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Abstract
Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly

used for antimicrobial drug development and optimization of dosage regimens, but system-

atic simulation-estimation studies to distinguish between competing PD models are lacking.

This study compared the ability of static and dynamic in vitro infection models to distinguish

between models with different resistance mechanisms and support accurate and precise

parameter estimation. Monte Carlo simulations (MCS) were performed for models with one

susceptible bacterial population without (M1) or with a resting stage (M2), a one population

model with adaptive resistance (M5), models with pre-existing susceptible and resistant

populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing

populations with adaptive resistance (M6). For each model, 200 datasets of the total bacte-

rial population were simulated over 24h using static antibiotic concentrations (256-fold con-

centration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-

life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four

curves for dynamic conditions) were generated by bootstrapping. Each dataset was esti-

mated by all six models via population PD modeling to compare bias and precision. For M1

and M3, most parameter estimates were unbiased (<10%) and had good imprecision

(<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5

and M6 had poor bias and large imprecision under static and dynamic conditions. For data-

sets that only contained viable counts of the total population, common statistical criteria and

diagnostic plots did not support sound identification of the true resistance mechanism.

Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and

resistance mechanisms to support extended simulations and translate from in vitro experi-

ments to animal infection models and ultimately patients.
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Author Summary

Mathematical models are increasingly used for analysis and interpretation of in vitro effi-
cacy results of antimicrobial drugs. Various models are employed in the scientific literature
and it seems that they are equally able to describe the observed data. The aim of the present
study was to compare different models in various experimental designs and with different
resistance mechanisms of bacteria. For that purpose we have generated experimental data
through Monte-Carlo simulations and then used six different mathematical models to
analyze these results. We showed that statistical comparison of models did not allow deter-
mining which was the true mechanism of resistance, i.e. the one used for the simulation
step. Moreover mathematical parameters for bacterial resistance were estimated with bias
and with a low precision except for the simpler cases. This suggests that the choice of the
mathematical model for data analysis should be guided by experimental characterization
of the bacterial mechanism of resistance.

Introduction
Antimicrobial therapy greatly benefits from optimized antibiotic dosage regimens that are sup-
ported by pharmacokinetic (PK) and pharmacodynamic (PD) concepts. Traditionally, the
minimum inhibitory concentration (MIC) has been the predominant measure of bacterial sus-
ceptibility to predict antibiotic efficacy and it still is considered as a ‘gold standard’ for deter-
mining the bacterial susceptibility and predicting therapeutic success [1]. As most antibiotics
have been available for well over a decade, their development relied heavily on MIC based
approaches [2].

Despite its popularity, the MIC is subject to several limitations. It is determined at only one
time point (usually between 16 and 24h), at a low initial bacterial inoculum (i.e. usually in the
absence of resistant populations), and utilizes constant (i.e. static) antibiotic concentrations
[1]. Therefore, the MIC neither provides information on the time-course of bacterial killing
[2–4] nor on emergence of resistance [5, 6].

There are several types of mechanisms which contribute to bacterial resistance [7]. Hetero-
resistance defines the scenario where a small number of resistant bacteria (e.g. 0.0001% [equiv-
alent to 10−6] of the initial inoculum) are present before initiation of antibiotic therapy [8].
Such a small resistant population is typically not found in standard microbroth MIC tests due
to the small initial inoculum used for MIC testing. However, serious infections with a high bac-
terial burden almost certainly harbor such resistant bacteria at initiation of therapy [7]. Sec-
ondly, bacterial adaptation decreases the bacterial susceptibility due to the up-regulation of a
resistance mechanism (such as an efflux pump in response to a quinolone antibiotic or the
AmpC β-lactamase enzyme in response to β-lactam antibiotics that bind penicillin-binding
protein 4 in Pseudomonas [9]). Finally, a phenotypic transition between normal replicating
bacteria and tolerant bacteria with a greatly reduced growth rate can result in reduced drug
sensitivity [10].

To address some of the limitations of the MIC approach, many static and dynamic in vitro
and in vivo infection model studies have assessed the ability of empirical PK/PD indices to pre-
dict the efficacy of antibiotics. Such data have proven useful to optimize antibiotic monother-
apy regimens for patients [2, 11, 12]. The large majority of murine infection model studies only
assessed bacterial counts at one time point (usually 24 h) and did not assess the time-course of
bacterial killing in vivo.
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In vitro infection model experiments [13] use either static antibiotic concentrations [6, 10,
14–17], simulate the dynamic time-course of antibiotic concentrations observed in patients [5,
18–20], or utilize both of these approaches [21–23]. These experimental models provide a
wealth of time-course data on bacterial growth and killing [24]. While a series of time-course
models for bacterial growth, killing and emergence of resistance has been proposed, it is cur-
rently unknown which type of dataset from in vitro studies is required to soundly develop such
PK/PD time-course models. We suspected datasets which only contain viable counts of the
total bacterial population, but do not contain data on resistant population(s), may be insuffi-
cient to distinguish between competing models with different resistance mechanisms. We are
also not aware of a systematic simulation-estimation study assessing the bias and precision of
parameter estimates from in vitro antibacterial models.

