excitation leads to a strong signature

of the onset of chaos in the first-order statistics of the network activity, and that this effect

is highly robust with respect to spiking noise. We moreover find that excitation leads to

two different types of fluctuating activity at moderate and strong synaptic coupling, even

when inhibition dominates. Finally, we test the appearance of analogous dynamical

regimes in networks of integrate-and-fire neurons.

Introduction

Networks of excitatory and inhibitory neurons form the basic processing units in the cortex.

Understanding the dynamical repertoire of such networks is therefore essential for under-

standing their input-output properties and identifying potential computational mechanisms

in the brain.

One of the simplest models of a cortical network is a network of randomly connected units,

the activity of each unit being represented by its instantaneous firing rate. A seminal study

revealed that such networks can exhibit a transition from constant to strongly irregular activity

when the coupling is increased [1]. Above the transition, the network displays a state in which

the firing rates fluctuate strongly in time and across units, although the dynamics are fully

deterministic and there are no external inputs. Such internally generated fluctuating activity is

a signature of the chaotic nature of the dynamics [2–4], and the corresponding regime has

been referred to as rate chaos. Recently, it has been proposed that this type of activity can serve

as a substrate for complex computations [5]. Several works showed that the randomly con-

nected rate network is able to learn complex temporal dynamics and input-output associations

[6–8]. These computational properties may be related to the appearance of an exponential

number of unstable fixed points at the transition [9], and to the fact that dynamics are slow

and the signal-to-noise ratio maximal [10].

A natural question is whether actual cortical networks exhibit a dynamical regime analo-

gous to rate chaos [19]. The classical network model analyzed in [1] and subsequent studies [6,

7, 11–15] contains several simplifying features that prevent a direct comparison with more bio-

logically constrained models such as networks of spiking neurons. In particular, a major sim-

plification is a high degree of symmetry in both input currents and firing rates. Indeed, in the

classical model the synaptic strengths are symmetrically distributed around zero, and excit-

atory and inhibitory neurons are not segregated into different populations, thus violating

Dale’s law. The current-to-rate activation function is furthermore symmetric around zero, so

that the dynamics are symmetric under sign reversal. As a consequence, the mean activity in

the network is always zero, and the transition to the fluctuating regime is characterized solely

in terms of second order statistics.

To help bridge the gap between the classical model and more realistic spiking networks [18,

19], recent works have investigated fluctuating activity in rate networks that include additional

biological constraints [16, 17, 19], such as segregated excitatory-and-inhibitory populations,

positive firing rates and spiking noise [16]. In particular, two of those works [16, 17] extended

to excitatory-inhibitory networks the dynamical mean field (DMF) theory used for the analysis

Fluctuating activity in excitatory-inhibitory networks
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of rate chaos in classical works [1]. In general excitatory-inhibitory networks, the DMF equa-

tions however proved difficult to solve, and these works focused instead mostly on the case of

purely inhibitory networks. These works therefore left unexplained some phenomena observed

in simulations of excitatory-inhibitory spiking and rate networks [19–21], in particular the

observation that the onset of fluctuating activity is accompanied by a large elevation of mean

firing rate [19], and the finding that fluctuating activity at strong coupling is highly sensitive to

the upper bound [21].

Here we investigate the effects of excitation on fluctuating activity in inhibition-dominated

excitatory-inhibitory networks [22–27]. To this end, we focus on a simplified network archi-

tecture in which excitatory and inhibitory neurons receive statistically identical inputs [18].

For that architecture, dynamical mean field equations can be solved. We find that in presence

of excitation, the coupling between mean and the auto-correlation of the activity leads to a

strong increase of mean firing rates in the fluctuating regime [19], a phenomenon that is much

weaker in purely inhibitory networks. Moreover, as the coupling is increased, two different

regimes of fluctuating activity appear: at intermediate coupling, the fluctuations are of moder-

ate amplitude and stabilized by inhibition; at strong coupling, the fluctuations become very

large, and are stabilized only by an upper bound on the activity, even if inhibition globally

dominates. The second regime is highly robust to external or spiking noise, and appears also

in more general network architectures. Finally we show that networks of spiking neurons

exhibit signatures characteristic of these different regimes.

Results

We consider a large, randomly connected network of excitatory and inhibitory rate units simi-

lar to previous studies [16, 17]. The network dynamics are given by:

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxjðtÞÞ þ I ð1Þ

where N is the total number of units, xi represents the total input current to unit i, and Jij is the

strength of synaptic inputs from unit j to unit i. In most of the results which follow, we will not

include any external currents (I = 0). The function ϕ(x) is a monotonic, positively defined acti-

vation function that transforms input currents into output activity. For mathematical conve-

nience, in most of the analysis we use a threshold-linear activation with an upper-bound ϕmax

(see Methods).

We focus on a sparse, two-population synaptic matrix identical to [18, 19]. We first study

the simplest version in which all neurons receive the same number C� N of incoming connec-

tions (respectively CE = fC and CI = (1 − f)C excitatory and inhibitory inputs). All the excitatory

synapses have strength J and all inhibitory synapses have strength −gJ, but the precise pattern of

connections is assigned randomly. For such connectivity, excitatory and inhibitory neurons are

statistically equivalent as they receive statistically identical inputs. This situation greatly simpli-

fies the mathematical analysis, and allows us to obtain results in a transparent manner. In a sec-

ond step, we show that the obtained results extend to more general types of connectivity.

Emergence of fluctuations in deterministic networks

Dynamical systems analysis. For a fixed, randomly chosen connectivity matrix, the net-

work we consider is fully deterministic, and can therefore be examined in a first approach

using standard dynamical system techniques [28]. Such an analysis has been performed in a

number of previous studies (see e.g. [19, 23]), here we include it for completeness.

Fluctuating activity in excitatory-inhibitory networks
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As the inputs to all units are statistically identical, the network admits a homogeneous fixed

point in which the activity is constant in time and identical for all units, given by:

x0 ¼ JðCE � gCIÞ�ðx0Þ þ I: ð2Þ

The linear stability of this fixed point is determined by the eigenvalues of the matrix Sij = ϕ0(x0)Jij.

If the real parts of all eigenvalues are smaller than one, the fixed point is stable, otherwise it is lin-

early unstable.

For large networks, the eigenspectrum of Jij consists of a part that is densely distributed in

the complex plane over a circle of radius J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
, and of a real outlier given by the effec-

tive balance of excitation and inhibition in the connectivity J(CE − gCI) [29–31]. We focus here

on an inhibition-dominated network corresponding to g> CE/CI. In this regime, the real out-

lier is always negative and the stability of the fixed point depends only on the densely distrib-

uted part of the eigenspectrum. The radius of the eigenspectrum disk, in particular, increases

with the coupling J, and an instability occurs when the radius crosses unity. The critical cou-

pling J0 is given by:

�
0
ðx0ÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
¼ 1 ð3Þ

where x0 depends implicitly on J through Eq (2) and the gain ϕ0(x) is in general finite and non-

negative for all the values of x.

Numerical simulations confirm that, when J< J0, network activity settles into the homoge-

neous fixed point given by Eq (2) (Fig 1a). For J> J0, the fixed point is unstable, and the

network exhibits ongoing dynamics in which the activities of different neurons fluctuate irreg-

ularly both in time and across units (Fig 1b). As the system is deterministic, these fluctuations

are generated intrinsically in the network by strong feedback along unstable modes, which

possess a random structure inherited from the random connectivity matrix.

Dynamical mean field description. The irregular, fluctuating activity regime cannot

be easily analyzed with the tools of classical dynamical systems. Rather than attempting to

describe single trajectories, we follow a different approach and focus on their statistics deter-

mined by averaging over time, instances of the connectivity matrix and initial conditions. To

this end, we exploit mean field methods initially introduced for stochastic systems consisting

of large numbers of units [32]. More specifically, we apply to our specific network architecture

the dynamical mean field approach previously developed for similar deterministic networks

[1, 2, 11, 16, 17].

Dynamical Mean Field (DMF) acts by replacing the fully deterministic interacting network

by an equivalent stochastic system. As the interaction between units ∑j Jijϕ(xj) consists of a sum

of a large number of terms, it can be replaced by a Gaussian stochastic process ηi(t). Such a

replacement provides an exact mathematical description under specific assumptions on the

chaotic nature of the dynamics [33], and for particular limits of large network size N and num-

ber of connections C. Here we will treat it as an approximation, and we will assess the accuracy

of this approximation by comparing the results with simulations performed for fixed C and N
(see Methods for the limits of this approximation).

Replacing the interaction terms by Gaussian processes transforms the system into N identi-

cal Langevin-like equations:

_xiðtÞ ¼ � xiðtÞ þ ZiðtÞ: ð4Þ

As ηi(t) is a Gaussian noise, each trajectory xi(t) emerges thus as a Gaussian stochastic process,

characterized by its first- and second-order moments. Within DMF, the mean and correlations

of this stochastic process are determined self-consistently, by replacing averages over ηi with

Fluctuating activity in excitatory-inhibitory networks
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averages over time, instances of the connectivity matrix and initial conditions in the original

system. In the limit of a large network, the stochastic processes corresponding to different

units become uncorrelated. Moreover, in the specific network architecture considered here, all

units are statistically equivalent, so that the network is effectively described by a single process.

Note that in more general excitatory-inhibitory networks, a distinction needs to be made

between different classes of neurons, and the DMF description becomes more complex [16,

17]. The details of the mean field analysis are provided in Methods.

The final outcome of DMF is a set of two equations for the first- and second-order statistics

of the network activity. The equations are written in terms of the mean [ϕ] and autocorrelation

C(τ) of the firing rate and the mean μ and mean-subtracted autocorrelation Δ(τ) of the input

currents. The two sets of statistics provide an equivalent description of activity and have to

respect self-consistency:

½�� ¼

Z

Dz�ðmþ
ffiffiffiffiffi
D0

p
zÞ ð5Þ

CðtÞ ¼
Z

Dz
Z

Dy�ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D0 � jDðtÞj

q

y þ
ffiffiffiffiffiffiffiffiffiffiffiffi
jDðtÞj

p
zÞ

� �2

ð6Þ

where

m ¼ JðCE � gCIÞ½�� þ I ð7Þ

CðtÞ ¼ ½�ðxiðtÞÞ�ðxiðt þ tÞÞ� ð8Þ

DðtÞ ¼ ½xiðtÞxiðt þ tÞ� � ½xi�
2
: ð9Þ

In Eqs (5) and (6) we used the short-hand notation:
R

Dz ¼
R þ1
� 1

e�
z2

2ffiffiffiffi
2p
p dz, and Δ0 = Δ(τ = 0).

Note that since all the units are statistically equivalent, [ϕ] and C(τ) are independent of the

index i. The input current correlation function Δ(τ) moreover obeys an evolution equation in

which the mean [ϕ] enters:

€DðtÞ ¼ DðtÞ � J2ðCE þ g2CIÞfCðtÞ � ½��
2
g: ð10Þ

Fig 1. Dynamical regimes of an excitatory-inhibitory network of threshold-linear units as the coupling is increased.

Numerical integration of the dynamics in Eq (1), firing rates of randomly chosen units. In the insets: complex eigenspectrum of the

fixed point stability matrix, the red line corresponding to the stability bound. a. Weak coupling regime: the network activity converges

to the homogeneous fixed point. b. Intermediate coupling regime: the activity displays stable fluctuations in time and across

different units. c. Strong coupling regime: in absence of an upper bound, activity diverges. Choice of the parameters: g = 4.5,

C = 100. N = 2000, no saturating upper bound: ϕmax!1. In this and all other figures, all quantities are unitless (see Methods).

https://doi.org/10.1371/journal.pcbi.1005498.g001
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The main difference here with respect to classical works [1] is that the first-order statistics

are not trivial. In the classical case, the mean input μ is zero by construction, and the activation

function ϕ(x) = tanh(x) is symmetric around zero, so that the mean firing rate [ϕ] in Eq (5) is

zero. In our case, firing-rates are constrained to be positive, so that even in the case of perfect

balance (μ = 0), the mean firing rate [ϕ] can in general be positive. We stress that as a conse-

quence, the dynamics are described by coupled equations for the first- and second-order statis-

tics rather than by second-order statistics alone (see also [16, 17]).

Because all units are statistically equivalent, the DMF equations can be solved, and yield for

each set of network parameters the mean-firing rate [ϕ], the mean input current μ, the current

variance Δ0 and the current correlation function Δ(τ). Fig 2 shows a good match between theo-

retical predictions and numerically simulated activity. A more detailed analysis of finite size

effects and limitations in DMF can be found in the Methods.

In agreement with the dynamical systems analysis, for low coupling values, DMF predicts a

solution for which the variance Δ0 and the autocorrelation Δ(τ) of the fluctuations vanish at all

times. Input currents set into a stationary and uniform value, corresponding to their mean μ.

