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Abstract

Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA)
output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine
action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization
of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light
on this issue. Our model illustrates that the a4b2-containing nAChRs either on DA or GABA cells can mediate the acute
effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct
stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the
contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the
evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the
acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.
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Introduction

The ventral tegmental area (VTA) is a key dopaminergic

structure for signaling reward and motivation as well as for the

acquisition of drug-reinforced behavior [1,2]. Nicotine (Nic)

stimulates nicotinic acetylcholine receptors (nAChRs) in the

VTA [3] boosting dopamine (DA) output to its targets such as

the nucleus accumbens [4] and thereby playing a cititcal role in

the mediation of nicotine reward and dependence [5–7]. Yet,

despite a wealth of data on the outcome of nicotine action, the

precise mechanisms by which nicotine usurps control over DA

signaling remain debated.

Release of endogenous acetylcholine (ACh) from cholinergic

projections [8] causes activation of nAChRs in the VTA [9]. The

rapid breakdown of ACh by acetylcholinesterase precludes

significant nAChR desensitization [9,10]. Exogenous nicotine is

not hydrolyzed [11] and thus activates and subsequently

desensitizes nAChRs within seconds to minutes [10,12]. The

various subtypes of nAChRs exhibit markedly different activation/

desensitization kinetics and distinct affinities for ACh and Nic, as

well as different expression targets [7,13]. The low-affinity a7

subunit-containing nAChRs desensitize rapidly (,ms) [14] and

are found in the VTA presynaptically on the glutamatergic

terminals [15]. The high-affinity a4b2 subunit-containing

nAChRs desensitize relatively slowly (,sec) and are located

postsynaptically on the DA and GABAergic cells [13]. Studies on

knockout mice suggest that the a4b2 nAChRs mediate most of the

Nic-evoked currents and the acute reinforcing effects of nicotine

[16], while a7 nAChRs appear to contribute to the fine-tuning of

the DA response to nicotine [17].

A major outstanding question is whether nicotine acts directly

on the DA neurons through the activation of a4b2 nAChRs or

affects the local GABA interneurons and thereby the inhibition of

DA neurons. In vitro data suggest that the increased activity of DA

neurons is due to nicotine desensitizing the a4b2 nAChRs,

decreasing the endogenous cholinergic drive to GABA neurons

and resulting in disinhibition of DA cells [18,19]. In vivo studies

emphasize the role of nicotine-evoked direct activation of b2-

containing nAChRs expressed on the DA neurons [17].

We set out to clarify the mechanisms linking the nicotine-

triggered nAChR activation/desensitization and nicotine control

of DA signaling. In order to do so we built a neuronal network

model that includes the afferent and local VTA connectivity as

well as the location and activation/desensitization properties of the

different nAChR subtypes. Our results show that each of the two

mechanisms, direct excitation and disinhibition, requires distinct

conditions for afferent input strengths and cellular properties in

order to account for the nicotine-evoked DA boost. We develop a

series of experimental protocols to disambiguate the disinhibition

vs. the direct stimulation pathways and reveal that the endogenous

cholinergic input rate dictates the DA response to nicotine for

both.
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Results

Our minimal local circuit model of the VTA reflects the

glutamatergic (Glu) and cholinergic (ACh) afferents to the DA and

GABA cells in the VTA, as well as local inhibition of DA cells by

GABA neurons (see Fig. 1A). Importantly we explicitly model the

subtype-specific activation and desensitization of a4b2 and a7

nAChRs since these subtypes have been shown to be predominant

in mediating nicotine effects in the VTA [13,16,17]. Further

evidence supports the critical role of a4-containing nAChRs for

Nic action in the VTA [20,21]. Based on available data we model

the a7 nAChRs as placed at presynaptic Glu terminals where they

affect Glu input strength [15]. We model the a4b2 nAChR as

placed somatically on both the DA and the GABA neurons. The

relative a4b2 nAChR expression level (DA/GABA proportional

density) is controlled in our model by a fraction parameter r which

allows us to shift continuously the balance of a4b2 nAChR-

mediated effects from GABA cells (r~0) to DA cells (r~1;

Fig. 1A). Overall, the model augments the mean-field firing-rate

description of the relevant neuronal populations with subtype

specific receptor currents in order to study neuronal activity in

response to endogenous (ACh) and exogenous (Nic) ligands acting

on nAChRs (see Models).

Kinetics of the subunit-specific nAChR model in response
to Nic and/or Ach

Since the nAChRs are the exclusive points of action for Nic that

affect DA activity in the VTA, a model of the nAChR that

incorporates the response properties of the considered receptor

subtypes is key for our approach. In addition, since the circuit

model describes the mean activities of the DA and GABA

neuronal populations, we describe the average macroscopic

receptor-mediated currents as opposed to the fine details of single

receptor kinetics and pharmacology. Accordingly, the receptor

activation is elicited by the mean input rate of endogenous ACh

release which is expressed as a concentration. We use a classical 4-

state model of the nAChR adapted from Katz and Thesleff

[22,23] (see Text S2.) briefly described in [24]) accounting for

subtype-specific activation and desensitization as recorded in

response to Nic and ACh [25–30].

Fast nAChR activation in response to acetylcholine and/or

nicotine (transition from deactivated/sensitized to activated/

sensitized in the model; see Fig. 1B) gives rise to an initial peak

current, and the slower desensitization reduces the current during

sustained presence of the agonist (Fig. 2A and B for a4b2 and a7,

respectively). After wash-out of agonists, the receptor recovers to

the deactivated/sensitized state within seconds-to-minutes [7,13]

(see insets in Fig. 2A and B).