Therefore, our objective was to compare the ability of static and dynamic in vitro infection
models to identify the PK/PD model with the true resistance mechanism used during simula-
tion and to estimate model parameters accurately and precisely. We used Monte Carlo simula-
tions based on six candidate models and estimated these PK/PD models via importance
sampling in the S-ADAPT software which is a robust and one of the latest population estima-
tion algorithms.

Materials and Methods
The overview flow chart (Fig 1) summarizes the simulation-estimation procedures. Six differ-
ent PD models were selected to reflect a range of relevant PD models for antibiotics (Fig 2).
These models represent within-host antibiotic resistance models which seek to optimize the
probability of patient cure and prevention of resistance at the individual resistance level. This
should be distinguished from between-host antibiotic resistance models [25] which seek to
minimize resistance by preventing transmission of resistant bacteria between patients.

The within-host resistance models evaluated in the present work contained one bacterial
population with no emergence of resistance (M1), one population with the capacity to convert
into a resting stage (M2), presence in the initial inoculum of two bacterial populations with dif-
ferent susceptibility to an antibiotic (M3 and M4) and one or two bacterial populations with a
reversible adaptation to the antibiotic (M5 and M6). Models M3, M4 and M6 represent hetero-
resistance of the initial inoculum and models M5 and M6 incorporate adaptive resistance. The
latter was described by a turnover model to describe the stimulation of adaptive resistance in
response to an antibiotic and reversion back to baseline after removal of the antibiotic (Fig 2).
Monte Carlo (MC) simulations were performed based on each of these six PD models to

Fig 1. Simulation-estimation flow chart. Based on a set of true PD parameter values, Monte Carlo (MC) simulations were performed using six PDmodels
to generate experimental datasets under both static and dynamic conditions. Each of these datasets was then estimated via population PK/PDmodeling in
S-ADAPT for each of the six models (yielding 36 simulation-estimation scenarios in total). The parameter estimates for each model were compared to the
true parameter values used during simulation to assess bias and precision.

doi:10.1371/journal.pcbi.1004782.g001
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generate 1,200 simulated datasets for the static (20 viable count profiles per dataset) or dynamic
setting (four profiles per dataset).

Pharmacodynamic models
All six models contained a logistic growth function to limit growth to a maximum total bacte-
rial population size (Popmax). Model 1 (M1) contained one bacterial population and bacterial
killing followed an Emax model. This model was originally proposed for antibiotic PD by Zhi
et al. [26] and subsequently used by other investigators [3, 27]. The differential equation for the
number of viable, susceptible bacteria (S) was:

dS
dt

¼ kg � 1� S
Popmax

� �
� kmax � C
KC50S þ C

� �
� S ð1Þ

Initial condition (IC): S0 = 10Inoc.
The kg is the apparent growth rate constant, C the antibiotic concentration, Popmax the

maximum concentration of bacteria, kmax the maximal rate constant of bacterial killing, and
KC50S the antibiotic concentration yielding 50% of kmax for susceptible bacteria. The mean gen-
eration time (MGT) was calculated as the inverse of kg.

Fig 2. Structure of the PK/PDmodels used for Monte Carlo simulations and subsequent estimations. Parameters are explained in the method section
and in Table 1. S, compartment with antibiotic-susceptible bacteria; T, compartment with resting, antibiotic-tolerant bacteria; R, compartment with less
susceptible (resistant) bacteria.

doi:10.1371/journal.pcbi.1004782.g002
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Model 2 was adapted from Nielsen et al. [10] (Fig 2). The total bacterial population is com-
prised of two populations (i.e. two stages), one replicating and sensitive stage and one resting
and antibiotic tolerant stage. The total bacterial population is assumed to stimulate the transfer
of bacteria from the sensitive stage to the tolerant stage. The transfer from the resting stage to
the sensitive stage was assumed to be negligible and fixed to zero following the original publica-
tion [10]. Bacteria in the resting stage did not grow and were not killed by the antibiotic. As
resting bacteria did not revert back to the proliferating stage, they were only subject to a slow
first-order natural death process. Therefore, these tolerant bacteria are (slowly) dying which
causes a biphasic killing profile at high antibiotic concentrations. In this model, bacteria in the
tolerant stage can however not repopulate the replicating population as the reversion to the
sensitive replicating stage was assumed to be zero.

As bacteria were simulated to be in the early logarithmic growth phase, we assumed that
only a small fraction (10−5) of bacteria in the starting inoculum was in the resting, antibiotic-
tolerant stage (T). This choice had very limited impact on the model, as this fraction (10−5) is
equivalent to the number of bacteria that convert from the S to the T stage in approximately
1 min for a 106 CFU/mL inoculum.

Both populations were assumed to have the same first-order natural death rate constant
(kdeath). The differential equations for the sensitive (S) and resting (T) population of model 2
are:

dS
dt

¼ kg � 1� S þ T
Popmax

� �
� kmax � C
KC50 þ C

� kdeath � kfor

� �
� S IC : S0 ¼ 10Inoc � R0 ð2Þ

dT
dt

¼ kfor � S � kdeath � T IC : R0 ¼ 10Inoc � 5 ð3Þ

Where kfor ¼ ðkg � kdeathÞ � S þ T
Popmax

� �
The kdeath was calculated as the inverse of the mean natural death time (MDT).
Model 3 (Fig 2) was derived from Jumbe et al. [28], Gumbo et al. [29] and Campion et al.