The predicted value of μ coincides with the fixed point x0, representing a low firing-rate back-

ground activity. As the coupling J is increased, the mean current becomes increasingly negative

because inhibition dominates, and the mean firing rate decreases (Fig 2c and 2d).

Fig 2. Statistical description of the network activity with a threshold-linear activation function. The

dynamics mean field results are shown in full lines, numerical simulations as points. a. Input current variance

as a function of the synaptic coupling J. Vertical grey lines indicate the critical value JC. Grey points show time

and population averages performed on 4 realizations of simulated networks, N = 7000. b. Normalized auto-

correlation function for increasing values of the synaptic coupling (indicated by colored triangles in panel d). c-

d. First order statistics: mean input current and mean firing rate. Choice of the parameters: g = 5, C = 100,

ϕmax = 2.

https://doi.org/10.1371/journal.pcbi.1005498.g002
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For a critical coupling strength J = JC (which coincides with J0, where the fixed point solu-

tion loses stability), DMF predicts the onset of a second solution with fluctuations of non-

vanishing magnitude. Above JC, the variance of the activity grows smoothly from 0 (Fig 2a),

and the auto-correlation Δ(τ) acquires a temporal structure, exponentially decaying to zero

as τ!1. Close to the critical coupling, the dynamics exhibit a critical slowing down and

the decay timescale diverges at JC, a behavior characteristic of a critical phase transition [1]

(Fig 2b).

The onset of irregular, fluctuating activity is characterized by a transition of the second-

order statistics from zero to a non-vanishing value. The appearance of fluctuations, however,

directly affects also the first-order statistics. As the firing rates are constrained to be positive,

large fluctuations induce deviations of the mean firing rate [ϕ] and the mean input current μ
from their fixed point solutions. In particular, as J increases, larger and larger fluctuations in

the current lead to an effective increase in the mean firing rate although the network is inhibi-

tion-dominated (Fig 2a, 2c and 2d). The increase in mean firing rate with synaptic coupling is

therefore a signature of the onset of fluctuating activity in this class of excitatory-inhibitory

networks.

In summary, intrinsically generated fluctuating activity in deterministic excitatory-inhibi-

tory networks can be equivalently described by approximating the dynamics with a stationary

stochastic process. Here we stressed that the mean and the autocorrelation of this process are

strongly coupled and need to be determined self-consistently.

Two regimes of fluctuating activity. The mean field approach revealed that, above the

critical coupling JC, the network generates fluctuating but stable, stationary activity. The

dynamical systems analysis, however, showed that the dynamics of an equivalent linearized

network are unstable and divergent for identical parameter values. The stability of the fluctuat-

ing activity is therefore necessarily due to the two non-linear constraints present in the system:

the requirement that firing rates are bounded from below by 0 (i.e. positive), and the require-

ment that firing rates are limited by an upper bound ϕmax.

In order to isolate the two contributions, we examined how the amplitude of fluctuating

activity depends on the upper bound on firing rates ϕmax. Ultimately, we take this bound to

infinity, leaving the activity unbounded. Solving the corresponding DMF equations revealed

the presence of two qualitatively different regimes of fluctuating activity above Jc (Fig 3).

For intermediate coupling values, the magnitude of fluctuations and the mean firing rate

depend only weakly on the upper bound ϕmax. In particular, for ϕmax!1 the dynamics

remain stable and bounded. The positive feedback that generates the linear instability is domi-

nantly due to negative, inhibitory interactions multiplying positive firing rates in the linearized

model. In this regime, the requirement that firing rates are positive, combined with dominant

inhibition, is sufficient to stabilize this feedback and the fluctuating dynamics.

For larger coupling values, the dynamics depend strongly on the upper bound ϕmax. As

ϕmax is increased, the magnitude of fluctuations and the mean firing rate continuously increase

and diverge for ϕmax!1. For large coupling values, the fluctuating dynamics are therefore

stabilized by the upper bound and become unstable in absence of saturation, even though inhi-

bition is globally stronger than excitation.

Fig 3d summarizes the qualitative changes in the dependence on the upper bound ϕmax. In

the fixed point regime, mean inputs are suppressed by inhibition, and they correspond to the

low-gain region of ϕ(x), which is independent of ϕmax. Above JC, in the intermediate regime,

the solution rapidly saturates to a limiting value. In the strong coupling regime, the mean firing

rate, as well as the mean input μ, and its standard deviation
ffiffiffiffiffi
D0

p
grow linearly with the upper

bound ϕmax. We observe that when ϕmax is large, numerically simulated mean activity show

Fluctuating activity in excitatory-inhibitory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005498 April 24, 2017 7 / 40

https://doi.org/10.1371/journal.pcbi.1005498


larger deviations from the theoretically predicted value, because of larger finite size effects (for

a more detailed discussion, see Methods).

The two regimes of fluctuating activity are characterized by different scalings of the first-

and second-order statistics with the upper-bound ϕmax. In the absence of upper bound on the

activity, i.e. in the limit ϕmax!1, the two regimes are sharply separated by a second “critical”

coupling JD: below JD, the network reaches a stable fluctuating steady-state and DMF admits a

solution; above JD, the network has no stable steady-state, and DMF admits no solution. JD cor-

responds to the value of the coupling for which the DMF solution diverges, and can be deter-

mined analytically (see Methods). For a fixed, finite value of the upper bound ϕmax, there is

however no sign of transition as the coupling is increased past JD. Indeed, for a fixed ϕmax, the

network reaches a stable fluctuating steady state on both sides of JD, and no qualitative differ-

ence is apparent between these two steady states. The difference appears only when the value

of the upper bound ϕmax is varied. JD therefore separates two dynamical regimes in which the

statistics of the activity scale differently with the upper-bound ϕmax, but for a fixed, finite ϕmax

it does not correspond to an instability. The second “critical” coupling JD is therefore qualita-

tively different from the critical coupling Jc, which is associated with an instability for any

value of ϕmax.

The value of JD depends both on the relative strength of inhibition g, and the total number

of incoming connections C. Increasing either g or C increases the total variance of the

Fig 3. Appearance of three dynamical regimes in excitatory-inhibitory rate networks, dynamical mean field predictions. Threshold-linear

activation function saturating at different values of the upper bound ϕmax. a-b-c. DMF characterization of the statistics for different values of the saturation

value ϕmax. In a, input current variance, in b, input current mean, in c, mean firing rate. Vertical grey lines indicate the critical couplings JC and JD. d.

Mean firing rate dependence on the upper bound ϕmax, for three coupling values corresponding to the three different dynamical regimes (indicated by

triangles in panel c). Dots show time and population averages performed on 4 realizations of simulated networks, N = 6000. Choice of the parameters:

g = 5, C = 100. e-f. Phase diagram of the dynamics: dependence on the connectivity in-degree C and on the inhibition dominance parameter g. All other

parameters are kept fixed.

https://doi.org/10.1371/journal.pcbi.1005498.g003
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interaction matrix Jij, shifting the instability of the homogeneous fixed point to lower cou-

plings. The size of the intermediate fluctuating regime however depends only weakly on the

number of incoming connections C (Fig 3e). In contrast, increasing the relative strength of

inhibition diminishes the influence of the upper bound and enlarges the phase space region

corresponding to the intermediate regime, where fluctuations are stabilized intrinsically by

recurrent inhibition (Fig 3f). The second critical coupling JD is in particular expected to

increase with g and diverge for purely inhibitory networks. However, for very large relative

inhibition, numerical simulations show strong deviations from DMF predictions, due to

the breakdown of the Gaussian approximation which overestimates positive feedback (see

Methods).

In summary, the two non-linearities induced by the two requirements that the firing rates

are positive and bounded play asymmetrical roles in stabilizing fluctuating dynamics. In excit-

atory-inhibitory networks considered here, this asymmetry leads to two qualitatively different

fluctuating regimes.

The effect of spiking noise. We next investigated whether the two different fluctuating

regimes described above can be still observed when spiking noise is added to the dynamics.

Following [15, 16], we added a Poisson spiking mechanism on the rate dynamics in Eq (1),

and let the different units interact through spikes (see Methods). Within a mean field

approach, interaction through spikes lead to an additive white noise term in the dynamics [15,

16]. To determine the effect of this additional term on the dynamics, we first treated it as exter-

nal noise and systematically varied its amplitude as a free parameter.

The main effect of noise is to induce fluctuations in the activity for all values of network

parameters (Fig 4a). As a result, in presence of noise, the sharp transition between constant

and fluctuating activity is clearly lost as previously shown [15, 16]. The feedback mechanism

that generates intrinsic fluctuations nevertheless still operates and strongly amplifies the fluc-

tuations induced by external noise.

The DMF framework can be extended to include external noise and determine the addi-

tional variability generated by network feedback ([15, 16], see also Methods). When the cou-

pling J is small, the temporal fluctuations in the activity are essentially generated by the

filtering of external noise. Beyond the original transition at JC, instead, when the feedback fluc-

tuations grow rapidly with synaptic coupling, the contribution of external noise becomes rap-

idly negligible with respect to the intrinsically-generated fluctuations (Fig 4a).

As shown in earlier studies [15, 16], a dramatic effect of introducing external noise is a

strong reduction of the timescale of fluctuations close to JC. In absence of noise, just above the

fixed point instability at JC, purely deterministic rate networks are characterized by the onset

of infinitely slow fluctuations. These slow fluctuations are however of vanishingly small magni-

tude, and strongly sensitive to external noise. Any finite amount of external noise eliminates

the diverging timescale. For weak external noise, a maximum in the timescale can be still

seen close to JC, but it quickly disappears as the magnitude of noise is increased. For modest

amounts of external noise, the timescale of the fluctuating dynamics becomes a monotonic

function of synaptic coupling (Fig 4b).

While in presence of external noise there is therefore no formal critical phase transition, the

dynamics still smoothly change from externally-generated fluctuations around a fixed point

into intrinsically-generated, non-linear fluctuations. This change of regime is not necessarily

reflected in the timescale of the dynamics, but can clearly be seen in the excess variance, and

also in the first-order statistics such as the mean-firing rate, which again strongly increases

with coupling. Moreover, we found that the existence of the second fluctuating regime is

totally insensitive to noise: above the second critical coupling JD, the activity is only stabilized

by the upper bound on the firing rates, and diverges in its absence. In that parameter region,

Fluctuating activity in excitatory-inhibitory networks
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intrinsically-generated fluctuations diverge, and the external noise contributes only a negligi-

ble amount.

We considered so far the effect of an external white noise of arbitrary amplitude. If that

noise represents spiking interactions, its variance is however not a free parameter, but instead

given by J2ðCE þ g2CIÞ½��=�t. In particular, the amplitude of spiking noise increases both with

the synaptic coupling and with the mean firing rate [ϕ], which itself depends on the coupling

and fluctuations as pointed out above. As a result, the amplitude of the spiking noise dramati-

cally increases in the fluctuating regime (Fig 4d). When J becomes close to the second critical

coupling JD, the spiking noise however still contributes only weakly to the total variance (see in

Methods), and the value of JD is not affected by it (Fig 4e). The amplitude of spiking noise is

also inversely proportional the timescale �t of the dynamics (see Eq (50) in Methods). Slower

dynamics tend to smooth out fluctuations due to spiking inputs (Fig 4d), reduce the amount of

spiking and noise and therefore favor the appearance of slow fluctuations close to the critical

coupling Jc [16].

Fig 4. Statistical description of the activity in excitatory-inhibitory networks with external and spiking noise. The dynamical mean field results are

shown in full lines, numerical simulations as points. a. Input current variance in presence of external noise, for increasing values of the noise amplitude

(white noise, variance equal to 2Δext). Blue dots: results of numerical simulations for Δext = 0.13, N = 7500, average of 4 realizations of the synaptic matrix.

The grey vertical line shows the critical coupling JC in the deterministic model. Dashed lines indicate the statistics of an effective fixed point, where the only

variance is generated by the noise contribution Δext. The fixed point firing rate is computed as a Gaussian average, with the mean given by the fixed point

x0 and the variance provided solely by the noise term. The deflection from the effective fixed point underlines an internal amplification of noise produced by

network feedback. b. Fluctuations relaxation time, measured as the auto-correlation Δ(τ) full width at half maximum. c. Normalized auto-correlation for

fixed J and different levels of noise. The corresponding coupling value is indicated by the dotted vertical gray line in panel b. d. Input variance in a network

with spiking dynamics, where spikes are generated according to inhomogeneous Poisson processes. Increasing the time constant of rate dynamics �t (see

Eq (50) in Methods) decreases the amplitude of spiking noise. e-f. Appearance of the three dynamical regimes in a network with spiking noise: input

current variance and mean firing rate for different saturation values ϕmax. Choice of the parameters: g = 4.1, C = 100.

https://doi.org/10.1371/journal.pcbi.1005498.g004
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In conclusion, the main findings reported above, the influence of intrinsically generated

fluctuations on mean firing rate, and the existence of two different fluctuating regimes are still

observed in presence of external or spike-generated noise. In particular, above the second tran-

sition, intrinsically generated fluctuations can be arbitrarily strong and therefore play the dom-

inant role with respect to external or spiking noise.