In order to account for the response differences between the two

considered nAChR subtypes, two distinct sets of parameters were

identified (see Models with respect to details of the parameter

adjustment). Most importantly, the potency of nicotine and

acetylcholine for the a4b2 nAChR is much higher than for the

a7 nAChR (see dose-response curves in Fig. 2C and D). Hence the

a4b2 but not the a7 nAChRs shows a partial response at the

relatively low, physiologically relevant Nic concentration of

0.5 mM [11,31] (indicated in Fig. 2C and D).

Both receptor subtypes show distinct temporal desensitization

dynamics. Desensitization is relatively slow for a4b2 nAChRs:

a4b2 nAChR-mediated currents decrease slowly over the course

of agonist exposure (Fig. 2A) and the receptor recovers slowly

(,10 min) from the desensitized state after removal of the agonist

(inset in Fig. 2A). On the contrary, at high agonist concentrations

fast desensitization of a7-containing receptors completely sup-

presses the evoked current on the time scale of ,100 ms (Fig. 2B)

and the receptor recovers from desensitization within ,2 min

(inset in Fig. 2B).

The a4b2- and a7-nAChR model responses to ACh show

another crucial difference when a physiologically relevant

concentration of Nic is present (0.5 mM, Fig. 2E). Pretreatment

with Nic reduces the half-maximum response by ,73% for a4b2

nAChRs, whereas this response decreases only by ,13% for a7

nAChRs (Fig. 2E). This is due to the lower potency of Nic for

desensitizing a7 nAChRs as compared to a4b2 nAChRs, i.e.,

IC50
a7&IC50

a4b2 (see Models and Table 1). As a result, a smaller

fraction of a7 nAChRs is driven into the desensitized state. Please

note that the desensitized fraction of a4b2 nAChRs is ,70%; their

response is not completely abolished at 0.5 mM Nic. While Nic

reduces the maximum amplitudes for both receptors, it does not

affect the effective half-maximum ACh concentrations [24]. In the

absence of ACh, Nic evokes a small activation of the receptors [24]

that has also been seen experimentally for a4b2 nAChRs [12].

In summary, the simple nAChR model is constrained to capture

the key properties of the subtype specific responses to Nic and

ACh. Most significant for this study is that Nic at physiologically

relevant concentrations significantly activates and desensitizes

a4b2 but not a7 receptors.

Data used to constrain the model parameters are obtained in

the absence of acetylcholinesterase [25–30]. Under such condi-

tions, persistent presence of Nic and of ACh both activates and

desensitizes the nAChRs in the model. However, rapid ACh

hydrolysis and a higher efficiency of Nic to desensitize the receptor

seem to prevent ACh from desensitizing nAChRs in vivo [9,10,32].

In the following, we model conditions where acetylcholine is

rapidly hydrolyzed and drives only the transition from deactivated

to activated state (see Fig. 1B and C), hence desensitization is

driven by nicotine only. We also investigate, later in the

manuscript, how our results are affected in case of low

acetylcholinesterase activity, that is, when also ACh drives

receptor desensitization (see ‘‘ACh-driven desensitization through

low acetylcholinesterase activity’’).

The VTA responses to nicotine in vitro and in vivo
We next ask whether we can identify the specific circuit-level

pathways of nicotine action in the VTA all the while reconciling

the in vitro and in vivo data. First we show that the VTA model

endowed with the description of the nAChR dynamics captures in

Author Summary

Nicotine is the major addictive substance in tobacco
smoke. Nicotine exerts its control over neural circuits
through nicotinic acetylcholine receptors that normally
respond to endogenous acetylcholine. Activation of
dopamine neurons in the mesolimbic dopaminergic
circuits, which signal motivational properties of actions
and stimuli, is at the heart of mediating nicotine reward
and dependence. However, major questions have re-
mained unsettled over the precise mechanisms by which
nicotine usurps dopaminergic signaling: through receptor
activation on dopamine neurons or through receptor
desensitization on local inhibitory interneurons. Here we
reconcile this debate by showing that both mechanisms
are possible. Most notably we present a novel hypothesis
suggesting that the mechanisms for nicotine action are
state-dependent; they are controlled by the rate of the
endogenous cholinergic input to the dopaminergic
circuits.

Cholinergic Input Governs DA Response to Nicotine
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vitro nicotine evoked modulation of excitatory and inhibitory inputs

to DA neurons [18,19]. We then demonstrate that a simple change

in the constant afferent input strengths allows the model to also

account for in vivo DA responses in both wild type and nAChR

knockout mice [17].

Nicotine-dependent modulation of excitatory and
inhibitory input to DA cells in vitro

Recordings from DA neurons in VTA slices show that bath

application of 1 mM nicotine initially increases the frequency of

IPSCs followed by a drop below baseline after Nic perfusion [19].

Furthermore, 1 mM nicotine evokes a robust enhancement of the

spontaneous EPSC frequency in DA neurons [18]. To account for

these data we start out by setting the afferent input strength to

relatively low levels which characterizes the in vitro situation

(illustrated by the scissors in Fig. 3A and B).