[18]. This model included a pre-existing susceptible (S) and a pre-existing resistant (R) popula-
tion. Both populations did not interconvert. The initial condition of the resistant population is
the mutation frequency (mutf) multiplied by the total inoculum and the initial condition of the
susceptible population is the remainder of bacteria. Both populations were assumed to have the
same maximal killing rate constant (kmax) and the same growth rate constant (kg). These popu-
lations differed however in their drug concentration yielding 50% of kmax. The drug concen-
tration causing 50% of kmax was smaller for the susceptible population (KC50S) than the drug
concentration causing 50% of kmax for the resistant population (KC50R). This yields the fol-
lowing differential equations for model 3:

dS
dt

¼ kg � 1� Sþ R
Popmax

� �
� kmax � C
KC50S þ C

� �
� S IC : S0 ¼ 10Inoc � ð1 � 10mutfÞ ð4Þ

dR
dt

¼ kg � 1� S þ R
Popmax

� �
� kmax � C
KC50R þ C

� �
� R IC : R0 ¼ 10Inoc � mutf ð5Þ

In comparison to model 3, model 4 (M4) contained an additional bi-directional inter-con-
version between the susceptible and resistant population (Fig 2). Model 4 was derived from
Jusko et al. [30] and Yano et al. [16]. The initial inoculum of the resistant population was
assumed to be in equilibrium (i.e. steady-state) with the susceptible population. Therefore, the
initial condition of the resistant population was calculated as CFU0 � kfor / krev and the initial
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condition of the susceptible population was CFU0 � (1—kfor / krev). Model 4 was described by
the following differential equations:

dS
dt

¼ kg � 1� S þ R
Popmax

� �
� kmax � C
KC50S þ C

� �
� S � kfor � S þ krev � R IC : S0

¼ 10Inoc � ð1 � kfor = krevÞ ð6Þ

dR
dt

¼ kg � 1� S þ R
Popmax

� �
� kmax � C
KC50R þ C

� �
� R þ kfor � S� krev � R IC : R0

¼ 10Inoc � kfor = krev ð7Þ

The kfor and krev are the first-order transfer rate constants from the susceptible to the resis-
tant population and vice versa.

Model 5 contained one bacterial population with adaptive resistance. An adaptive resistance
model has been proposed previously by Tam et al. [31]. In the present study, we propose a new
adaptation function that was based on an indirect response model to reflect the situation that
bacteria often need to synthesize a protein (and other biomolecules) to (over-)express a resis-
tance mechanism. The synthesis and turnover of such molecules can be captured by a turnover
model. In the present model, the adaptation compartment affected the KC50S to reflect the up-
regulation of a bacterial efflux pump. The differential equations for model 5 were:

dS
dt

¼ kg � 1� S
Popmax

� �
� kmax � C
KC50S þ C

� �
� S IC : S0 ¼ 10Inoc ð8Þ

dðAdaptationÞ
dt

¼ Smax � C
SC50 þ C

� Adaptation

� �
� kout IC : Adaptation0 ¼ 0 ð9Þ

KC50S ¼ KC50;base � ð1þ AdaptationÞ ð10Þ

The adaptation variable defines the extent of change of KC50S in response to a bacterial
alteration (such as the expression of an efflux pump; e.g. MexXY-OprM in response to an ami-
noglycoside) [32, 33]. The KC50,base is the antibiotic concentration causing 50% of kmax in
absence of adaptation (e.g. at time zero), Smax the maximum fold-increase of KC50S due to
adaptive resistance, SC50 the drug concentration that yields 50% of Smax, and kout the first order
turnover rate constant for adaptation. The kout was calculated as the inverse of the mean turn-
over time (MTTloss). In contrast to an earlier model for adaptive resistance [31], the time to
adaptation for the present turnover model is determined by the mean turnover time of adaptive
resistance and is thus independent of the antibiotic concentration.

Models 3 and 6 both contained two pre-existing populations with different susceptibility. In
contrast to model 3, model 6 contained the same adaptation function as model 5 which affected
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both the susceptible (KC50S) and the resistant (KC50R) population in model 6.

dS
dt

¼ kg � 1� S þ R
Popmax

� �
� kmax � C
KC50S þ C

� �
� S IC : S0 ¼ 10Inoc � ð1 � 10mutfÞ ð11Þ

dR
dt

¼ kg � 1� S þ R
Popmax

� �
� kmax � C
KC50R þ C

� �
� R IC : S0 ¼ 10Inoc � 10mutf ð12Þ

dðAdaptationÞ
dt

¼ Smax � C
SC50 þ C

� Adaptation

� �
� kout IC : Adaptation0 ¼ 0 ð13Þ

KC50S ¼ KC50S;base � ð1þ AdaptationÞ ð14Þ

KC50R ¼ KC50R;base � ð1þ AdaptationÞ ð15Þ

These six PD models can be readily expanded by including different mean generation times
and different maximum killing rate constants for the susceptible and resistant population.
However, for the purposes of this simulation estimation study, the simpler version of these
models was preferred to support parameter estimation.