Purely inhibitory networks. To identify the specific role of excitation in the dynamics

described above, we briefly consider here the case of networks consisting of a single inhibi-

tory population. Purely inhibitory networks display a transition from a fixed point regime

to chaotic fluctuations [16, 17]. The amplitude of fluctuations appears to be in general much

smaller than in excitatory-inhibitory networks, but increases with the constant external cur-

rent I (Fig 5a). In contrast to our findings for networks in which both excitation and inhibi-

tion are present, in purely inhibitory networks intrinsically generated fluctuations lead to a

very weak increase in mean firing rates compared to the fixed point (Fig 5b and 5c). This

effect can be understood by noting that within the dynamical mean field theory, the mean

rate is given by (μ − I)/J(CE − gCI) (Eq (7)). The term CE − gCI in the denominator deter-

mines the sensitivity of the mean firing rate to changes in mean input. This term is always

negative as we are considering inhibition-dominated networks, but its absolute value is

much smaller in presence of excitation, i.e. when excitation and inhibition approximately

balance, compared to purely inhibitory networks. As the onset of intrinsically generated

fluctuations modifies the value of the mean input with respect to its value in the fixed

point solution (Figs 2c and 5b), this simplified argument explains why the mean firing rates

in the inhibitory network are much less sensitive to fluctuations than in the excitatory-

inhibitory case.

Moreover the second fluctuating regime found in EI networks does not appear in purely

inhibitory networks. Indeed, the divergence of first- and second-order statistics that occurs in

EI networks requires positive feedback that is absent in purely inhibitory networks. Note that

for purely inhibitory, sparse networks, important deviations can exist at very large couplings

between the dynamical mean field theory and simulations (see Methods for a more detailed

discussion).

The two main findings reported above, the strong influence of intrinsically generated fluc-

tuations on mean firing rate, and the existence of two different fluctuating regimes therefore

critically rely on the presence of excitation in the network.

Fig 5. Statistical description of the activity in purely inhibitory networks. Results of the dynamical mean field theory (obtained

through setting CE = 0 and g = 1) for different values of the excitatory external current I. a. Input current variance, b. mean current and c.

mean firing rate as a function of the synaptic coupling J. Vertical grey lines indicate the critical value JC.

https://doi.org/10.1371/journal.pcbi.1005498.g005
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Extensions to more general classes of networks

General excitatory-inhibitory (EI) networks. In the class of networks we investigated so

far, excitatory and inhibitory units received statistically equivalent inputs. Under this assump-

tion, the network dynamics are characterized by a single mean and variance for both excitatory

and inhibitory populations, which considerably simplifies the mean field description. Here

we relax this assumption and show that the properties of intrinsically generated fluctuations

described so far do not critically depend on it.

We consider a more general class of networks, in which synaptic connections are arranged

in a block matrix:

J ¼ J
JEE

JIE

�
�
�
�

JEI

JII

� �

ð11Þ

where each block Jkk0 is a sparse matrix, containing on each row Ckk0 non-zero entries of value

jkk0. The parameter J represents a global scaling on the intensity of the synaptic strength. For

the sake of simplicity, we restrict ourselves to the following configuration: each row of J con-

tains exactly CE non-zero excitatory entries in the blocks of the excitatory column, and exactly

CI inhibitory entries in the inhibitory blocks. Non-zero elements are equal to jE in JEE, to −gE jE
in JEI, to jI in JIE, and to −gI jI in JII. The previous case is recovered by setting jE = jI = 1 and

gE = gI.

The network admits a fixed point in which the activities are different for excitatory and

inhibitory units, but homogeneous within the two populations. This fixed point is given by:

xE
0

xI
0

 !

¼ J
jEðCE�ðxE

0
Þ � gECI�ðxI

0
ÞÞ

jIðCE�ðxE
0
Þ � gICI�ðxI

0
ÞÞ

 !

ð12Þ

where xE
0

and xI
0

are the fixed-point inputs to the two populations.

The linear stability of the fixed point is determined by the eigenvalues of the matrix:

S ¼ J
�
0
ðxE

0
ÞJEE

�
0
ðxE

0
ÞJIE

�
�
�
�
�
0
ðxI

0
ÞJEI

�
0
ðxI

0
ÞJII:

� �

ð13Þ

The fixed point is stable if the real part of all the eigenvalues is smaller than one. As for simple,

column-like EI matrices, the eigenspectrum of S is composed of a discrete and a densely dis-

tributed part, in which the bulk of the eigenvalues are distributed on a circle in the complex

plane [12, 13, 34]. The discrete component consists instead of two eigenvalues, which in gen-

eral can be complex, potentially inducing various kinds of fixed point instabilities (for the

details, see Methods). As in the previous paragraphs, we consider a regime where both gE and

gI are strong enough to dominate excitation, and the outlier eigenvalues have negative real

part. In those conditions, the first instability to occur is the chaotic one, where the radius of the

complex circle of the eigenspectrum crosses unity. This radius increases with the overall cou-

pling J, defining a critical value JC where the fixed point loses stability.

Dynamical mean field equations for the fluctuating regime above the instability are, in this

general case, much harder to solve as they now involve two means and two auto-correlation

functions, one for each populations [16, 17]. For that reason, we restrict ourselves to a slightly

different dynamical system with discrete-time evolution:

xiðt þ 1Þ ¼
XN

j¼1

Jij�ðxjðtÞÞ: ð14Þ

Such a network corresponds to extremely fast dynamics with no current filtering (Fig 6a and 6b).
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Previous works [2–4, 10] have studied that class of models in case of synaptic matrices that lacked

EI separation, and for activation functions that were symmetric. These works pointed out strong

analogies with the dynamics emerging in continuous time [1]. Discrete-time dynamics can how-

ever induce a new, period-doubling bifurcation when inhibition is strong. We therefore restrict

the analysis to a regime where inhibition is dominating but not excessively strong. Notice that in

general, outside the range of parameters considered in this analysis, we expect generic EI net-

works to display a richer variety of dynamical regimes.

To begin with, we observe that the fixed-point (Eq (12)) and its stability conditions (Eq

(13)) are identical for continuous and discrete dynamics. For discrete time, the DMF equations

are however much simpler than for continuous dynamics, and can be easily fully solved even if

the two populations are characterized now by different values of mean and variance.

Solving the DMF equations confirms that the transition to chaos in this class of models is

characterized by the same qualitative features as before (Fig 6c and 6d). As the order parameter

J is increased, the means and the variances of both the E and the I population display a transi-

tion from the fixed point solution to a fluctuating regime characterized by positive variance Δ0

and increasing mean firing rate. By smoothly increasing the upper bound of the saturation

function ϕmax as before, we find a second critical value JD at which the firing activity of both

populations diverge (Fig 6e and 6f). We conclude that the distinction in three regimes reported

Fig 6. Fluctuating dynamics in more general networks where excitatory and inhibitory neurons are not statistically

equivalent. Discrete-time rate evolution. a-b. Network discrete-time activity: numerical integration of the Eq (14), firing rates of

randomly selected units. Excitatory neurons are plotted in the red scale, inhibitory ones in the blue one. N = 1000. In a, J < JC; in

b, J > JC. c-d. Statistical characterization of network activity, respectively in terms of the input variance and the mean firing rate.

Dynamical mean field results are shown in full lines. Dashed lines: fixed points. Dots: numerical simulations, N = 7500, average

over 3 realizations. Vertical grey lines indicate the critical value JC. ϕmax = 1. e-f. Mean firing rate for different values of the

saturation ϕmax, in the excitatory and the inhibitory population. Choice of the parameters: jE = 0.1, jI = 1.5jE, gE = 4.5, gI = 4.2,

C = 100.

https://doi.org/10.1371/journal.pcbi.1005498.g006
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so far can be extended to discrete-time dynamics; in this simplified framework, our results

extend to more general EI connectivity matrices.

Connectivity with stochastic in-degree. We now turn to networks in which the number

of incoming connections is not fixed for all the neurons, but fluctuates stochastically around a

mean value C. We consider a connectivity scheme in which each excitatory (resp. inhibitory)

neuron makes a connection of strength J (resp. −gJ) with probability C/N.

In this class of networks, the number of incoming connections per neuron has a variance

equal to the mean. As a consequence, in the stationary state, the total input strongly varies

among units. In contrast to the case of a fixed in-degree, the network does not admit an homo-

geneous, but a heterogeneous fixed point in which different units reach different equilibrium

values depending on the details of the connectivity.

The dynamical mean field approach can be extended to include the heterogeneity generated

by the variable number of incoming connections [10, 16, 17]. As derived in Methods, the sta-

tionary distributions are now described by a mean and a static variance Δ0 that quantifies the

static, quenched noise generated by variations in the total input among the units in the popula-

tion. These two quantities obey:

m ¼ JðCE � gCIÞ½�� þ I;

D0 ¼ J2ðCE þ g2CIÞ½�
2
�:

ð15Þ

The stationary solution loses stability at a critical value J = JC. In the strong coupling

regimes, DMF predicts the onset of a time-dependent solution with a decaying autocorrelation

function, with initial condition Δ0 and asymptotic value Δ1. The values of μ, Δ0 and Δ1 are

determined as solution of a system of three equations (see Eqs (79), (81) and (82) in Methods).

In this regime, the effective amplitude of temporal fluctuations is given by the difference

Δ0 − Δ1 (Fig 7b). A non-zero value of Δ1 reflects the variance of mean activity across the pop-

ulation: the the activity of different units fluctuates around different mean values because of

the heterogeneity in the connectivity. Note moreover that because the static variance increases

strongly with coupling (Fig 7a), the mean activity for the static solution increases with cou-

pling, in contrast to the fixed in-degree case. In the fluctuating regime, as the additional tem-

poral variance Δ0 − Δ1 is weaker than the static variance Δ1, temporal fluctuations do not

Fig 7. Mean field characterization of the activity in networks with stochastic in-degree. The dynamical mean field results are shown in full lines,

numerical simulations as points. (a) Total input current variance Δ0. The heterogeneity in the connectivity induces an additional quenched variance Δ1
(shown in dashed blue for the fixed point, and yellow for the fluctuating solution, where it corresponds to Δ0). Red (resp. yellow) points show time and

population averages of Δ0 (resp. Δ1) performed on 3 realizations of simulated networks, N = 6500. (b) Isolated contribution of temporal fluctuations to the

variance. (c) Mean firing rate, for different values of the saturation ϕmax. Grey dashed lines indicate the stationary solution, becoming a thick colored line,

corresponding to the chaotic phase, at JC. Choice of the parameters: g = 5, C = 100, ϕmax = 2.

https://doi.org/10.1371/journal.pcbi.1005498.g007
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lead to an increase in mean firing rate with respect to the static solution (Fig 7c), in contrast to

our findings for the fixed in-degree case.

Fig 7c displays the dependence on the upper bound ϕmax of the mean field solution. Above

JC, an intermediate regime exists where the activity is stabilized by inhibition, and remains

finite even in absence of upper bound. For couplings above a second critical coupling JD, the

dynamics are stabilized only by the upper bound ϕmax. Networks with variable in-degree there-

fore show the same three dynamical regimes as networks with fixed degree.

Comparing rate and integrate-and-fire networks

For excitatory-inhibitory networks of threshold-linear rate units, we have identified two differ-

ent regimes of fluctuating activity. In this section, we show that networks of spiking, leaky inte-

grate-and-fire (LIF) neurons display the signatures characteristic of these two regimes. To

link threshold-linear rate networks to LIF networks, we first consider a modified rate model

directly related to LIF networks [19], and then perform simulations of spiking LIF networks.

Rate networks with an LIF transfer function. We focus again on the fixed in-degree syn-

aptic matrix in which the inputs to excitatory and inhibitory neurons are statistically equiva-

lent, but consider a rate network in which the dynamics are now given by:

_�iðtÞ ¼ � �iðtÞ þ FðmiðtÞ; siðtÞÞ ð16Þ

where:

miðtÞ ¼ m0 þ tm

X

j

Jij�jðtÞ

s2
i ðtÞ ¼ tm

X

j

J2

ij�jðtÞ:
ð17Þ

Here ϕi is the firing rate of unit i, μ0 is a constant external input, and τm = 20 ms is the mem-

brane time constant. The function F(μ, σ) is the input-output function of a leaky integrate-

and-fire neuron receiving a white-noise input of mean μ and variance σ [35]:

Fðm;s2Þ ¼ trp þ 2tm

Z Vth � m

s

Vr � m
s

dueu2

Z u

� 1

dne� n2

" #� 1

ð18Þ

where Vth and Vr are the threshold and reset potentials of the LIF neurons, and τrp is the refrac-

tory period.