In line with experiments, the nicotine-evoked initial increase of

inhibition and subsequent drop below baseline are exclusively

mediated by a4b2 nAChRs (Fig. 3C). The a4b2 nAChRs located

on VTA GABAergic cells are activated by application of 1 mM Nic

for 2 min. This increases the GABAergic population activity and

in turn leads to an increase in the GABA input (IGABA) to the DA

cells (see green lines in Fig. 3C and E). The first peak of this

response arises from fast receptor activation counterbalanced by

slower desensitization. The subsequent steady and smaller increase

follows the time course of Nic concentration build-up (Fig. 3C).

After washout of the drug, a significant fraction of nAChRs

remains desensitized and recovers at a slow time-scale (Fig. 3C).

This desensitized fraction of nAChRs reduces the GABA cell

response to the constant cholinergic input so that IGABA falls below

baseline after nicotine is removed (illustrated in magenta in Fig. 3C

and E). The recovery time course is governed by the maximal

desensitization time constant, tmax, of a4b2 nAChRs. Based on

experimental data, that time constant was set to approximately

10 min (see Table 1; [17,19]). To account for the block of Glu

transmission during these experiments we set wGlu~0 (see

Models).

As expected, blocking a4b2 nAChRs in our model abolishes the

Nic-evoked modulation in IPSC frequency (cyan line in Fig. 3E,

[19]). In contrast, the a7 nAChRs have little or no impact on the

response (green line and orange square in Fig. 3E, [19]). Our

model accounts for the in vitro data in both the control, the a4b2-

Figure 1. Scheme of the ventral tegmental area and the states of nicotinic acetylcholine receptors. (A) Afferent inputs and circuitry of
the ventral tegmental area (VTA). The GABAergic neuron population (red) inhibits locally the dopaminergic neuron population (DA, green) [40,43,44].
This local circuit receives excitatory glutamatergic input (blue lines) from the prefrontal cortex (PFC) [68–71], the laterodorsal tegmental nucleus (LDT)
and the pedunculopontine tegmental nucleus (PPT) [72–74]. The LDT and the PPT furthermore furnish cholinergic projections (cyan lines) to the VTA
[8]. nAChRs are found at presynaptic terminals of glutamatergic projections (a7-containing receptors), on GABAergic neurons (a4b2 nAChRs) and DA
neurons (a4b2 nAChRs). r is a parameter introduced in the model to change continuously the dominant site of a4b2 nAChR action. Dopaminergic
efferents (green) project, amongst others, to the nucleus accumbens and the PFC. (B) Two-gate model of nicotinic acetylcholine receptors. Activation
(horizontal) and desensitization (vertical) of nAChRs are two independent transitions in the model, i.e, the receptor can exist in four different states: (i)
deactivated/sensitized (up-left), (ii) activated/sensitized (up-right), (iii) deactivated/desensitized (down-left), and (iv) activated/desensitized (down-
right). Activation is driven by Nic and ACh and induces a transition from the deactivated/sensitized to the activated/sensitized state (green), the only
open state in which the receptor mediates an excitatory current. Desensitization is driven by Nic and ACh if gw0. a and s characterize the fraction of
nAChRs in the activated and the sensitized state, respectively (modified from [22]). (C) a4b2 nAChR state occupation as described by the model for
different Nic and ACh concentrations (g~0). The area of the circles represents the fraction of receptors in each of the four states (alignment as in
panel B). The occupation of receptor states is shown for long-term exposures to low (0.1 mM) and high (100 mM) ACh, without and with 1 mM
nicotine. A star means that the respective state is not occupied.
doi:10.1371/journal.pcbi.1003183.g001

Cholinergic Input Governs DA Response to Nicotine
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and the a7-nAChR blocked conditions. Note that in order to do

so, the average cholinergic drive to the GABAergic cells needs to

be set at ACh~0:384 mM, giving a 300% increase of GABAergic

input at 1 mM Nic. The drop below baseline in our simulations

matches experimental data without further fitting of the model

(Fig. 3E).

The present model furthermore accounts for the increase of

glutamatergic (IGlu) input to the DA cells in response to a 2 min

application of 1 mM Nic under GABA block (Fig. 3D). This

concentration-dependent increase stems from activation of the

presynaptic a7 nAChRs by nicotine (Fig. 3F). The model accounts

for a number of experimental data: in control condition (green line

and squares), in the presence of an a7 nAChR specific antagonist

(orange line and square), and in the presence of an antagonist for

non- a7 nAChRs (green line and cyan square).

To account quantitatively for the nicotine-induced increase in

Glu input to DA cells (IGlu max=IGlu 0) we set the mean firing rate

of the Glu afferents (vGlu~5:69:10{4) such that the relative

increase attains 325% of baseline level. This intermediate value

satisfies the experimental data obtained both in the control case

(400% increase) and with the a4b2 nAChRs blocked (275%

increase, see [19] and Fig. 3F). In the model, blocking the a4b2

nAChRs does not have an effect on the Glu input change since the

nicotine-dependent increase stems from activation of a7 nAChRs

Figure 2. Nicotinic acetylcholine receptor model responses to nicotine and acetylcholine. Response properties of a4b2 (panels A,C,E) and
a7 nAChRs (panels B,D,E). (A&B) Dynamics of a4b2- (A) and a7-containing nAChRs (B) in response to Nic. The dynamics of the activation, a, (purple
lines) and sensitization, s, (orange lines) are shown during and after the exposure to a constant Nic concentration of 100 mM for 200 ms starting at
t~50 ms. The normalized receptor activation, n~a:s, is shown in blue and is proportional to the actual current. The inset shows the dynamics of the
same variables on a longer time scale. (C&D) Dose-response curves of a4b2- (C) and a7-containing nAChRs (D) in response to Nic and ACh. The peak
current mediated by the receptor during a 200 ms exposure to the respective agonist concentration is shown. The responses to Nic (ACh) are
depicted in blue (red). The arrows indicate physiologically relevant nicotine concentrations [11,31]. The half-maximum effective concentrations for
ACh-evoked responses are indicated by the dotted black lines. (E) Reduction of the half-maximum response evoked by ACh in the presence of 0.5 mM
Nic. The half-maximum effective concentration of the peak current in the absence of Nic is ACh~29 mM for a4b2, and ACh~67 mM for a7 nAChRs
(green bars, see C and D). The red bars show the peak current in response to the same ACh concentration in the presence of a constant concentration
of Nic~0:5 mM. See Table 1 for parameters.
doi:10.1371/journal.pcbi.1003183.g002