Monte Carlo simulations for static and dynamic in vitro infection models
Population mean estimates. Informed by the range of ed parameter values for different

antibiotics and bacterial strains [3, 6, 14, 16, 20, 21, 23, 34–37] (Table 1), we selected sets of

Table 1. Parameter values used for Monte Carlo simulations

Descriptions Parameters Units Used in
models

Mean (= true value used during
simulations)

Mean generation time MGT min 1–6 60

Initial inoculum Inoc log10 (CFU/
mL)

1–6 6

Maximum population size Popmax log10 (CFU/
mL)

1–6 9.5

Maximum killing rate constant kmax h-1 1–6 4

Antibiotic concentration yielding 50% of kmax for the
susceptible population

KC50S mg/L 1–6 1

Antibiotic concentration yielding 50% of kmax for the resistant
population

KC50R mg/L 3, 4, 6 4

Mean natural death time MDT min 2 400

Mutation frequency Log10 mutf 3, 4, 6 -5

First-order transfer rate constant from susceptible to resistant
population

kfor log10 (1/h) 4 -6

First-order transfer rate constant from resistant to susceptible
population

krev log10 (1/h) 4 -1

Maximum fold-increase of KC50 due to adaptive resistance Smax 5, 6 4

Antibiotic concentration that yields 50% of Smax SC50 mg/L 5, 6 0.4

Mean turnover time for adaptive resistance MTTloss h 5, 6 20

a: All parameters were simulated with a small between curve variability to represent generally well reproducible in vitro curves. Parameter were assumed

to follow a log-normal distribution and were simulated with a 10% coefficient of variation for the between curve variability. Parameters estimated on log10
scale (see unit column) were simulated via a normal distribution on log10 scale and had a standard deviation of 0.05.

doi:10.1371/journal.pcbi.1004782.t001
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parameter values that yielded comparable CFU vs. time profiles over 24 h for simulation from
the six models. These simulations were intended to provide realistic datasets on the antibiotic
concentration effect-relationship for the viable counts of the total population for in vitro time-
kill experiments. A starting inoculum of 106 CFU/mL was applied for all simulations.

Between curve variability and residual error. For these well-controlled in vitro studies,
between curve variability was set to a small coefficient of variation of 10% for log-normally dis-
tributed parameters and to a standard deviation of 0.05 on log10 scale for normally distributed
parameters. All models were simulated and estimated using a major-diagonal variance-covari-
ance matrix. The residual error of log10 CFU/mL counts was additive with a standard deviation
of 0.2 on log10 scale. A lower limit of quantification (LLOQ) of 10 CFU/mL was chosen [21]
(equivalent to one colony per agar plate for a volume of 100 uL bacterial suspension per agar
plate).

Simulated experimental designs. The experimental designs used for simulation are sum-
marized in Table 2. To mimic typical experimental conditions, ten different constant antibiotic
concentrations were simulated for each static time-kill experiment. These concentrations were
0 mg/L (control), and 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 times KC50S (assumed to be 1 mg/L).
Each concentration was simulated in duplicate yielding 20 curves per static time-kill dataset.
Viable counts of the total population were observed at 0 (pre-dose), 0.5, 1, 2, 4, 8, 12 and 24 h.

For dynamic one-compartment in vitromodels, we simulated one dose level with dosing
every 12 h and a growth control both in duplicate. The simulated antibiotic peak concentration
was 8x KC50S and the antibiotic concentrations decreased with a pharmacokinetic elimination
half-life of 1 h. Bacterial counts were simulated at 0, 1, 2, 4, 8, 12, 24, 28, 32, 36 and 48 h. A
short half-life has been used to allow antibiotic concentrations to change over a large range
with peak concentrations yielding rapid killing and trough concentrations allowing bacterial
regrowth. This choice was expected to support estimation of model parameters and emphasize
the features of a dynamic infection model.

Monte Carlo simulations. Our simulation-estimation studies (Fig 1) included the genera-
tion of 200 datasets for each of the six candidate models via Monte Carlo simulations for static
or dynamic antibiotic concentration-time profiles. This included 100 datasets simulated under
static and another 100 datasets simulated under dynamic conditions. Each dataset comprised
20 viable count profiles of the total bacterial population for static antibiotic concentration
experiments and four profiles for 1-compartment dynamic infection models. These Monte
Carlo simulations were performed for six candidate models yielding 1,200 datasets in total.
Berkeley Madonna (version 8.3.18, University of California) was used for all Monte Carlo
simulations.

Estimation of population PD parameters. Each simulated dataset was estimated via pop-
ulation PK/PD modeling using the true model as well as the five other candidate models

Table 2. Conditions used for Monte Carlo simulations of static and dynamic in vitro infection models.