The firing-rate model defined in Eq (16) is directly related to the mean field theory for net-

works of LIF neurons interacting through instantaneous synapses [18, 19, 36]. More specifi-

cally, the fixed point of the dynamics defined in Eq (16) is identical to the equilibrium firing

rate in the classical asynchronous state of a network of LIF neurons with an identical connec-

tivity as the rate model [18, 36]. Eq (16) can then be seen as simplified dynamics around this

equilibrium point [37, 38]. A linear stability analysis of the fixed point for the rate model pre-

dicts an instability analogous to the one found in threshold-linear rate models. A comparison

with a network of LIF neurons shows that this instability predicts a change in the dynamics in

the corresponding spiking network, although there may be quantitative deviations in the pre-

cise location of the instability [19–21].

The dynamics of Eq (16) have been analytically investigated only up to the instability [19].

To investigate the dynamics above the instability, we set xiðtÞ ¼
PN

j¼1
Jij�jðtÞ, and rewrite the
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dynamics in the more familiar form:

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

JijFðtmxjðtÞ; sjðtÞÞ: ð19Þ

The main novelty with respect to previously studied rate models is that the input-output

transfer function F depends on the standard deviation σj of the input current to the unit j. A

dependence on a time-varying σj is however difficult to include in the dynamical mean field

approach. As a step forward, we fix σj to its average value independent of j and time, which cor-

responds to substituting all the firing rates with a constant effective value ��:

s2 � tm

X

j

J2

ij
�� ¼ tmJ2ðCE þ g2CIÞ

��: ð20Þ

With this substitution, we are back to a classical rate model with an LIF transfer function.

Quantitatively the dynamics of that model are not identical to the model defined in Eq (16),

but they can be studied using dynamical mean field theory. We therefore focus on qualitative

features of the dynamics rather than quantitative comparisons between models.

Solving the dynamical mean field equations shows that the dynamics in the rate model with

and LIF transfer function are qualitatively similar to the threshold-linear rate model studied

above. As the coupling strength J is increased above a critical value, the fixed point loses stabil-

ity, and a fluctuating regime emerges. The amplitude of the fluctuations increases with cou-

pling (Fig 8a), and induces an increase of the mean firing rate with respect to values predicted

for the fixed point (Fig 8c).

In the LIF transfer function, the upper bound on the firing rate is given by the inverse of the

refractory period. For that transfer function, changing the refractory period does not modify

only the upper bound, but instead affects the full function. For different values of the refractory

periods, the fixed point firing rate and the location of the instability therefore change, but

these effects are very small for refractory periods below one millisecond.

Varying the refractory period reveals two different fluctuating regimes as found in thresh-

old-linear rate models (Fig 8d, 8e and 8f). At intermediate couplings, the fluctuating dynamics

depend weakly on the refractory period and remain bounded if the refractory period is set to

zero. At strong couplings, the fluctuating dynamics are stabilized only by the presence of the

upper bound, and diverge if the refractory period is set to zero. The main difference with the

threshold-linear model is that the additional dependence on the coupling J induced by σ on

the transfer function reduces the extent of the intermediate regime.

Spiking networks of leaky integrate-and-fire neurons. Having established the existence

of two different regimes of fluctuating activity in rate networks with an LIF transfer function,

we next consider spiking networks of LIF neurons. To compare the different regimes of activ-

ity in spiking networks with the regimes we found in rate networks, we performed direct

numerical simulations of a spiking LIF network. We examined the effects of the coupling

strength and refractory period on first- and second-order statistics (Fig 9a and 9b), i.e. the

mean firing rate and the variance of the activity (computed on instantaneous firing rates evalu-

ated with a 50 ms Gaussian filter).

For low couplings strengths, the mean firing-rate in the network is close to the value pre-

dicted for the fixed point of Eq (16), i.e. the equilibrium asynchronous state, and essentially

independent of the refractory period. Similarly, the variance of the activity remains at low val-

ues independent of the refractory period. As the synaptic strength is increased, the mean firing

rate deviates positively from the equilibrium value (Fig 9a), and the variance of the activity
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increases (Fig 9b). For intermediate and strong synaptic coupling, the values of first- and sec-

ond-order activity statistics become dependent on the values of the refractory period.

Specifically, for intermediate values of the coupling, the mean-firing rate increases with

decreasing refractory period, but saturates with decreasing refractory period (Fig 9e. This is

similar to the behavior of the rate networks in the inhibition-stabilized fluctuating regime. For

large values of the coupling, the mean-firing rate instead diverges linearly with the inverse of

the refractory period (Fig 9f), a behavior analogous to rate networks in the second fluctuating

regime in which the dynamics are only stabilized by the upper bound on the activity. The

strength of the sensitivity to the refractory period depends on the inhibitory coupling: the

stronger the relative inhibitory coupling, the weaker the sensitivity to the refractory period

(Fig 9d).

The main qualitative signatures of the two fluctuating regimes found in networks of rate

units are therefore also observed in networks of spiking LIF neurons. It should be however

noted that the details of the dynamics are different in rate and LIF networks. In particular,

the shape of auto-correlation functions is different, as LIF neurons display a richer temporal

structure at low and intermediate coupling strengths. At strong coupling, the auto-correla-

tion function resembles those of rate networks with spiking interactions (see Fig 4c), in par-

ticular it displays a characteristic cusp at zero time-lag. The simulated LIF networks show no

Fig 8. Dynamical mean field characterization of rate network activity with a LIF activation function, where we set σ2 ¼ τmJ2ðCE þ g2CIÞϕ,

ϕ ¼ 20 Hz. a-b-c. Statistical characterization for τr = 0.5 ms: input variance, mean input current and mean firing rate. Grey vertical lines indicate the

position of the critical coupling. Choice of the parameters: g = 5, C = 100. d-e. Mean firing rate and rate standard deviation for different values of the

refractory period, determining slightly different positions of the transition (grey lines). Choice of the parameters: g = 5, C = 100, μ0 = 24 mV. f. Mean

firing rate dependence on the refractory period, the inverse of which determines the saturation value of the transfer function. The three values of the

synaptic coupling, indicated by triangles in c, correspond to the three different regimes.

https://doi.org/10.1371/journal.pcbi.1005498.g008
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sign of critical slowing down, as expected from the analysis of the effects of spiking noise on

the activity.

Moreover, strong finite-size effects are present in the simulations. To quantify correlations

among units and synchrony effects deriving from finite-size effects, we measure the standard

deviation of the amplitude of fluctuations in the population-averaged activity, normalized by

the square root of the mean firing rate (Fig 9g). Correlations and synchrony appear to be

stronger for small values of the refractory period. The effect of correlations is furthermore

weaker in the low and high coupling regimes, and it has a maximum for intermediate cou-

plings. However, whatever the value of J, they decay as the system size is increased (for a more

detailed characterization, see Methods).

In summary, for the range of values of the refractory period considered here, the activity in

a network of spiking neurons is in qualitative agreement with predictions of the simple rate

models analyzed in the previous sections. The rate model introduced in Eq (16) however does

Fig 9. Statistical characterization of activity in a network of leaky integrate-and-fire neurons. a. Mean firing rate. Numerical simulations

(N = 20000) are in good agreement with the LIF mean field prediction (red line) for low coupling values (J < 0.5). For high values of J (J > 0.8), mean

firing rates diverge and becomes highly dependent on the refractory period. b. Firing rate variance, computed on instantaneous firing rates

evaluated with a 50 ms Gaussian filter. c. Spike autocorrelation function, computed with 1 ms time bins, for three different values of the coupling

J (τrp = 0.5). d. Increase in the mean firing rate as the refractory period is decreased from 0.5 to 0.1 ms, as a function of the synaptic coupling J and

the inhibition strength g. As in the rate networks, the mean firing rate and its increase depend on the value of g. e-f. Direct dependence between the

mean firing rate and refractory period. Panel e shows the low and intermediate coupling regime. Panel f shows the high coupling regime. Colored

dots: simulated networks with N = 20000. Lighter dashed lines (when visible) show the result for N = 10000. g. Dependence on J and N of

correlations and synchrony, quantified by the std of the population-averaged spiking rate, normalized by the square root of the mean firing rate

(τrp = 0.05). Std is computed within a time bin of 1 ms. In all the panels, choice of the parameters: g = 5, C = 500, Δ = 1.1 ms, μ0 = 24 mV.

https://doi.org/10.1371/journal.pcbi.1005498.g009

Fluctuating activity in excitatory-inhibitory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005498 April 24, 2017 18 / 40

https://doi.org/10.1371/journal.pcbi.1005498.g009
https://doi.org/10.1371/journal.pcbi.1005498


not provide exact quantitative predictions for the firing rate statistics above the instability. In

particular, due to the numerical limitations in considering the limit τrp! 0, it is not possible

to evaluate exactly through simulations the position of an equivalent critical value JD.

Discussion

We investigated the fluctuating dynamics of sparsely connected rate networks with segregated

excitatory and inhibitory subpopulations. We focused on a simplified network architecture, in

which excitatory and inhibitory neurons receive statistically equivalent inputs, but differ in

their output synaptic weights. In that case, the dynamical mean field equations that describe

the dynamics can be fully analyzed.

Our central result is that in presence of excitation, two different regimes of fluctuating

activity appear as coupling is increased. The distinction between these two regimes rests on

whether the lower or the upper bound on activity stabilize network activity. At intermediate

couplings, the fluctuating activity is stabilized by the lower bound that enforces positive firing

rates, and remains finite even in absence of upper bound. For very strong coupling, the upper

bound plays instead the dominant role, as in its absence fluctuations become unstable and the

network shows run-away activity. This second fluctuating regimes is absent in purely inhibi-

tory networks as it requires excitatory feedback.

We also showed that in presence of excitation, in networks with fixed in-degree, self-gener-

ated fluctuations strongly affect first order statistics such as the mean firing rate, which display

important deviations from values predicted for the fixed point for identical coupling strengths.

Such deviations of mean firing rates are therefore a signature of underlying fluctuations [19].

At strong coupling, in the second fluctuating regime, both the first and second order statistics

monotonically increase with the upper bound.

We solved rigorously the DMF equations in simplified networks, where the in-degree is

fixed and excitatory and inhibitory neurons are statistically equivalent. We showed however

that the classification into three regimes extends to more general networks with statistically

distinguishable populations and heterogeneous in-degrees. In particular, signatures of the two

different fluctuating regimes are clearly apparent even when the network receives strong exter-

nal noise. Finally these signatures are also seen in networks of integrate-and-fire neurons,

which display qualitatively similar dynamical features.

Relation to previous works

The transition from fixed point to fluctuating activity was first studied by Sompolinsky, Cri-

santi and Sommers [1]. In that classical work, the connectivity was Gaussian and the activation

function symmetric around zero, so that the dynamics exhibited a sign-reversal symmetry. An

important consequence of this symmetry is that the mean activity was always zero, and the

transition was characterized solely in terms of second-order statistics, which were described

through a dynamical mean field equation.

Recent studies have examined more general and biologically plausible networks [12, 13, 16,

17]. Two of those studies [16, 17] derived dynamical mean field (DMF) equations to networks

with segregated excitatory and inhibitory populations, and asymmetric, positively defined

transfer functions. The DMF equations are however challenging to solve in the general case

of two distinct excitatory and inhibitory populations (see Methods). The two studies [16, 17]

therefore analyzed in detail DMF solutions for purely inhibitory networks, and explored fluc-

tuating activity in excitatory-inhibitory networks mainly through simulations.

In contrast to these recent works, here we exploited a simplified network architecture, in

which DMF equations can be solved for excitatory-inhibitory networks. We found the
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presence of excitation qualitatively changes the nature of the dynamics, even though inhibition

dominates. In purely inhibitory networks, fluctuations are weaker than in excitatory-inhibitory

networks, and as a result only weakly affect first-order statistics.

In [16], the authors used transfer functions without upper bounds, and found that the cha-

otic state can undergo an instability in which the activity diverges. This instability is directly

related to the transition between the two fluctuating regimes which we studied in detail for

bounded transfer functions. Here we showed that these two dynamical regimes can in fact be

distinguished only if the upper bound is varied: for a fixed upper bound, there is no sign of a

transition. Moreover, we showed that excitation is required for the appearance of the second

fluctuating regime, as this regime relies on positive feedback. For purely inhibitory networks,

in which positive feedback is absent, simulations show that the second fluctuating regime does

not occur, although it is predicted by dynamical mean field theory: indeed DMF relies on a

Gaussian approximation which does not restrict the interactions to be strictly negative, and

therefore artifactually introduces positive feedback at strong coupling.