Cholinergic Input Governs DA Response to Nicotine
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only (Fig. 3B, D and F). We use the ACh rate as fixed above

(ACh~0:384 mM) which results in a weak activation of a7

nAChRs on average in the absence of nicotine.

In summary, we show that the model reproduces the relative

change in IPSC and EPSC frequency to VTA DA neurons during

in vitro nicotine perfusions. The model also accounts for the supra-

linear (increasing slope) increase in EPSC frequency in the

nicotine range from 0.1 to 1 mM Nic (green line and squares in

Fig. 3F) and predicts a sub-linear increase (decreasing slope) for the

IPSC frequency in the same range of nicotine (Fig. 3E). This

difference stems from the dissimilar potencies of Nic for the a7 and

the a4b2 receptors: the high Nic potency a4b2 starts to saturate in

this range.

Nicotine-evoked increase of DA cell activity in vivo: Direct
stimulation vs. disinhibition mechanisms

To translate the VTA circuit model to in vivo conditions, we kept

all parameters fixed and modified only the afferent input strength.

This ‘‘increased input’’ model accounts for the following in vivo

data : (i) An intravenous injection of nicotine in wild-type mice

increases the firing rate of DA cells. (ii) This increase is completely

abolished in a4b2 knockout mice and is only weakly diminished in

a7 knockout mice [17].

We identify two different plausible model regimes that could

address the in vivo experiments. The scenario in which a4b2

nAChR-mediated action is predominantly exerted through

activation on the DA cells is referred to as ‘‘direct stimulation’’

(Fig. 4A). The scenario where a4b2 nAChRs mainly influence the

GABAergic activity through desensitization we term ‘‘disinhibi-

tion’’ (Fig. 4B). The model can be shifted between these scenarios

by a change in the relative expression levels of a4b2 nAChRs on

the DA and the GABA neurons using the parameter r. To

illustrate the qualitative behavior of the model in each scenario, we

use r~0:8 for direct stimulation and we set r~0 for disinhibition.

We do not use the extreme case (r~1) for direct stimulation since

the existence of a4b2 nAChRs on GABA cells has been shown

experimentally [19,33]. In general, the conditions for direct

stimulation are met as long as rw0:5 and for disinhibition for

rv0:5 (see below).

Direct Stimulation (single cell level mechanism; r~0:8) : Our

simulations reveal two important requirements necessary for direct

stimulation to produce a boost of the DA activity on time scales

observed in the data [17]. First, the cholinergic input rate to the

VTA has to be low, activating the a4b2 nAChR only weakly

(ACh~0:1 mM; ACh%EC50
a4b2 and ACh&IC50

a4b2). Nic can

further activate these nAChRs. Second, we see that the duration of

elevated DA activity cannot outlast the presence of Nic (here

1 mM, Fig. 4C), implying that in this scenario the time-course of

DA activity is directly determined by the time course of Nic in the

VTA.

When the endogenous ACh input rate is increased

(ACh~1:77 mM), Nic produces only a very brief initial peak

followed by a sustained depression of the DA activity (dashed blue

line in Fig. 4C). In general we find that as long as more a4b2

nAChRs are expressed on DA than on GABA neurons (rw0:5),

the cholinergic input rate has to be below 0.38 mM in order to

observe a net increase of DA activity in response to Nic application

(note that we define a DA increase as a positive integral of the

difference between the nicotine-modulated- and the baseline DA

activity,
Ð T

0
(nD(t){nD 0)dtw0).

Table 1. Parameters of nAChR activation and desensitization kinetics.

Parameter Definition Value Reference

a7-containing nAChR

EC50 half-maximum conc. of activation 80 mM [25,27,29,30]

a potency of nicotine to evoke response ,2 [30,75]

na Hill coefficient of activation 1.73 [25,29,30]

IC50 half-maximum conc. of desensitization by Nic 1.3 mM [25,30]

nd Hill coefficient of desensitization 2 [25]

ta activation time constant 5 msec [29]

Kt half-maximum conc. of desensitization time constant 1.73 mM [25]

nt Hill coefficient of des. Time constant 2 [25]

tmax maximal des. time constant 2 min [25]

t0 minimal des. time constant 50 msec this study, [29]

a4b2-containing nAChR

EC50 half-maximum conc. of activation (ACh) 30 mM [28]

a potency of Nic to evoke response ,3 [26,28]

na Hill coefficient of activation 1.05 [25,28]

IC50 half-maximum conc. of desensitization by Nic 0.061 mM [25]

nd Hill coefficient of desensitization 0.5 [25]

ta activation time constant 5 msec [28]