Experi-mental
condition

Antibiotic
concentration

(x KC50S)

Sampling times
(h)

Simulated
elimination half-life

(h)

Dosing
interval (h)

Number of models
used for simulation

Number of experiments
simulated for each

model

Static 0, 0.125, 0.25, 0.5, 1,
2, 4, 8, 16, 32

0, 0.5, 1, 2, 4, 8, 12
and 24

(static concentration) 6 100 a

Dynamic 8 (initial
concentration)

0, 1, 2, 4, 8, 12, 24,
28, 32, 36 and 48

1 12h 6 100 b

a: Each dataset for a static time-kill model contained 20 viable count profiles (including that of the growth control).
b: Each dataset for a dynamic infection model study contained four viable count profiles.

doi:10.1371/journal.pcbi.1004782.t002
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yielding 6 models x 1,200 datasets = 7,200 population estimations in total. All PD model
parameters of the respective models were estimated by simultaneously fitting of all viable count
profiles of the respective dataset (Table 2). Estimation was performed using nonlinear mixed-
effects modeling in the S-ADAPT software via the importance sampling algorithm
(pmethod = 4 in S-ADAPT) [38]. Modeling was facilitated by the SADAPT-TRAN tool and
utilized estimation settings that were previously qualified for robust estimation of mechanism-
based models [39, 40]. Viable counts were fitted on log10 scale and viable counts below the
limit of counting were handled by using Beal M3 method as implemented in S-ADAPT [41].

PDmodel selection. Many of combinations of the six studied models are nested. The
more complex models converge to the simpler models, if the mutation frequency of the resis-
tant population is zero, if the maximum extent of adaptation (Smax) is zero, if there is no con-
version of bacteria to a resting stage, or if there is no inter-conversion between the susceptible
and resistant population. The objective function value (OFV, -1x log-likelihood in S-ADAPT)
was calculated by S-ADAPT for each of the 7,200 estimation runs. For comparison of two
nested models, the likelihood ratio test (LRT) with a chi-square distribution and one degree of
freedom per additional model parameter was used. For comparison of two non-nested models,
we chose the model with the lower objective function as the better model.

Precision and bias of parameters estimates. The parameter estimates from each of the
estimation runs were compared with true parameter values used during simulation from the
true model. The bias was calculated as.

Bias ¼ Estimate � true value
true value

ð16Þ

Simulation of viable count profiles. To visualize the differences between competing mod-
els for the chosen experimental conditions, we used the median parameter values (from 100
replicates per model and condition) estimated under static or dynamic conditions to simulate
viable count profiles over 96 h under dynamic conditions for each model. These simulations
were compared to the viable count profiles simulated based on the true parameter estimates.
This simulation was meant to illustrate the impact of potentially biased parameter estimates on
the predicted viable count profiles of the total population.

Results
The simulated viable counts profiles for static time-kill experiments yielded two general shapes
of profiles (Fig 3A). The first type showed bacterial killing without regrowth (M1 and M2)
with model 2 containing a slower terminal phase representing natural death of bacteria in the
resting stage. The second group of profiles yielded initial bacterial killing followed by regrowth
due to a resistant bacterial population (M3 and M4), adaptation (M5), or both (M6). Fig 3B
shows the viable count profiles simulated under dynamic conditions where regrowth is in part
due to low antibiotic concentrations towards the end of the 12-h dosing intervals.

Model selection. Each column in Table 3 refers to one true model used for simulation
under static or dynamic conditions. The lines in Table 3 show the frequency of selecting the
respective model as the best model. If M1 was the true model, both static and dynamic condi-
tions identified M1 as the true model in 93% or 89% of the cases. For the model with one popu-
lation with a resting stage (M2), model 2 was correctly identified as the best model in 96% of
cases for the static scenario but only in 8% of the cases for the dynamic scenario. When model
3 was used as true model for simulations, static conditions correctly identified M3 as the best
model in 82% and dynamic conditions in 97% of the cases (Table 3).
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Fig 3. Typical viable count profiles. Simulations via six different structural models for a constant antibiotic
concentration of 1 mg/L (panel A) or for multiple dosing of a hypothetical antibiotic with 1 h elimination half-life
and peak concentrations of 8 times KC50S (panel B).

doi:10.1371/journal.pcbi.1004782.g003

Table 3. Probability of selecting a model (M1 to M6) as the best model (lines) for six different true models (columns) used for simulation under
dynamic or static conditions. The probability to correctly select the true model as the best model is represented by the diagonal (bold numbers).

Actual (i.e. true) model

Condition Models Static time-kill Dynamic infection model

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

Selected model (%) M1 93 . . . . . 89 87 . . . .

M2 7 96 . . . . 3 8 . . . .

M3 . 3 82 81 84 a 44 6 3 97 96 84 a 90

M4 . . 17 18 2 2 . 1 . 1 2 .

M5 . . . . 11 . 2 1 . 1 13 .

M6 . 1 1 1 3 54 . . 3 2 1 10

a: As an example, this result means that model M3 was selected in 84% of the cases when model M5 was used as the true model during simulations both

for the static and dynamic settings.

doi:10.1371/journal.pcbi.1004782.t003
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Interestingly, when the model with two populations and a slow inter-conversion (M4) was
the true model used for simulations, M3 was incorrectly selected as the best model in 81%
(static) or 96% (dynamic setting) of the cases. Identification of both models with adaptive resis-
tance (M5 and M6) as the true model was only achieved in 10% to 54% of the cases under both
scenarios (Table 3).