The previous studies [16, 17] focused on networks with random in-degree or Gaussian cou-

pling. In such networks, the quenched component of the coupling matrix leads to quenched

heterogeneity in the stationary solution. In the present work, we instead mostly studied net-

works with fixed in-degree. We showed that in such a setting a homogeneous distribution is

the stable solution, so that the quenched variability is not required for the transition to fluctu-

ating activity.

Synaptic timescales and rate fluctuations in networks of integrate-and-

fire neurons

Under which conditions a regime analogous to rate chaos develops in networks of integrate-

and-fire neurons has been a topic of intense debate [16, 17, 19–21]. Two different scenarios

have been proposed: (i) rate chaos develops in networks of spiking neurons only in the limit of

very slow synaptic or membrane time-constants [16, 17]; (ii) rate chaos can develop in generic

excitatory-inhibitory networks, i.e. for arbitrarily fast synaptic time-constants [19]. The heart

of the debate has been the nature of the signature of rate chaos in spiking networks.

The classical signature of the transition to rate chaos is critical slowing-down, i.e. the diver-

gence of the timescale of rate fluctuations close to the transition [1, 20]. Importantly, this sig-

nature can be observed only if the coupling is very close to the critical value. Moreover, as

shown in [15, 16], and reproduced here (Fig 4), spiking interactions induce noise in the

dynamics, and critical slowing down is very sensitive to the amplitude of such noise. The

amplitude of this spiking noise is moreover proportional to 1=
ffiffiffi
�t
p

, where �t is the timescale of

the rate model, usually interpreted as the slowest timescale in the system (either membrane or

synaptic timescale). Critical-slowing down can therefore be observed only when the mem-

brane or synaptic timescales are very slow and filter out the spiking noise [16, 17].

Here we have shown that for networks with EI connectivity and positive firing rates, a

novel signature of fluctuating activity appears simply at the level of mean and variance of fir-

ing-rates, which become highly sensitive to the upper bound at strong coupling. In contrast to

critical slowing-down, this signature of strongly fluctuating activity manifests itself in a large

range of couplings above the critical value. A second difference with critical slowing down is

that this signature of fluctuating activity is very robust to noise, and therefore independent of

the timescale of the synapses or membrane time constant. Simulations of networks of inte-

grate-and-fire neurons reveal such signatures of underlying fluctuating activity for arbitrarily

fast synaptic time-constants, although there is no sharp transition in terms of critical slowing

down.
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The results presented here therefore reconcile the two proposed scenarios. A sharp phase-

transition to fluctuating activity characterized by critical slowing down appears only in the

limit of very slow synaptic or membrane time-constants. For arbitrarily fast synaptic time-con-

stants, there is no sharp phase transition, but instead a smooth cross-over to strongly fluctuat-

ing activity that manifests itself at larger couplings through high sensitivity to the upper bound

of the activity.

Mean-field theories and rate-based descriptions of integrate-and-fire

networks

The dynamical mean field theory used here to analyze rate networks should be contrasted with

mean field theories developed for integrate-and-fire networks. Classical mean field theories for

networks of integrate-and-fire neurons lead to a self-consistent firing rate description of the

equilibrium asynchronous state [18, 36, 39], but this effective description is however not con-

sistent at the level of the second order statistics. Mean field theories for IF neurons assume

indeed that the input to each neuron consists of white noise, originating from Poisson spiking;

however the firing of an integrate-and-fire neuron in response to white-noise inputs is in gen-

eral not Poisson [40], so that the Poisson assumption is not self-consistent. In spite of this,

mean field theory predicts well the first-order statistics over a large parameter range [41], but

fails at strong coupling when the activity is strongly non-Poisson [19].

Extending mean field theory to determine analytically self-consistent second-order statistics

is challenging for spiking networks. Several numerical approaches have been developed [44–

46], but their range of convergence appears to be limited. A recent analysis of that type has

suggested the existence of an instability driven by second-order statistics as the coupling is

increased [46].

A simpler route to incorporate non-trivial second order statistics in the mean field descrip-

tion is to describe the different neurons as Poisson processes with rates that vary in time. One

way to do this is to replace every neuron by a linear-nonlinear (LN) unit that transforms its

inputs into an output firing rate, and previous works have shown that such an approximation

can lead to remarkably accurate results [37, 38, 47, 48]. If one moreover approximates the lin-

ear filter in the LN unit by an exponential, this approach results in a mapping from a network

of integrate-and-fire neurons to a network of rate units with identical connectivity [19]. Note

that such an approximation is not quantitatively accurate for the leaky integrate-and-fire

model with fast synaptic timescales—indeed the linear response of that model contains a very

fast component (1=
ffiffi
t
p

divergence in the impulse response at short times, see [37]). A single

timescale exponential however describes much better dynamics of other models, such as the

exponential integrate-and-fire [37]. The accuracy of the mapping from integrate-and-fire to

rate networks also depends on synaptic timescales which influence both the amplitude of syn-

aptic noise and the transfer function itself [42]. It has been argued that the mapping becomes

exact in the limit of infinitely long timescales [17, 43].

In this study, we have analyzed rate networks using dynamical mean field theory. This ver-

sion of mean field theory is different from the one used for integrate-and-fire networks as it

determines self-consistently and analytically not only the first-order statistics, but also the sec-

ond-order statistics, i.e. the full auto-correlation function of neural activity. Note that this is

similar in spirit to the approach developed for integrate-and-fire networks [44–46], except that

integrate-and-fire neurons are replaced by simpler, analytically tractable rate units. Dynamical

mean field theory reveals that at large coupling, network feedback strongly amplifies the fluc-

tuations in the activity, which in turn lead to an increase in mean firing rates, as seen in net-

works of spiking neurons [19]. The rate-model moreover correctly predicts that for strong
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coupling, the activity is highly sensitive to the upper bound set by the refractory period,

although the mean activity is well below saturation.

As pointed out above, the mapping from an integrate-and-fire to a rate network is based on

a number of approximations and simplifications. The fluctuating state in the rate network

therefore does not in general lead to a quantitatively correct description of the activity in a net-

work of integrate-and-fire neurons. However, the rate model does capture the existence of a

fundamental instability, which amplifies fluctuations through network feedback.

Methods

Rate network model

We investigate the dynamics of a rate network given by:

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxjðtÞÞ þ I ð21Þ

where the index i runs over the units of the network. Each variable xi is interpreted as the total

input current to neuron i, and ϕ(x) is a monotonic, positively defined activation function,

transforming currents into output firing rates. I is a common external input and Jij a random

synaptic matrix. We have rescaled time to set the time constant to unity. All quantities are

therefore taken to be unitless.

We consider a two-population (excitatory and inhibitory), sparsely connected network.

All the excitatory synapses have strength J, while all inhibitory synapses have strength −gJ,
the parameter g playing the role of the relative amount of inhibition over excitation. In the

simplest model we consider, each neuron receives exactly C incoming connections, with

1� C� N [18]. A fraction f of inputs are excitatory (CE = fC), the remaining are inhibitory

(CI = (1 − f)C). We set f = 0.8.

For the sake of simplicity, in most of the applications we restrict ourself to the case of a

threshold-linear activation function with an offset γ. For practical purposes, we take:

�ðxÞ ¼

0 x < � g

gþ x � g � x � �max � g

�max x > �max � g

8
><

>:
ð22Þ

where ϕmax plays the role of the saturation value. In the following, we set γ = 0.5. In most of the

applications, if not explicitly indicated, we consider networks with no external input, and set

I = 0.

Mean field theory derivation

Here we derive in detail the Dynamical Mean Field (DMF) equations for the simplest excit-

atory-inhibitory network where the number of incoming connections C is identical for all

units. For networks of large size, mean field theory provides a simple effective description of

the network activity. More specifically, here we consider the limit of large N while C (and syn-

aptic strengths) are held fixed [18, 39]. The derivation provided here follows the same steps as

in [1, 11], but takes into account non-vanishing first moments.

The dynamics of the network depend on the specific realization of the random connectivity

matrix. The evolution of the network can therefore be seen as a random process, which can

be characterized by its moments, obtained by averaging over realizations of the connectivity

matrix. The dynamics can be described either by the moments of the synaptic currents xi, or
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by moments of the firing rates ϕ(xi). The two sets of moments are coupled, and DMF theory

exploits a Gaussian approximation to derive a closed set of equations for the first- and second-

order moments. This closed set of equations can then be solved self-consistently.

More specifically, DMF theory acts by replacing the fully deterministic coupling term

∑j Jijϕ(xj) + I in Eq (21) by an equivalent Gaussian stochastic process ηi. The effective mean

field dynamics are therefore given by:

_xiðtÞ ¼ � xiðtÞ þ ZiðtÞ ð23Þ

where the distribution of ηi should effectively mimic the statistics of the original system in

Eq (21).

To be able to compute the moments of the synaptic currents xi and firing rates ϕ(xi), the

first step is to compute self-consistently the first and second order moments of the effective

noise ηi. For this, averages over units, initial conditions, time and synaptic matrix instances

(that we will indicate with hi) are substituted with averages over the distribution of the stochas-

tic process (that we will indicate with []). For the mean, we get:

½ZiðtÞ� ¼ h
XN

j¼1

Jij�ðxjÞ þ Ii ¼
XCE

jE¼1

Jh�ðxjE
Þi � g

XCI

jI¼1

Jh�ðxjI
Þi þ I

¼ JðCE � gCIÞh�i þ I

ð24Þ

where the indices jE and jI run over the excitatory and the inhibitory units pre-synaptic to

unit i.
Following previous works [1, 3], here we assume that, for large N, Jij and ϕ(xj) behave inde-

pendently. Moreover, we assume that the mean values of x and ϕ reach stationary values for

t!1, such that [ηi(t)] = [ηi].

Under the same hypothesis, the second moment [ηi(t)ηj(t + τ)] is given by:

½ZiðtÞZjðt þ tÞ� ¼ h
XN

k¼1

Jik�ðxkðtÞÞ
XN

l¼1

Jjl�ðxlðt þ tÞÞi þ 2IJðCE � gCIÞh�i þ I2: ð25Þ

In order to evaluate the first term in the r.h.s., we differentiate two cases: first, we take i = j,
yielding the noise auto-correlation. We assume that in the thermodynamic limit, where the

Langevin equations in Eq (23) decouple, different units behave independently: hϕ(xk)ϕ(xl)i =

hϕ(xk)ihϕ(xl)i if k 6¼ l. We will verify this assumption self-consistently by showing that, in the

same limit, [ηi(t)ηj(t + τ)] = 0 when i 6¼ j.
The sum over k (l) can be split into a sum over kE and kI (lE and lI) by segregating the contri-

butions from the two populations. We thus get:

h
XN

k¼1

Jik�ðxkðtÞÞ
XN

l¼1

Jil�ðxlðt þ tÞÞi ¼ h
XNE

kE¼1

JikE
�ðxkE

ðtÞÞ
XNE

lE¼1

JilE
�ðxlE
ðt þ tÞÞi

þh
XNI

kI¼1

JikI
�ðxkI

ðtÞÞ
XNI

lI¼1

JilI
�ðxlI
ðt þ tÞÞi þ 2h

XNE

kE¼1

JikE
�ðxkE

ðtÞÞ
XNI

lI¼1

JilI
�ðxlI
ðt þ tÞÞi:

ð26Þ

We focus on the first term of the sum (same considerations hold for the second two), and we

differentiate contributions from kE = lE and kE 6¼ lE. Setting kE = lE returns a contribution equal

to CE J2hϕ2i. In the sum with kE 6¼ lE, as C is fixed, we obtain exactly CE(CE − 1) contributions
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of value J2hϕi2. This gives, for the two populations:

h
XN

k¼1

Jik�ðxkðtÞÞ
XN

l¼1

Jil�ðxlðt þ tÞÞi ¼ CEJ2h�ðxiðtÞÞ�ðxiðt þ tÞÞi þ CEðCE � 1ÞJ2h�i
2

� 2CECIgJ2h�i
2
þ CIg2J2h�ðxiðtÞÞ�ðxiðt þ tÞÞi þ CIðCI � 1Þg2J2h�i

2

¼ J2ðCE þ g2CIÞh�ðxiðtÞÞ�ðxiðt þ tÞÞi þ J2ðCE � gCIÞ
2
h�i

2
� J2ðCE þ g2CIÞh�i

2
:

ð27Þ

By defining the rate auto-correlation function C(τ) = hϕ(xi(t))ϕ(xi(t + τ))i, we finally get:

½ZiðtÞZiðt þ tÞ� � ½Zi�
2
¼ J2ðCE þ g2CIÞfCðtÞ � h�i

2
g: ð28Þ

When i 6¼ j, we instead obtain:

h
XN

k¼1

Jik�ðxkðtÞÞ
XN

l¼1

Jjl�ðxlðt þ tÞÞi ¼ C2

EJ2h�i
2
þ pCEJ2fCðtÞ � h�i2g þ C2

I g2J2h�i
2

þpCIg2J2fCðtÞ � h�i2g � 2CECIgJ2h�i
2
:

ð29Þ

The constant p corresponds to the probability that, given that k is a pre-synaptic afferent of

neuron i, the same neuron is connected also to neuron j. Because of sparsity, we expect this

value to be small. More precisely, since N is assumed to be large, we can approximate the prob-

ability p with C/N. We eventually find:

½ZiðtÞZjðt þ tÞ� � ½Zi�½Zj� ¼ pJ2ðCE þ g2CIÞfCðtÞ � h�i
2
g ! 0 ð30Þ

because p! 0 when N!1.