Kt half-maximum conc. of desensitization time constant 0.11 mM [25]

nt Hill coefficient of des. Time constant 3 [25]

tmax maximal des. time constant 10 min this study

t0 minimal des. time constant 500 msec this study, [28]

doi:10.1371/journal.pcbi.1003183.t001

Cholinergic Input Governs DA Response to Nicotine
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Figure 3. Model VTA responses to nicotine in vitro. Left hand panels (A,C,E and left side of panel G) show the results on GABAergic input
changes to VTA DA cells, while the panels on the right-hand side (B,D,F and right side of G) depict results on glutamatergic input increases to VTA DA
cells in response to 1 mM nicotine for 2 min starting at t = 1 min. (A&B) Illustration of the simulated experimental situation during in vitro
experiments. Grey shaded parts and black crosses show pharmacologically blocked transmission pathways, and the scissors illustrate the truncation
of the input pathways in vitro. (C&D) Time course of GABAergic, IGABA, (C) and glutamatergic input, IGlu, (D) changes to VTA DA neurons during and
after Nic exposure (black bar on top of the panels, Nic time-course shown in insets). The increase (green) and the decrease (magenta in C) of the input
currents with respect to baseline are illustrated in both panels. (E&F) Maximal change of GABAergic (E) and glutamatergic input currents (F) as a
function of the Nic concentration applied. The lines show the results of the model for control conditions (in green in both panels and magenta for
decrease in panel E), with a4b2 nAChRs blocked (cyan in panel E, and green in panel F), and with a7 nAChRs blocked (green and magenta in panel E,
orange in panel F). The squares show experimental results adapted from [19] (E) and [18] (F) for different experimental situations : control conditions -
green squares; with a7 nAChR specific antagonist - orange squares; and with antagonist for non- a7 nAChRs - cyan squares. (G) Comparison of

Cholinergic Input Governs DA Response to Nicotine
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Disinhibition (circuit level mechanism; r~0) : Our simulations

reveal two conditions necessary for the GABA-dependent mech-

anism of nicotine-evoked DA activity increases. First, we observe

that in order for a 2 min exposure to 1 mM Nic to boost DA

activity sufficiently to account for the data, the endogenous

cholinergic input to the VTA must be high (ACh~1:77 mM,

Fig. 4D). Such cholinergic drive assures that nicotine mainly drives

a4b2 receptor desensitization after a brief initial period of

activation (Fig. 4D,F). Second, the nicotine-induced desensitiza-

tion suppresses the GABAergic cell response to ACh, reducing it

below baseline during and after the exposure to Nic (Fig. 4F, full

lines). The return to baseline that follows the Nic removal is

governed by the maximal desensitization time constant of a4b2

nAChRs (tmax; Fig. 4D,F for three different values of tmax). The

duration of the DA boost therefore outlasts the presence of Nic as

it depends on the recovery of a4b2 nAChRs from desensitization

and thereby the removal of inhibition.

When the ACh drive is decreased in the disinhibition case, the

DA activity shows a drop below baseline (Fig. 4D, dashed blue

line, ACh~0:1 mM), mirroring an increase of GABA cell activity

(dashed blue line in Fig. 4F). In general, we find that the

endogenous cholinergic input has to be larger than

ACh§0:18 mM in order to see an increase of DA activity in

response to Nic.

Our model points out that the two pathways can be

disambiguated by the relative dynamical profiles of the DA and

GABA neuron responses to nicotine. For the direct stimulation,

the activity of the GABAergic neurons (Fig. 4E) matches the DA

neuron activity but with a smaller amplitude (due to the smaller

fraction of a4b2 nAChRs on GABAergic cells, r~0:8). The

disinhibition circuit, on the other hand, shows that the profile of

DA activity is a mirror-image of the GABAergic activity (compare

Fig. 4D and F). For the level of Nic used in our simulations the DA

neurons are slaved to the GABA neurons since only the high

potency a4b2 receptors on GABA neurons are recruited.

In summary, we demonstrate that direct stimulation, through

receptor activation, and disinhibition, through receptor desensiti-

zation, require distinct conditions in order to account for nicotine-

induced DA activity changes in wild type, a4b2-, and a7-knockout

mice (see summary in Fig. 4G). Endogenous cholinergic input rate

has to be low for direct stimulation and high for disinhibition. Our

simulations further uncover a tell-tale difference in the time course

of the DA activity: for direct stimulation the duration of nicotine

presence directly determines the duration of the DA response,

whereas for disinhibition the recovery from desensitization of the

a4b2 nAChRs defines the temporal scale of the DA activity. For a

given duration of nicotine application these results predict longer-

lasting increases in DA activity with disinhibition as compared to

direct stimulation (in our model the difference is on the order of

12 min, Fig. 4H).

Predictions and experimental protocols to pin down the
major pathway of nicotine action

In view of our results, the experimental data available so far are

not sufficient to determine conclusively to what extent direct

stimulation or disinhibition of DA cells is at the origin of DA

responses to Nic. In addition to the differences we uncover above,

we propose a series of feasible experiments to conclusively

determine whether direct stimulation or dishinibition of DA cells

is at the origin of DA responses to Nic. First, we examine the DA

cell response for a range of endogenous cholinergic input rates and

nicotine concentrations. We then vary the balance of a4b2

nAChRs between DA and GABA cells and investigate the DA

response to Nic in the in vitro (low endogenous ACh input) and the

in vivo (high endogenous ACh input) regimes.