Bias and imprecision of parameter estimates. Table 4 (all six models) and Fig 4 (models
1, 3 and 5) compare the true parameter values with the median parameter estimates under
static and dynamic conditions (based on the 100 datasets for each model and case). Overall, the
precision of parameter estimates tended to be better for static compared to dynamic
conditions.

The median estimates were within 10% of the true value and the imprecision was<20% CV
for most parameters of M1 and M2 under both static and dynamic conditions (Table 4). A
noticeable exception was the estimated mean time of natural death (MDT) of resting bacteria
in M2 which was considerably biased by 326% (estimated: 1,279 min vs. true: 400 min) in the
dynamic setting and biased by 20% (estimated: 321 min vs. true: 400 min) in the static setting.

For the model with a susceptible and resistant population without inter-conversion (M3),
the vast majority of median estimates were within 10% of the true value with exception of
KC50S (estimated 34% higher) and KC50R (estimated 82% higher than the true value) in the
static setting. Both for models 3 and 4, the dynamic setting provided less biased parameter esti-
mates. However, the slow inter-conversion rate constants (kfor and krev) of M4 were difficult to
estimate under both settings.

Table 4. Median and coefficient of variation (CV) of parameter estimates (n = 1200; i.e. 100 replicates for each setting and eachmodel) under static
or dynamic condition.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Parameter True
value

Unit Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

MGT 60 min 60.57
(8)

60.97
(10.7)

60.49
(8.9)

68.46
(20)

69.41
(13)

61.23
(9.0)

73.03
(11.8)

60.86
(9.7)

60.97
(12.0)

60.66
(9.9)

61.52
(6.0)

62.22
(11.8)

Inoc 6 Log10 CFU/mL 6.00
(0.48)

6.00 (1.8) 6.00
(0.4)

6.01 (1.6) 6.00
(0.4)

5.99 (2.3) 6.01
(0.5)

6.02 (2.0) 6.01
(0.6)

5.99 (2.0) 6.00
(0.6)

5.99 (2.3)

Popmax 9.5 Log10 CFU/mL 9.53
(1)

8.96
(19.8)

9.52
(1.09)

10.9
(15.9)

9.50
(0.87)

9.49 (4.4) 9.49
(0.9)

9.54 (10) 9.51
(0.7)

9.51 (8.8) 9.51
(0.76)

9.51 (1.3)

kmax 4 h-1 3.94
(4.2)

4.00
(11.3)

4.02
(7.8)

4.09
(15.3)

4.03
(5.7)

3.98
(12.6)

4.00
(5.0)

4.20
(12.1)

4.03
(5.6)

4.01
(15.9)

3.98
(4.4)

4.11
(18.5)

KC50S 1 mg/L 0.95
(14.45)

0.97 (35) 0.98
(15.6)

1.03
(40.8)

1.34
(14.0)

1.01
(38.7)

1.33
(17)

1.12 (17) 1.10
(20.0)

0.98
(59.0)

1.13
(16.9)

1.15 (59)

MDT 400 min 320.54
(18)

1279
(176.8)

Log10 mutf -5 -5.77
(13.6)

-6.36
(16.3)

-5.24
(6.0)

-5.25
(17.2)

-5.22
(9.4)

-4.89
(19.5)

-5.20
(8.0)

-5.81
(25)

KC50R 4 mg/L 7.26
(40.0)

4.54
(36.0)

6.35
(41.6)

3.56
(73.0)

5.24
(27.7)

6.12
(346)

kfor -6 Log10 (1/h) -7.63
(7.9)

-7.11
(5.1)

krev -1 Log10 (1/h) < -10
(451)

-4.3
(309)

Smax 4 9.60
(29.0)

5.68
(107.0)

5.88
(44)

6.95
(191)

SC50 0.4 mg/L 0.86
(51.6)

0.25
(123.2)

0.51
(106)

0.28
(199)

MTTloss 20 h 46.62
(37.7)

35.43
(126.3)

40.47
(33)

81.83
(92)

doi:10.1371/journal.pcbi.1004782.t004
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For models with adaptive resistance (M5 and M6), most model parameters were estimated
close to their true values and with reasonable precision. However, the parameters related to the
adaptation process (i.e. Smax, SC50 and MTTloss) were considerably biased and estimated with
poor precision for models M5 and M6 under both scenarios. The estimates for Smax and SC50

may be considered reasonable, since the mean turnover time for adaptive resistance was chosen
to be 20 h and therefore almost as long as the experimental duration of 24 h for the simulated
static time-kill studies. Thus, precise estimation of Smax, SC50 and MTTloss was not expected
for the chosen parameter values and experimental design.

Impact of biased parameter estimates on viable counts. The viable count profiles pre-
dicted from the median estimates under static and dynamic conditions (Fig 5) matched the
predicted profiles from the true parameter estimates closely during the first 48 h. For models 3,
4 and 5, the deviations were moderate between 48 and 96 h and tended to be larger for the
model predictions under static compared to dynamic conditions (Fig 5). Predictions were
slightly better for the two population model without adaptation (M3) than those for the model
containing one population with adaptation (M5). Although some of the parameter estimates
were biased for the more complex model M6 (two populations with adaptation), the predic-
tions matched the observations over 96 h closely (Fig 5).