Once the statistics of the effective stochastic term ηi are known, we can describe the input

current x in terms of its mean μ = [xi] and its mean-subtracted correlation function Δ(τ) =

[xi(t)xi(t + τ)] − [xi]
2. The mean field current xi(t) emerging from the stochastic process in Eq

(23) behaves as a time-correlated Gaussian variable. First we observe that, asymptotically, its

mean value μ coincides with the mean of the noise term ηi:

m ¼ JðCE � gCIÞ½�� þ I ð31Þ

By differentiating twice Δ(τ) with respect to τ and using eqs (23) and (28), we moreover get

a second-order differential equation for the auto-correlation evolution:

€DðtÞ ¼ DðtÞ � J2ðCE þ g2CIÞfCðtÞ � h�i
2
g: ð32Þ

By explicitly constructing x(t) and x(t + τ) in terms of unit Gaussian variables, we self-con-

sistently rewrite the firing rate statistics [ϕ] and C(τ), as integrals over the Gaussian distribu-

tions:

½�� ¼

Z

Dz�ðmþ
ffiffiffiffiffi
D0

p
zÞ

CðtÞ ¼
Z

Dz
Z

Dy�ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D0 � DðtÞ

q

y þ
ffiffiffiffiffiffiffiffiffiffi
DðtÞ

p
zÞ

� �2
ð33Þ

where we used the short-hand notation:
R

Dz ¼
R þ1
� 1

e�
z2

2ffiffiffiffi
2p
p dz. For reasons which will become

clearly soon, we can focus on positive values of the auto-correlation Δ. We moreover defined

Δ0 = Δ(τ = 0).
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Following [1], Eq (32) can be seen as analogous to the equation of motion of a classical par-

ticle in a one-dimensional potential:

€D ¼ �
@VðD;D0Þ

@D
: ð34Þ

The potential V(Δ, Δ0) can be derived by integrating the right-hand side of Eq (32) over Δ and

using Eq (33). This yields

VðD;D0Þ ¼ �
D

2

2
þ J2ðCE þ g2CIÞ

Z

Dz
Z

DyFðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � D

p
y þ

ffiffiffiffi
D
p

zÞ
� �2

� D½��
2

( )

ð35Þ

where FðxÞ ¼
R x
� 1

dz�ðzÞ.
In absence of external noise, the initial condition to be satisfied is _Dðt ¼ 0Þ ¼ 0, which

implies null kinetic energy for τ = 0. A second condition is given by: Δ0 > |Δ(τ)| 8τ. The solu-

tion Δ(τ) depends on the initial value Δ0, and it is governed by the energy conservation law:

VðDðt ¼ 0Þ;D0Þ ¼ VðDðt ¼ 1Þ;D0Þ þ
1

2
_Dðt ¼ 1Þ

2
: ð36Þ

The stationary points and the qualitative features of the Δ(τ) trajectory depend then on the

shape of the potential V. We notice that the derivative of the potential in Δ = 0 is always 0, sug-

gesting a possible equilibrium point where the current distribution is concentrated in its mean

value μ. Note that the existence of the stationary point in 0 stems from the −Δ[ϕ]2 term in the

potential, which comes from taking the connectivity degree C fixed for each unit in the net-

work (for a comparison with the equations obtained for random in-degree networks, see

below).

When the first moment μ is determined self-consistently, the shape of V depends on the val-

ues of J and Δ0 (Fig 10a and 10b). In particular, a critical value JC exists such that:

• when J< JC, the potential has the shape of a concave parabola centered in Δ = 0 (Fig 10a).

The only physical bounded solution is then Δ = Δ0 = 0;

• when J> JC, the potential admits different qualitative configurations and an infinite number

of different Δ(τ) trajectories. In general, the motion in the potential will be oscillatory (Fig

10b).

However, in the strong coupling regime, a particular solution exists, for which Δ(τ) decays

to 0 as τ!1. In this final state, there is no kinetic energy left. A monotonically decaying

auto-correlation function is the only stable solution emerging from numerical simulations.

For this particular class of solutions, (eq (36)) reads:

VðD0;D0Þ ¼ Vð0;D0Þ: ð37Þ

More explicitly:

D
2

0

2
¼ J2ðCE þ g2CIÞ

Z

DzF2ðmþ
ffiffiffiffiffi
D0

p
zÞ �

Z

DzFðmþ
ffiffiffiffiffi
D0

p
zÞ

� �2
(

� D0

Z

Dz�ðmþ
ffiffiffiffiffi
D0

p
zÞ

� �2
) ð38Þ
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which gives an equation for μ and Δ0 to be solved together with the equation for the mean:

m ¼ JðCE � gCIÞ

Z

Dz�ðmþ
ffiffiffiffiffi
D0

p
zÞ þ I ð39Þ

In a more compact form, we can reduce the system of equations to:

m ¼ JðCE � gCIÞ½�� þ I

D
2

0

2
¼ J2ðCE þ g2CIÞ ½F

2� � ½F�
2
� D0½��

2
� 	

:
ð40Þ

Once μ and Δ0 are computed, their value can be injected into eq (32) to get the time course of

the auto-correlation function.

Not surprisingly, the results above rely on the assumption of sparsity in the connectivity:

C� N. Classic DMF theory, indeed, requires synaptic entry Jij to be independent one from each

other. Fixing the number of non-zero connections for each unit is imposing a strong depen-

dence among the entries in each row of the synaptic matrix. Nevertheless, we expect this depen-

dence to become very weak when N!1, and we find that DMF can still predict correctly the

system behavior, keeping however a trace of the network homogeneity through the term −[ϕ]2

in Eq (32). Fixing the degree C sets to zero the asymptotic value of the auto-correlation function,

and results in a perfect self-averaging and homogeneity of activity statistics in the population.

To conclude, we note that finding the DMF solution for an excitatory-inhibitory network

reduces here to solving a system of two-equations. A large simplification in the problem comes

here from considering networks where excitatory and inhibitory units receive statistically

equivalent inputs. DMF theory models indeed the statistical distribution of the input currents

inside each network unit. For this reason, it does not include any element deriving from the

segregation of the excitatory and the inhibitory populations in a two-columns connectivity

structure. In consequence, for identical sets of parameters, we expect the same DMF equations

to hold in more generic networks, where each neuron receive CE excitatory and CI inhibitory

inputs, but can make excitatory or inhibitory output connections. We checked the validity of

this observation (see later in Methods).

In a more general case, where excitation and inhibition are characterized as distinguishable

populations with their own statistics, solving the DMF equations becomes computationally

costly. The main complication comes from the absence of any equivalent classical motion in a

potential. For that reason, previous studies have focused mostly on the case of purely inhibi-

tory populations [16, 17].

Fig 10. Dynamical mean field potential V(Δ,Δ0) for different values of the parameterΔ0; fixed μ. The

activation function is chosen to be threshold-linear. a. J < JC: the potential is always concave. b. J > JC: the

shape of the potential strongly depends on the value of Δ0.

https://doi.org/10.1371/journal.pcbi.1005498.g010
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Second critical coupling JD. While the DMF equations can be derived for a generic acti-

vation function ϕ(x), here we focus, for mathematical convenience, on the simple case of the

threshold-linear activation function in Eq (22). From now on, for simplicity, we will set I = 0.

For each value of the synaptic strength J, the system in Eq (40) allows to compute the first- and

second-order statistics of the network activity. As shown in Results, DMF revels the existence

of two different fluctuating regimes above the critical coupling JC, governed by the two differ-

ent non-linear constraint in the dynamics: the positivity and the saturation of firing rates.

Here we study the behavior of the DMF solution close to the second critical coupling JD, in the

case of a non-saturating activation function where ϕmax!1. When J approaches JD, Δ0!1,

while μ!−1 (Fig 3).

Led by dimensionality arguments, we assume that, close to the divergence point, the ratio

k ¼ m=
ffiffiffiffiffi
D0

p
is constant. With a threshold-linear transfer function, it is possible to compute

analytically the three Gaussian integrals implicit in Eq (40) and to provide an explicit analytic

form of the DMF equations. The equation for the mean translates into:

m ¼ JðCE � gCIÞ½�� ¼ JðCE � gCIÞ
1

2
þ m

� �
1

2
� gðxaÞ

� �

þ

ffiffiffiffiffiffi
D0

2p

r

e� 1
2
x2

a

( )

: ð41Þ

where xa ¼
1ffiffiffiffi
D0

p � 1

2
� m

� �
� � k and where we have defined: gðxÞ ¼ 1

2
erf ðx=

ffiffiffi
2
p
Þ. When

J! JD, by keeping only the leading order in
ffiffiffiffiffi
D0

p
, we find m ¼ k̂

ffiffiffiffiffi
D0

p
with:

k̂ ¼
JðCE � gCIÞ

e�
k2

2ffiffiffiffi
2p
p

1 � JðCE � gCIÞ
1

2
þ GðkÞ

� � : ð42Þ

By imposing k ¼ k̂, one can determine self-consistently the value of k for each value of J.
We introduce m ¼ k

ffiffiffiffiffi
D0

p
into the second equation for Δ0. By keeping only the leading order in

Δ0, we find:

ffiffiffiffiffi
D0

p
¼ f ðkÞ

f ðkÞ ¼
J2ðCE þ g2CIÞTðkÞ

1

2
� J2ðCE þ g2CIÞSðkÞ

ð43Þ

with:

SðkÞ ¼
1

4
k4 1

2
þ gðkÞ

� �

þ
1

4
k3 e

�

k2

2
ffiffiffiffiffiffi
2p
p þ k2 3

2

1

2
þ gðkÞ

� �

�
1

2
þ gðkÞ

� �2
" #

þk
5

4

e
�

k2

2
ffiffiffiffiffiffi
2p
p � 2

1

2
þ gðkÞ

� �
e
�

k2

2
ffiffiffiffiffiffi
2p
p

2

6
6
6
4

3

7
7
7
5
þ

3

4

1

2
þ gðkÞ

� �

�
e
�

k2

2
ffiffiffiffiffiffi
2p
p

0

B
B
B
@

1

C
C
C
A

2

�
1

2
k2 þ

1

2

� �
1

2
þ gðkÞ

� �

þ
1

2
k

e
�

k2

2
ffiffiffiffiffiffi
2p
p

8
>>><

>>>:

9
>>>=

>>>;

2

ð44Þ

In order to obtain a solution Δ0, from Eq (43) we require the function f(k) to be positive. We
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observe that f diverges when its denominator crosses zero. Here f(k) changes sign, becoming

negative. We use this condition to determine JD:

J2

DðCE þ g2CIÞSðkðJDÞÞ ¼
1

2
ð45Þ

In presence of external noise of variance 2Δext, the equation for Δ0 is perturbed by an addi-

tive term proportional to D
2

ext (see below in Methods). Since we treat the noise variance as a

constant, this additional term does not contribute to the divergence in the leading order in Δ0

(namely, D
3=2

0
, D

2

0
), and the presence of noise does not influence the value of JD.

Similarly, when we add white noise to mimic the noise introduced by Poisson spikes, we

find the extra term to be proportional to [ϕ]2, which is of the same order of Δ0. As a conse-

quence, again, it does not perturb the equation for Δ0 to the leading orders.

Mean field theory in presence of noise. In order to investigate the effect of an external

noisy input on the dynamical regimes, we introduced an additive, white noise term in Eq (21).

The network dynamics in this case read:

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxjðtÞÞ þ xiðtÞ ð46Þ

with hξi(t)i = 0 and hξi(t)ξj(t + τ)i = 2Δext δijδ(τ).