In the first set of experiments we suggest to measure how the

DA response to physiologically relevant nicotine injections (e.g.,

1 mM Nic) depends on the endogenous ACh input rate. The

endogenous ACh rate could be manipulated by stimulation or

inhibition of activity in the laterodorsal tegmental nucleus or the

pedunculopontine tegemental nucleus (Fig. 1A). We predict that

for direct stimulation, the DA response should decrease with rising

ACh input rate (Fig. 5A,C). In contrast, disinhibition implies that

the total boost in DA activity should increase with the ACh input

(Fig. 5B,C). These differences are explained as follows: the ACh

drive sets the basal level of activated a4b2 nAChRs and available

to be desensitized. At high ACh levels, for direct stimulation, the

Nic-induced desensitization of a4b2 nAChRs reduces the excit-

atory drive to the DA, depressing the DA activity. In contrast,

under disinhibition, a4b2 nAChR desensitization decreases the

excitatory drive to the GABA cells (Fig. 5B,C), removing the

inhibition to the DA population and hence liberating the DA

activity. Consequently, the boost of DA activity would become

more pronounced under high ACh input rates. The result that the

endogenous ACh input rate determines the nAChR-mediated

action of Nic holds for a large range of receptor characterizations

when actylcholinesterase activity is high (see below and Text S1).

A second set of experiments should examine the dependence of

DA activity on the injected Nic dose at a pre-set endogenous ACh

input rate. Our model indicates that the two pathways imply

distinct time scales for the maximal DA activity. Direct stimulation

results in a DA peak directly at the onset of Nic injection (Fig. 5D),

whereas the disinhibition case gives a delayed peak after the Nic

clearance (Fig. 5E). Moreover, for direct stimulation, the peak

amplitude of the maximal DA response increases with rising Nic

dose, but levels off rapidly (at ,0.5 mM nicotine) for the

disinhibition case (Fig. 5F). Again, the difference is explained by

the dynamics of the a4b2 receptor in response to nicotine. The

maximal increase for direct stimulation is due to fast activation of

a4b2 nAChRs, whereas in the disinhibition case, the increase

arises due to the delayed desensitization of these receptors. For

direct stimulation, higher nicotine levels result in stronger receptor

activation and an increase in peak amplitude. In contrast, the

fraction of receptors driven into the desensitized state saturates at

lower Nic for disinhibition with the peak amplitude saturating.

This is because the maximal fraction (IC50%0:5 mM) and the

minimal rate of desensitization, t0, (Ktv0:5 mM) are already

attained at ,0.5 mM nicotine (see Table 1). Note that in these

simulations Nic is applied for 2 min in the case of disinhibition and

for 10 min in the case of direct stimulation in order to achieve

comparable durations of DA activity increases (compare Fig. 4H).

Shifting the balance of the a4b2 nAChR action between the DA

and the GABA cells allows to further clarify how the interplay

between a4b2 nAChR expression and cholinergic input levels

relative input changes between model and experiment for the case of 1 mM nicotine for 2 min. Model results are shown with shaded bars and
experimental results with filled bars. Both, GABAergic- (left) and glutamatergic input changes (right) are shown for the three discussed cases : control
conditions - green and magenta, a4b2 nAChR blocked - cyan, and a7 nAChR blocked - orange and magenta (experimental data adapted from [18,19];
ACh~0:384 mM and vGlu~5:68:10{4 in all panels, see Table 1 and Models section for other parameters).
doi:10.1371/journal.pcbi.1003183.g003
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Figure 4. Model VTA responses to nicotine in vivo. Panels on the left-hand side (A,C,E) show results of the direct stimulation scenario
(I0~0:0202, ACh~0:1 mM, vGlu~0:1) and panels on the right-hand side (B,D,F) depict results for disinhibition (I0~0:1, ACh~1:77 mM, vGlu~0:1).
(A&B) Illustration of the simulated experimental situation in vivo. Note the difference in a4b2 nAChR distribution between the direct stimulation (A,
r~0:8) and the disinhibition case (B, r~0). (C&E) Normalized DA (C) and GABA neuron activity (E) in response to the application of 1 mM nicotine in
case of direct stimulation. The full lines show the time course of the normalized nD (C) and nG (E) for three different durations of nicotine exposure,
TNic (as indicated by the bar on top of C). The full and the dashed blue lines depict the responses for low (ACh~0:1 mM) and high endogenous
cholinergic input rates (ACh~1:77 mM), respectively (TNic~10 min). (D&F) Normalized DA (D) and GABAergic neuron activity (F) in response to 1 mM
nicotine for 2 min in case of disinhibition. The full lines show the time course of the normalized nD (D) and nG (F) for three different maximal
desensitization time constants of a4b2 nAChRs, tmax (as indicated in the upper panel). The full and the dashed blue lines depict the responses for
high (ACh~1:77 mM) and low cholinergic input rates (ACh~0:1 mM), respectively (tmax~10 min). (G) Comparison of model results (purple and
orange bars) and experimental data (green bars) on relative DA neuron activity changes in response to 1 mM nicotine. The maximal relative increase
of DA activity in wild type (TNic~10 min for direct stimulation; and TNic~2 min with tmax~10 min for disinhibition) and mutant mice is shown
(experimental data adapted from [17]). (H) Comparison of the total duration of elevated DA neuron activity with respect to the duration of Nic
application, TNic . The duration of elevated activity is taken to be the time between the two points where nD attains half-of-maximum activity (as
illustrated by arrows in C and D and depicted by square and circle, respectively). This duration is plotted for direct stimulation (purple) and
disinhibition (orange).
doi:10.1371/journal.pcbi.1003183.g004
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conjointly determine DA activity. In order to do so, we study the