Discussion
During the last five decades, a considerable variety of structures for models with irreversible
drug effects has been proposed in antimicrobial and antineoplastic chemotherapy [3, 7, 42].
These published models include both empiric descriptions of viable count profiles and mecha-
nism-based models. The latter models were developed to characterize relevant aspects of the
mechanisms of antibiotic action, bacterial resistance and tolerance for antibiotic mono- and

Fig 4. Boxplots of the bias between true and estimated parameter values under static and dynamic conditions.

doi:10.1371/journal.pcbi.1004782.g004
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combination therapy and are highly useful to predict the time-course of bacterial growth, kill-
ing and resistance and to thereby optimize antibiotic dosage regimens. The vast majority of
these antibacterial PK/PD models [3, 7, 42] were developed using data on the total bacterial
population and did not model viable counts from antibiotic containing agar plates. However,
several models co-modelled both the total and resistant populations [28, 43, 44].

In this context, it seems surprising that no systematic simulation-estimation study has yet
been published to assess the ability to distinguish between competing antimicrobial PD models
with different resistance mechanisms. This lack of knowledge affects the vast majority of math-
ematical models in antibacterial PD. We addressed this gap by performing Monte Carlo simu-
lations with in total 1,200 simulated datasets that were estimated using six relevant structural
models and two common designs for in vitro infection models. These models reflected geno-
typically stable resistance mechanisms (model M3), phenotypic resistance (i.e. adaptation for
M5 and persisters for M2), inter-conversion between bacterial populations (M4), or multiple
of these mechanisms (M6, Fig 2). The 1,200 datasets were estimated for both the true model
and the other five models (i.e. 6 models x 1,200 datasets = 7,200 population estimations in
total) to assess the ability to distinguish between competing models.

Fig 5. Simulated viable count profiles after multiple dosing under dynamic conditions for a
hypothetical antibiotic with a 1 h elimination half-life and peak concentration of 8 x KC50S. Simulations
were based on the true parameter values (solid black lines) or parameter values estimated under dynamic
(dashed black) or static conditions (dashed grey).

doi:10.1371/journal.pcbi.1004782.g005
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While models M1 and M2 yielded bacterial killing and death without regrowth (Fig 3A),
models M3 to M6 could all describe viable count profiles with initial killing followed by
regrowth due to emergence of resistance in the presence of constant antibiotic concentrations.
It was therefore interesting to assess, whether a robust population PK/PD estimation algorithm
(i.e. importance sampling) could adequately distinguish between competing models. Despite
the use of one of the latest population modeling algorithms, this simulation-estimation study
showed that standard statistical criteria could only identify the true model under both static
and dynamic conditions in more than 80% of the cases for models M1 and M3 (Table 3).
Importantly, M3 was incorrectly selected as the best model in the large majority of cases even if
models M4, M5 or M6 were the true model used during simulation. For datasets that only con-
tained viable count profiles of the total population, statistical modeling criteria could therefore
not reliably identify the true model in case of regrowth due to bacterial resistance.

To provide recommendations for the design of future experiments, the MIC can be related
to the KC50S as shown previously [24]. The expected KC50S can then be used to guide the con-
centrations range to be evaluated in in vitro time-kill studies. An a priori choice would be to
assess antibiotic concentrations below and above the KC50S (for instance 2-fold dilutions from
0.125 to 32 times the KC50S). Determining the MIC at the end of the study (e.g. 24 h) experi-
mentally yields valuable information about the extent of resistance development. This informa-
tion could be subsequently used in additional experiments to assess higher antibiotic
concentrations. Additionally, the level of resistance at the end of the experiment will also
inform the mechanism(s) of resistance and therefore support the choice of the PK/PD model.

Quantitative viable count data of the resistant population(s) from antibiotic-containing agar
plates at 0 and 24 h, for example, can provide experimental evidence to accept or reject several
candidate models (Fig 2). If one observes resistant bacteria on antibiotic-containing agar plates
(containing e.g. 3x the MIC of the antibiotic) at 0 h, one can reject models M1, M2, and M5, as
those models assume the absence of resistant bacteria at time zero. Mutation frequency studies
at a high bacterial density are expected to support calculation of the likelihood of pre-existing
resistant mutants [7]. Quantifying and modeling resistant bacteria over time would further
enhance the ability to distinguish between competing models [28, 43, 44]. An in-depth analysis
of datasets containing one or multiple observations for resistant bacteria is beyond the scope of
the present work. While this is a potential limitation of this simulation-estimation study, exper-
imental data on the presence or absence of pre-existing resistant bacteria facilitated PK/PD
model selection in previous studies [28, 43, 44]. The difficulty to select the most appropriate
mechanism of resistance based on modelling methods alone is also supported by experience
from our previous study on P. aeruginosa exposed to static concentrations of ciprofloxacin [6].
In this study, we leveraged insights on the presumably most relevant mechanism of resistance
to select the final model for ciprofloxacin.