As above, we replace the forcing term ∑j Jijϕ(xj) + ξi by an effective noise ηi. By following the

same steps as before we find:

½ZiðtÞ� ¼ JðCE � gCIÞh�i

½ZiðtÞZiðt þ tÞ� � ½Zi�
2
¼ dij J2ðCE þ g2CIÞ CðtÞ � h�i2

� 	
þ 2DextdðtÞ

� � ð47Þ

which translates into:

€DðtÞ ¼ DðtÞ � J2ðCE þ g2CIÞfCðtÞ � ½��
2
g þ 2DextdðtÞ ð48Þ

We conclude that the external noise acts on the auto-correlation function by modifying its

initial condition into: _Dð0þÞ ¼ � _Dð0� Þ ¼ � Dext. In terms of the analogy with the 1D motion,

the presence of noise translates into an additive kinetic term in τ = 0, which one has to take

into account while writing down the energy balance:

VðD0;D0Þ þ
1

2
_Dð0Þ

2
¼ Vð0;D0Þ ð49Þ

to be solved again together with the equation for the mean μ. The potential V(Δ, Δ0), in con-

trast, remains unperturbed. The main effect of including a kinetic term at τ = 0 consists in

allowing a variance Δ0 6¼ 0 also in the low coupling regime, where the potential has the usual

shape as in Fig 10a.

From a mean field perspective, white noise can be studied as a proxy for the effect induced

by spikes on the rate dynamics. In order to better quantify this effect, following [16], we add a

spiking mechanism on the rate dynamics in Eq (1). Spikes are emitted according to indepen-

dent inhomogeneous Poisson processes of rate ϕ(xj(t)), which obeys:

�t _xðtÞ ¼ � xðtÞ þ
XN

j¼1

JijwjðtÞ ð50Þ

and χj(t) is the spike train emitted by neuron j: wjðtÞ ¼
P

k dðt � tk
j Þ.
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This simple spiking mechanism can be again incorporated into a DMF description. Here,

following [16], we show that the resulting equations correspond to an usual rate model with

additive white noise, whose variance is given by J2ðCE þ g2CIÞ½��=�t. The mean field forcing

noise is in this case ηi(t) = ∑j Jijχj(t). By separating Jij into the sum of its mean and a zero-mean

term, we get that the usual equation for the first order statistics holds:

½Zi� ¼ JðCE � gCIÞ½�� ð51Þ

In order to compute the noise auto-correlation, we separate ηi into a rate and a zero-mean

spikes contribution: Zi ¼ Zr
i þ Z

sp
i , where Zr

i ¼
P

j Jij�ðxjÞ and Z
sp
i ¼

P
j Jijfwj � �ðxjÞg. The

auto-correlation of the rate component returns the usual contribution:

½ðZr
i ðtÞ � ½Z

r
i �ÞðZ

r
j ðt þ tÞ � ½Zr

j �Þ� ¼ dijJ
2ðCE þ g2CIÞfCðtÞ � ½��

2
g ð52Þ

while the auto-correlation of the spikes term generates the instantaneous variability induced

by the Poisson process:

½ðZ
sp
i ðtÞ � ½Z

sp
i �ÞðZ

sp
j ðt þ tÞ � ½Z

sp
j �Þ� ¼ dijJ

2ðCE þ g2CIÞ½��dðtÞ ð53Þ

By summing the two contributions together, and rescaling time appropriately, we obtain the

evolution equation for Δ(τ) equivalent to Eq (48) with a self-consistent white noise term:

€DðtÞ ¼ DðtÞ � J2ðCE þ g2CIÞfCðtÞ � ½��
2
þ
½��

�t
dðtÞg ð54Þ

Mean field theory in general EI networks. We discuss here the more general case of a

block connectivity matrix, corresponding to one excitatory and one inhibitory population

receiving statistically different inputs. The synaptic matrix is now given by:

J ¼ J
JEE

JIE

�
�
�
�

JEI

JII

� �

ð55Þ

Each row of J contains exactly CE non-zero excitatory entries in the blocks of the excitatory col-

umn, and exactly CI inhibitory entries in the inhibitory blocks. Non-zero elements are equal to

jE in JEE, to −gE jE in JEI, to jI in JIE, and to −gI jI in JII.

The network admits a fixed point ðxE
0
; xI

0
Þ which is homogeneous within the two different

populations:

xE
0

xI
0

 !

¼ J
jEðCE�ðxE

0
Þ � gECI�ðxI

0
ÞÞ

jIðCE�ðxE
0
Þ � gICI�ðxI

0
ÞÞ

 !

ð56Þ

With linear stability analysis, we obtain that the fixed point stability is determined by the

eigenvalues of matrix:

S ¼ J
�
0

EJEE

�
0

EJIE

�
�
�
�
�
0

IJEI

�
0

IJII

� �

ð57Þ

where we used the short-handed notation �
0

k ¼ �
0
ðxk

0
Þ.

The eigenspectrum of S consists of a densely distributed component, represented by a circle

in the complex plane, and a discrete component, consisting of two outlier eigenvalues. The

radius of the complex circle is determined by the 2x2 matrix containing the variance of the
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entries distributions in the four blocks, multiplied by N [12, 13, 34]:

S ¼ J2
�
0

E2CEj2E �
0

I2CIg2
Ej2E

�
0

E2CEj2I �
0

I2CIg2
I j2I

 !

ð58Þ

More precisely, the radius of the circle is given by the square root of its larger eigenvalues:

r ¼
1

2
J2

�

CE�
0

E
2j2E þ CI�

0

I
2g2

I j2I

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCE�
0

E
2j2E þ CI�

0

I
2g2

I j2I Þ
2
� 4CECI�

0

E
2�
0

I
2j2Ej2I ð� g2

E þ g2
I Þ

q ��1
2

ð59Þ

where the derivative terms ϕ0k contain an additional dependency on J.
In order to determine the two outlier eigenvalues, we construct the 2x2 matrix containing

the mean of S in each of the four blocks, multiplied by N:

M ¼ J
�
0

ECEjE � �
0

ICIgEjE

�
0

ECEjI � �
0

ICIgIjI

 !

ð60Þ

The outliers correspond to the two eigenvalues of M, and are given by:

x� ¼
1

2
J �

0

ECEjE � �
0

ICIgIjI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�
0

ECEjE � �
0

ICIgI jIÞ
2
þ 4�

0

E�
0

ICECIjEjIð� gE þ gIÞ

q� �

ð61Þ

Notice that, if gE is sufficiently larger than gI, the outlier eigenvalues can be complex

conjugates.

We focus on the case where, by increasing the global coupling J, the instability to chaos is

the first bifurcation to take place. As in the simpler case when excitatory and inhibitory popu-

lations are identical, we need the real part of the outliers to be negative or positive but smaller

than the radius r of the densely distributed component of the eigenspectrum. This requirement

can be accomplished by imposing relative inhibitory strengths gE and gI strong enough to over-

come excitation in the network. For a connectivity matrix which satisfies the conditions above,

an instability to a fluctuating regime occurs when the radius r crosses unity.

We can use again DMF to analyze the network activity below the instability. To start with,

dealing with continuous-time dynamics, one can easily generalize the mean field equations we

recovered for the simpler two-column connectivity. In the new configuration, the aim of mean

field theory is to determine two values of the mean activity and two values for the variance,

one for each population.

By following the same steps as before, we define ZE
i ¼

PN
j¼1

Jij�ðxjðtÞÞ for each i belonging

to the E population, and ZE
i ¼

PN
j¼1

Jij�ðxjðtÞÞ for each i belonging to I. Those two variables

represent the effective stochastic inputs to excitatory or inhibitory units which replace the

deterministic network interactions. Under the same hypothesis as before, we compute the sta-

tistics of the ZE
i and ZI

i distributions. For the mean, we find:

ZE
i

� �

ZI
i

� �

 !

¼ J
CEjE � CIgEjE

CEjI � CIgIjI

 !
�

E� �

�
I� �

 !

ð62Þ
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For the second order statistics, we have:

ðZE
i ðtÞ � ½Z

E
i �ÞðZ

E
j ðt þ tÞ � ½ZE

j �Þ
h i

ðZI
i ðtÞ � ½Z

I
i �ÞðZ

I
j ðt þ tÞ � ½ZI

j �Þ
h i

0

B
@

1

C
A ¼ J2

CEj2E CIg2
Ej2E

CEj2I CIg2
I j2I

 !
CEðtÞ � �

E� �2

CIðtÞ � �
I� �2

0

@

1

A: ð63Þ

By using those results, we obtain two equations for the mean values of the input currents:

mE

mI

 !

¼ J
CEjE � CIgEjE

CEjI � CIgIjI

 !
�

E� �

�
I� �

 !

: ð64Þ

and two differential equations for the auto-correlation functions, which can be summarized as:

€DEðtÞ

€DIðtÞ

 !

¼
D

E
ðtÞ

D
I
ðtÞ

 !

� J2
CEj2E CIg2

Ej2E
CEj2I CIg2

I j2I

 !
CEðtÞ � �

E� �2

CIðtÞ � �
I� �2

0

@

1

A: ð65Þ

All the mean values are defined and computed as before, the population averages to be taken

only over the E or the I population.

The main difficulty in solving Eqs (64) and (65) comes from the absence of an analogy with

an equation of motion for a classical particle in a potential. Unfortunately, indeed, isolating

the self-consistent solution in absence of an analogous suitable potential V(ΔE(τ), ΔI(τ))

appears to be computationally very costly.

However, if we restrict ourselves to discrete-time rate dynamics:

xiðt þ 1Þ ¼
XN

j¼1

Jij�ðxjðtÞÞ: ð66Þ

DMF equations can still easily be solved. With discrete-time evolution, the mean field dynam-

ics reads:

xiðt þ 1Þ ¼ ZiðtÞ ð67Þ

which identifies directly the input current variable xi with the stochastic process ηi. In contrast

to the continuous case, where self-consistent noise is filtered by a Langevin process, the result-

ing dynamics is extremely fast. As a consequence, the statistics of ηi directly translates into the

statistics of x. We are left with four variables, to be determined according to four equations,

which can be synthesized in the following way:

mE

mI

 !

¼ J
CEjE � CIgEjE

CEjI � CIgIjI

 !
�

E� �

�
I� �

 !

: ð68Þ

D
E
0

D
I
0

 !

¼ J2
CEj2E CIg2

Ej2E
CEj2I CIg2

I j2I

 !
�

E2
� �

� �
E� �2

�
I2� �
� �

I� �2

0

@

1

A: ð69Þ

As usual, firing rate statistics are computed as averages with respect to a Gaussian distribution

with mean μE (μI) and variance D
E
0

(D
I
0
).

When adopting discrete-time dynamics, a second condition has to be imposed on the con-

nectivity matrix. To prevent phase-doubling bifurcations specific to discrete-time dynamics,

we need the real part of the outliers to be strictly smaller than r in modulus. An isolated outlier

on the negative real axis, indeed, would lose stability and induce fast oscillations in the activity
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before the transition to chaos takes place. The latter condition is satisfied in a regime where

inhibition is only weakly dominating, coinciding with the phase region where the approxima-

tion provided by DMF is very good (see below in Methods).

Mean field theory with stochastic in-degree. We derive here the dynamical mean field

equations for network in which the total number of inputs C varies randomly between differ-

ent units in the network. We focus on a connectivity matrix with one excitatory and one inhib-

itory column. In the excitatory column, each element Jij is drawn from the following discrete

distribution:

Jij ¼
J p ¼ CE=NE ¼ C=N

0 otherwise

(

Up to the order O(1/N), the statistics of the entries Jij are are:

hJiji ¼
J
N

C ð70Þ

hJ2

iji ¼
J2

N
C: ð71Þ

The inhibitory column is defined in a similar way, if substituting J with −gJ.
We proceed in the same order as in the previous sections. We define the effective stochastic

coupling, given by ηi(t) = ∑j Jijϕ(xj(t)). We compute the equations for the mean and the correla-

tion of the Gaussian noise ηi in the thermodynamic limit.

We will find that the variance associated to the single neuron activity will consist of a tem-

poral component, coinciding with the amplitude squared of chaotic fluctuations, and of a

quenched term, which appears when sampling different realizations of the random connectiv-

ity matrix.

For a given realization and a given unit i, the temporal auto-correlation coincides with:

½ZiðtÞZiðt þ tÞ�t;ic � ½Zi�
2

t;ic by averaging over time and over different initial conditions. In a sec-

ond step, averaging over all the units in the population, or equivalently, over the realizations of

the matrix Jij, returns the average size of deviations from single unit mean within one single

trial ½½ZiðtÞZiðt þ tÞ�t;ic � ½Zi�
2

t;ic�J ¼ ½ZiðtÞZiðt þ tÞ� � ½½Zi�
2

t;ic�J . Remember that, in our notation,

[] indicates an average over time, initial conditions, and matrix realizations. One can compute

self-consistently this quantity and check that it coincides with the expression for the total sec-

ond order moment we found in the previous paragraph for the fixed in-degree case.