acute DA response to 1 mM nicotine for in vitro (Fig. 6A) and in vivo

conditions (Fig. 6B) while varying the value of r continuously. For

the in vitro regime (low afferent input), the net DA activity is

increased as long as rw0:5 (e.g., direct stimulation case: r~0:8, red

curve in Fig. 6A). On the other hand, in vivo (high afferent input) a

net DA increase (after a small negative transient) requires rv0:5
(e.g., disinhibition case: r~0, blue curve in Fig. 6B). The extent to

which a4b2 nAChR mediated effects inhibit DA cells for low

(GABA mediated inhibition for rv0:5, Fig. 6A) and high

(desensitization of a4b2-mediated inhibition for rw0:5, Fig. 6B)

endogenous ACh input scenarios depends on the strength of the

glutamatergic input to DA cells. In the model, we set the ratio of

Glu to GABAergic input weight, wGlu=wG, as well as Glu to direct

a4b2 nAChR input weight, wa4b2=wG, to unity. Had we chosen

wGlu~100, wG~1 and wa4b2~1, for example, the DA cell activity

would exhibit no decrease in activity neither in the in vitro nor in

the in vivo scenarios (results not shown). The case wGlu~100,

wG~1 and wa4b2~1 would mean that DA cell activity is

dominated by nicotine driven Glu input increases, giving more

significance to the a7 nAChRs in generating nicotine-dependent

DA responses.

Our analysis reveals key experimental manipulations that would

pinpoint the mechanistic basis for nicotine effects in the VTA:

manipulating the cholinergic drive to the VTA during nicotine

application, and/or changing the nicotine concentration admin-

istered. Decreasing the cholinergic drive to the VTA further boosts

DA activity increases for direct stimulation but diminishes them

for disinhibition (Fig. 5C). The maximal DA response saturates at

low nicotine concentrations (,0.5 mM) for disinhibition, but

continues to rise with higher nicotine concentrations for direct

stimulation (Fig. 5F).

ACh-driven desensitization through low
acetylcholinesterase activity

In all results reported so far, receptor desensitization is driven by

nicotine only. We now investigate what happens if nicotine and

acetylcholine together drive receptor desensitization of the

dominant a4b2 subtype. This might occur whenever acetylcho-

linesterase activity is reduced. In the model, we vary the amount of

ACh contributing to a4b2 nAChR desensitization by the

parameter g and study the impact on GABA and DA neuron

responses for direct stimulation and disinhibition. g varies between

0 - only Nic drives desensitization - and 1 - Nic and the ACh

induce desensitization to equal amounts (see Models).

Direct stimulation is only marginally affected by ACh-driven

desensitization since the a4b2-mediated receptor current predom-

inantly arises from activation through Nic (Fig. 7A,C). The weak

endogenous ACh rate induces initial desensitization which reduces

the steady-state current but also diminishes the amount of further

desensitization through Nic resulting in a negligible net effect (Fig.

S1).

Figure 5. Predicted dynamics of the DA neuron population in the VTA in response to varying cholinergic input rates and Nic
concentrations in case of direct stimulation (A,D) and disinhibition (B,E). Nic was applied for 10 min in the direct stimulation scenario, and
for 2 min in the disinhibition scenario, whereas the endogenous ACh input rate is modeled to be constant (see text). (A&B) Temporal dynamics of DA
neuron activity in response to 1 mM nicotine and varying endogenous cholinergic input rates (ACh range: 0.1-blue lines, 0.5, 1.0, 1.5, 1.77-red lines,
2.0 mM). (C) Maximal increase of DA activity in response to 1.0 mM Nic as a function of the cholinergic input rate (nGlu~0:1, I0~0:1). (D&E) Temporal
dynamics of DA activity in response to 0.5 mM (blue lines) and 3 mM nicotine (red lines) in case of direct stimulation (D, r~0:8, ACh~0:1 mM,
nGlu~0:1, I0~0:0202), or disinhibition (E, r~0, ACh~1:77 mM, nGlu~0:1, I0~0:1). (F) The maximal DA response as a function of applied Nic
concentration is depicted for direct stimulation (orange line) and disinhibition (purple line). Data point (green) adapted from [17].
doi:10.1371/journal.pcbi.1003183.g005
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In contrast, for the disinhibition scenario, the a4b2 nAChR-

mediated current changes from inhibitory to excitatory with

increasing the amount of ACh-driven desensitization (Fig. 7B).

The high endogenous ACh rate induces strong desensitization and

further desensitization by Nic is not enough to overcome receptor

activation (Fig. S1E). In turn, GABA neuron activity is increased

in response to Nic inhibiting DA neuron activity (purple lines in

Fig. 7 B,D).

In summary, acetylcholinesterase activity determines Nic action

for disinhibition but has little effect on direct stimulation. In case

Nic action is mediated through GABAergic neurons (disinhibtion),

varying ACh hydrolysis rates could provide a dynamical means to

control Nic action.