Despite considerable bias for some parameter estimates, the discrepancies between pre-
dicted and actual viable count profiles (Fig 5) were limited and may possibly be considered
acceptable. This applies particularly for the small discrepancies during the first 24 h to 48 h
which is likely the most critical time in the management of infections in critically-ill patients.
Model predictions over longer time periods (i.e. extrapolation) led to more biased predictions,
as expected. Our predictions were based on the median of the parameters values. As these sim-
ulations did not account for parameter imprecision, the discrepancies between the predicted
and the actual viable count profiles are likely larger for some sets of estimated parameters.

Bias tended to be less for some parameters under the dynamic compared to the static experi-
mental setting for models with heteroresistance or adaptation (M3, M4, M5 and M6; Table 4
and Fig 4). As expected, the dynamic setting yielded less precise parameter estimates most
likely due to the considerably smaller number of observations for the dynamic setting
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(containing 4 curves per dataset) compared to the static setting (containing 20 curves per data-
set). In practice the statistical gain of the dynamic design can also be offset by the significantly
increased workload for dynamic experimental conditions.

Static concentration time-kill studies [13] are efficient and cost-effective and allow studying
a large range of antibiotic concentrations. While 24 h static time-kill studies represent the most
common experimental duration, longer experimental durations could have allowed us to
increase the likelihood of mathematically identifying the model with the true resistance mecha-
nisms and to better predict antimicrobial efficacy over longer periods of time. Most published
studies did not exchange the broth medium regularly (e.g. every 24 h) and therefore toxic bac-
terial metabolites may accumulate and nutrients get depleted over time. Also, degradation (e.g.
of β-lactam antibiotics) over longer experimental conditions would need to be accounted for
experimentally as we published previously [33]. Overall, performing static concentration time-
kill studies over more than 24 h is fully feasible, but requires an increased amount of work.

Dynamic in vitro infection models such as the one-compartment and hollow-fiber system
can mimic human PK [4], by changing drug concentrations and turnover of fresh broth
medium using various pumps. The control of these flow rates permits to simulate different
half-lives for one or multiple drugs and also provides washout of toxic bacterial metabolites.
Therefore, these dynamic experiments are often run over multiple days to week and longer [31,
45] and typically use multiple dosing [46]. These dynamic in vitromodels require a signifi-
cantly enhanced workload and therefore complement and extend static concentration time-kill
studies for translation to animal studies and ultimately to patients.

Some limitations of our study came from the necessity to select PD parameters characteriz-
ing the simulated pathogen, to choose an experimental design for static and dynamic kill-
curves and to set the initial values for parameter estimations. Our chosen parameter values ade-
quately characterized the concentration-effect relationship for each studied PD model and
were selected based on biological plausibility and our experience from experimental datasets.
Despite a clear concentration-effect relationship in the simulated viable count profiles for each
dataset, it was difficult to impossible to mathematically identify the true resistance mechanism
based on viable counts of the total population. It is possible that other sets of parameter esti-
mates used during simulation would have yielded a higher likelihood to identify the model
with the true resistance mechanism. This presents a potential limitation of the present study.

Moreover, the present study contained simulation-estimation scenarios for static and
dynamic in vitro infection models. Our simulated dynamic in vitromodel only assessed a sce-
nario with one half-life, one dose level, and one dosing interval. Dynamic infection models
with multiple doses, different dosing intervals, and potentially a range of relevant half-lives
would provide a more informative dataset which may have supported the identification of the
PD model with the true resistance mechanism. While it is a potential limitation of our study
that we did not evaluate more dynamic infection model studies, most current papers on anti-
microbial PD models use static time-kill experiments to define the concentration-effect rela-
tionship and select the PD model and its resistance mechanism. Finally, we did not assess the
sensitivity of the final parameter estimates and the model selection towards the choice of the
initial estimates. In our previous work, we found the importance sampling algorithm in
S-ADAPT to be robust and efficient despite the use of poor (i.e. 10-fold too high or 10-fold too
low) initial estimates for every structural model parameter in a complex PK/PD model [7].

In summary, for datasets based only on the total bacterial population, standard statistical
modeling criteria failed to correctly identify the PD model with the true resistance mechanism
(s) in the large majority of cases. These datasets did not contain data on antibiotic-resistant
bacterial populations. This finding is highly important, as most published models in antibacte-
rial PD were developed based only on data on the total bacterial population. For our simulation
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scenarios, dynamic infection models tended to provide more accurate parameter estimates
than static concentration time-kill studies for some parameters. Static time-kill studies yielded
more precise parameter estimates compared to dynamic models likely due to the larger number
of profiles per datasets. For both static and dynamic conditions, parameters related to adaptive
resistance and interconversion of bacterial populations tended to be poorly estimated. Interest-
ingly, predicted viable count profiles over the experimentally studied duration (i.e. 24 to 48 h)
were reasonably accurate despite biased parameter estimates. Simulations over longer dura-
tions (i.e. extrapolations) tended to show more pronounced mispredictions and should be
interpreted conservatively. Overall, it seems highly beneficial to utilize quantitative viable
count data of resistant populations and characterize their MICs and resistance mechanisms to
support the choice of the most appropriate PD model for bacterial resistance.
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