In order to close the expression for the DMF equations, we will need to express all the aver-

ages of ϕ in terms of the total variance Δ0, which includes quenched variability. For this reason,

we compute the average deviations from [ηi(t)ηi(t + τ)] with respect to the population (realiza-

tions) mean [ηi]. As a result, the second moment [ηi(t)ηj(t + τ)] − [ηi(t)]2 will now include the

static trial-to-trial variability.

For the mean, we get:

½ZiðtÞ� ¼ h
XNE

jE¼1

JijE
�ðxjE
ðtÞÞi þ h

XNI

jI¼1

JijI
�ðxjI
ðtÞÞi ¼ NEhJijE

i þ NIhJijI
i

� �
h�i

¼ JðCE � gCIÞh�i:

ð72Þ
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Applying the same steps as before, we compute the second order statistics:

½ZiðtÞZiðt þ tÞ� ¼ h
XN

k¼1

Jik�ðxkðtÞÞ
XN

l¼1

Jil�ðxlðt þ tÞÞi

¼ h
XNE

kE¼1

JikE
�ðxkE

ðtÞÞ
XNE

lE¼1

JilE
�ðxlE
ðt þ tÞÞi þ h

XNI

kI¼1

JikI
�ðxkI

ðtÞÞ
XNI

lI¼1

JilI
�ðxlI
ðt þ tÞÞi

þ2h
XNE

kE¼1

JikE
�ðxkE

ðtÞÞ
XNI

lI¼1

JilI
�ðxlI
ðt þ tÞÞi:

ð73Þ

Again, we consider separate contributions from diagonal (k = l) and off-diagonal (k 6¼ l) terms.

This results in:

½ZiðtÞZiðt þ tÞ� ¼ CEJ2h�ðxiðtÞÞ�ðxiðt þ tÞÞi þ C2
Eð1 � 1=NEÞJ2h�i

2

� 2CECIgJ2h�i
2
þ CIg2J2h�ðxiðtÞÞ�ðxiðt þ tÞÞi þ C2

I ð1 � 1=NIÞg2J2h�i
2
:

ð74Þ

As we can see, diagonal terms behave, on average, like in the fixed in-degree case. To esti-

mate the off-diagonal contributions, we observe that for every kE index, the expected number

of other non-zero incoming connections is CE(1 − 1/NE). As a consequence, the kE 6¼ lE sum

contains on average C2
E terms of value J2hϕi2 in the limit N!1. Note that in the fixed in-

degree case, the same sum contained exactly CE(CE − 1) terms. That resulted in a smaller value

for the second order statistics, which does not include the contribution from stochasticity in

the number of incoming connections. Similar arguments hold for the inhibitory units.

To conclude, in the large network limit, we found:

½ZiðtÞZiðt þ tÞ� ¼ J2ðCE þ g2CIÞh�ðxiðtÞÞ�ðxiðt þ tÞÞi þ J2ðCE � gCIÞ
2
h�i

2 ð75Þ

such that the final result reads:

½ZiðtÞZiðt þ tÞ� � ½ZiðtÞ�
2
¼ J2ðCE þ g2CIÞCðtÞ: ð76Þ

As before, one can then check that the cross-correlation between different units vanishes.

The noise distribution determines the following self-consistent potential:

VðD;D0Þ ¼ �
D

2

2
þ J2ðCE þ g2CIÞ

Z

Dz
Z

DxFðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � D

p
x þ

ffiffiffiffi
D
p

zÞ
� �2

: ð77Þ

In contrast with the potential of Eq (35), which was found for networks with fixed in-

degree, here we observe the lack of the term −Δ[ϕ]2. As a consequence, the new potential is flat

around a non-zero Δ = Δ1 value, which represents the asymptotic population disorder.

As usually, we derive the DMF solution in the weak and in the strong coupling regime

thanks to the analogy with the one-dimensional equation of motion. When J< JC, the potential

has the shape of a concave parabola, the vertex of which is shifted to Δ1 6¼ 0. The only admitta-

ble physical solution is here Δ(τ) = Δ0 = Δ1. In order to determine its value, we use the condi-

tion emerging from setting €D ¼ 0:

D0 ¼ J2ðCE þ g2CIÞ

Z

Dz�2
ðmþ

ffiffiffiffiffi
D0

p
zÞ ð78Þ
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to be solved together with the equation for the mean:

m ¼ JðCE � gCIÞ

Z

Dz�ðmþ
ffiffiffiffiffi
D0

p
zÞ: ð79Þ

When J> JC, the auto-correlation acquires a temporal structure. The stable solution is

monotonically decreasing from Δ0 to a value Δ1, and we need to self-consistently determine μ,

Δ1 and Δ0 through three coupled equations. Apart from the usual one for μ, a second equation

is given by the energy conservation law:

VðD0;D0Þ ¼ VðD1;D0Þ ð80Þ

which reads:

D
2

0
� D

2

1

2
¼ J2ðCE þ g2CIÞ

Z

DzF2ðmþ
ffiffiffiffiffi
D0

p
zÞ

�

�

Z

Dz
Z

DyFðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � D1

p
y þ

ffiffiffiffiffiffiffi
D1

p
zÞ

� �2
)

:

ð81Þ

The third equation emerges from setting €D ¼ 0 at Δ1, which gives:

D1 ¼ J2ðCE þ g2CIÞ

Z

Dz
Z

Dy�ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � D1

p
y þ

ffiffiffiffiffiffiffi
D1

p
zÞ

� �2

: ð82Þ

Finite size effects and limits of the mean field assumptions

We test numerically the validity of the Gaussian assumptions and the predictions emerging

from the DMF theory. We found two main sources of discrepancies between the theory and

numerics, namely finite-size effects and the asymmetry between excitation and inhibition.

As a first step, we analyzed the magnitude of finite size effects deriving from taking finite

network sizes. Fig 11a shows a good agreement between simulated data and theoretical expec-

tations. The magnitude of finite size effects shrinks as the network size is increased and cross-

correlations between different units decays.

In Fig 11b we tested instead the effect of increasing the in-degree C when N is kept fixed.

When C is constant and homogeneous in the two populations, our mean field approach

requires network sparseness (C� N). Consistently, we find an increase in the deviations from

the theoretical prediction when C is increased.

Both the N and C dependencies have the effect of weakly reducing fluctuations variance

with respect to the one expected in the thermodynamic limit. The numerically obtained x dis-

tribution is in good agreement with the assumption of DMF, which states that current vari-

ables xi are distributed, for large time t and size N, according to a Gaussian distribution of

mean μ and variance Δ0.

We observe that stronger deviations from the theoretical predictions can arise when the

upper-bound ϕmax on the transfer function is large and the network is in the intermediate and

strong coupling regime. By simulating the network activity in that case, we observe stronger

cross-correlations among units, which can cause larger fluctuations in the population-aver-

aged firing rate.

In Fig 11c we check that those deviations can still be understood as finite size effects: the

distance between the DMF value and the observed ones, which now is larger, decreases with N
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as the correlation among units decay. Equivalently, the variance of the fluctuations in the pop-

ulation-averaged input current and firing rate decays consistently as *1/N.

The same effect, and even stronger deviations, are observed in rate models where the trans-

fer function is chosen to mimic LIF neurons.

As a side note, we remark that strong correlations in numerical simulations are observed

also in the case of spiking networks of LIF neurons with small refractory period and

Fig 11. Comparison between dynamical mean field predictions and numerical simulations: Finite size effects. a. Dependence on the

system size N (C = 100). In the first three panels: distribution of the input current x in the population and in different time steps. The numerical

distribution is obtained through averaging over 3 realizations of the synaptic matrix. Light green: simulated data distribution, dark green: best

Gaussian fit to data, red: DMF prediction. In the fourth panel: normalized deviations from the DMF theoretical value. The log-log dependence is

fitted with a linear function, γ giving the coefficient of the linear term. Choice of the parameters: g = 4.1, J = 0.2, ϕmax = 2. b. As in a, dependence

on the in-degree C (N = 6500). c. Finite size effects in rate networks with large saturation upper-bound: sample of network activity (top: single

units in grey scale, bottom: population averaged firing rate). Choice of the parameters: g = 5, J = 0.14, ϕmax = 240. d. Finite size effects in

networks of LIF neurons with small refractory period: sample of network activity (rastergram of 80 randomly selected neurons, population

averaged firing rate). Choice of the parameters: N = 20000, C = 500, g = 5, τrp = 0.01 ms, J = 0.9 mV. e. Finite size effects in rate networks with

large saturation upper-bound: normalized variance of the population-averaged firing rate as a function of the network size. f. Finite size effects in

networks of LIF neurons with small refractory period: normalized variance of the population-averaged firing rate as a function of the network size

(computed with 1 ms bins).

https://doi.org/10.1371/journal.pcbi.1005498.g011
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intermediate coupling values (Fig 11d). Also in this case, correlations are reflected in strong

time fluctuations in the population averaged firing rate. Their amplitude should scale with the

system size as 1/N in the case of independent Poisson processes. This relationship, which is

well fitted in the weak and strong coupling regimes, appears to transform into a weaker power

law decay for intermediate J values.

Limits of the Gaussian approximation. A different effect is found by increasing the dom-

inance of inhibition over excitation in the network, i.e. by increasing g, or equivalently, by

decreasing f. As shown in Fig 12a, inhibition dominance can significantly deform the shape of

the distribution, which displays suppressed tails for positive currents. As the inhibition domi-

nance is increased, since ϕ(xi) is positive and Jij strongly negative on average, the fluctuations

become increasingly skewed in the negative direction. As expected, the Gaussian approxima-

tion does not fit well the simulated data. Fig 11b, 11c and 11d shows that the same effect is

quite general and extends to networks where excitation and inhibition are not segregated or

the connectivity C is random.

An extreme consequence of this effect is the failure of DMF in describing purely inhibi-

tory networks in absence of external excitatory currents, where the effective coupling ηi(t) =

∑j Jijϕ(xj(t)) is strictly non-positive at all times. In this case, DMF erroneously predicts a criti-

cal coupling JD between a bounded and an unbounded regime, the divergence being led by

the positive tails of the Gaussian bell. In contrast, in absence of any positive feedback, purely

inhibitory networks cannot display a transition to run-away activity.

As a final remark, we observe that the agreement between simulated activity and mean field

predictions in the case of purely inhibitory networks is in general less good than the one we

found for EI architectures.

Fig 12. Comparison between dynamical mean field predictions and numerical simulations: The

effects of strong inhibition. Distribution of the input current x in the population and in different time steps.

The numerical distribution is obtained through averaging over 3 realizations of the synaptic matrix. Light

green/orange: simulated data distribution, dark green/orange: best Gaussian fit to data, red: DMF prediction.

Choice of the parameters: C = 100, N = 6500, J = 0.2. a. Dependence on the inhibition dominance g. b.

Numerical distribution for a network with a synaptic matrix where C is fixed, as above, but excitatory and

inhibitory units are shuffled. c. As above, with a synaptic matrix where C is random. d. As above, with the

equivalent Gaussian matrix, whose statistics match the ones of the sparse one.

https://doi.org/10.1371/journal.pcbi.1005498.g012
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We conclude that the Gaussian hypothesis adopted in the DMF framework is a reasonable

approximation only when inhibition does not overly dominate excitation. Finally, we remark

that this limitations critically depends on adopting sparse matrices where non-zero entries

have fixed values. If adopting a Gaussian, fully-connected connectivity, whose mean and vari-

ance are matching the ones of the original matrix:

½Jij� ¼
J
N
ðCE � gCIÞ

½J2
ij � ¼

J2

N
ðCE þ g2CIÞ

ð83Þ

numerical simulations reveal that, whatever the degree of inhibition, positive entries are strong

enough to balance the distribution, which strongly resembles again a Gaussian bell.

Network of integrate-and-fire neurons

The simulations presented in Fig 9 were performed on a network of leaky integrate-and-fire

(LIF) neurons identical to [19]. The membrane potential dynamics of the i-th LIF neuron are

given by:

tm
dVi

dt
¼ � Vi þ m0 þ RIiðtÞ þ mextðtÞ ð84Þ

where τm = 20 ms is the membrane time constant, μ0 is a constant offset current, and RIi is

the total synaptic input from within the network. When the membrane potential crosses the

threshold Vth = 20 mV, an action potential is emitted and the membrane potential is reset to

the value Vr = 10 mV. The dynamics resume after a refractory period τr, the value of which was

systematically varied. The total synaptic input to the i-th neuron is:

RIiðtÞ ¼ tm

X

j

Jij

X

k

dðt � tðkÞj � DÞ ð85Þ

where Jij is the amplitude of the post-synaptic potential evoked in neuron i by an action poten-

tial occurring in neuron j, and Δ is the synaptic delay (here taken to be 1.1 ms). Note that if the

synaptic delay is shorter than the refractory period, the network develops spurious synchroni-

zation [21].

The connectivity matrix Jij was identical to the rate network with fixed in-degree described

above.
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