Discussion

The major goal of this study was to determine the dominant

pathway of action for nicotine in the ventral tegmental area. In

order to do so we have developed a novel mesoscopic computa-

tional modeling approach extending a population activity repre-

sentation of the VTA DA and GABA neurons to describe nAChR

responses. This allowed us to clarify the interplay of the

Figure 6. Temporal dynamics of DA neuron activity in response to 1 mM nicotine for 2 min for different values of r and afferent
input strengths. (A) The DA response in the presence of constant low cholinergic and glutamatergic afferent input to the VTA, i.e., in vitro like
conditions (ACh~0:384 mM,nGlu~5:68:10{4). (B) The DA response in the presence of constant high cholinergic and glutamatergic afferent input to
the VTA, i.e., in vivo like conditions (ACh~1:77 mM, nGlu~0:1). In both panels, the distribution of a4b2 nAChRs is changed by varying the control
parameter r in steps of 0.2 from 0 to 1 (as indicated). The examples with values of r as used for the direct stimulation (r~0:8, red) and disinhibition
(r~0, blue) cases in this study are highlighted.
doi:10.1371/journal.pcbi.1003183.g006

Figure 7. Temporal dynamics of GABA and DA neuron activity in response to 1 mM nicotine in case a4b2 receptor desensitization is
driven by Nic and ACh. (A,C) GABA (A) and DA (C) neuron activity in the direct stimulation case (same as in Fig. 4C,E full blue lines; r~0:8,
ACh~0:1 mM, nGlu~0:1, I0~0:0202) for different efficacies of ACh to drive a4b2 receptor desensitization (g given in panel A). (B,D) GABA (B) and DA
(D) neuron activity in the disinhibition case (r~0, ACh~1:77 mM, nGlu~0:1, I0~0:1) for different efficacies of ACh to drive a4b2 receptor
desensitization (g given in panel B, see Models).
doi:10.1371/journal.pcbi.1003183.g007
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pharmacodynamics of nicotine and the dopaminergic signal

constructed in the VTA. Our analysis of the model showed that

in vitro and in vivo data can be reconciled by taking into account the

difference in the afferent input strengths to the VTA in the two

experimental settings: low for in vitro and high for in vivo. The

differential activation and desensitization kinetics of a7- and a4b2

nAChRs combined with different afferent input levels can explain

the mechanism of nicotine action.

However, available experimental data have not allowed to

pinpoint whether a4b2 nAChRs on VTA DA (direct stimulation)

or GABA cells (disinhibition) are the dominant site of nicotine

action in vivo. Using the model, we demonstrate that both

disinhibition and direct stimulation of DA cells can potentially

be at the origin of the experimentally observed nicotine-induced

boost of DA activity in agreement with the recent suggestion that

both receptor activation and desensitization play a role in nicotine

influence [34]. Critically we identify that the endogenous

cholinergic input rate has to be low for direct stimulation, whereas

high cholinergic inputs are crucial in the disinhibition case, in

order to observe a DA activity increase. These results emerge

directly from known activation and desensitization properties of

a4b2 nAChRs.

Several experimental results support the critical role of the

GABAergic cells for the action of nicotine. Most of the cholinergic

axon terminals in the VTA synapse on the non-DA neurons [35].

The a4-containing nAChRs expressed on the VTA GABAergic

neurons upregulate in response to chronic nicotine, potentially

boosting the nicotine control of their activity [28,36]. The

activation of VTA GABA neurons is necessary for the reinforcing

actions of Nic [37]. A wide class of addictive drugs, including

opioids, cannabinoids, c-hydroxy butyrate (GHB), benzodiaze-

pines, lead to inhibition of GABA neurons in the VTA and

thereby disinhibition of DA neurons (e.g, [38], see [39] for an

overview). Furthermore, the GABA antagonist bicuculline is self-

administered by mice [40,41]. Taken together these facts support

the hypothesis that reduced GABAergic input to DA cells can

initiate addictive behaviors. The hyperexcitability of the VTA in

response to nicotine [42] could be related to the higher abundance

of GABAergic cells in the VTA as compared to the SN (GABA to

DA ratio about 1/4 in the VTA [43]; and 1/19 in the substantia

nigra [44]). We would like to point out that the disinhibition

scenario emphasizes the role of local circuitry organization as

opposed to the single cell mechanism associated with direct

stimulation of DA cells. It may also be that disinhibtion is

primarily due to nicotine-induced inhibition of GABA activity of

extrinisic rather than local GABA neurons. Candidates include

GABAergic projections onto DA neurons that arise in the ventral

palladium or the rostromedial tegmental nucleus [45,46].

Our model makes several testable predictions for the case that

the reinforcing properties of nicotine are mediated by inhibition of

the GABA cells. Notably, the DA activity response to Nic is a

mirror-image of the GABAergic firing response (Fig. 4D,F).

Moreover, the DA response to Nic is biphasic: the longer boost is

preceded by a short-lasting inhibtion due to the fast activation of

a4b2 nAChRs (Fig. 4D, and 5B). Some DA neuron recordings

appear to support this observation [47]. We further predict that

the DA boost should saturate at relatively low Nic levels

(,500 nM) in case of disinhibition (Fig. 5F). Higher nicotine

levels do not evoke further increases of DA activity since the

maximal desensitization of a4b2 nAChR is already attained at low

nicotine. This result implies that Nic elicits maximal a4b2

nAChR-mediated increase of DA activity at nicotine concentra-

tions attained in the blood of smokers [11,31].

We confirm previous findings suggesting that physiologically

relevant doses of nicotine do not significantly desensitize a7-

containing nACh receptors [48]. We extend this statement and

propose that physiological concentrations of nicotine do not

significantly activate a7-containing nAChRs. We consider it

therefore unlikely that increased glutamatergic drive to DA cells

in response to nicotine augments their activity. It should however

be noted that the mean-field approach presented here does not

resolve the different firing modes of DA cells, i.e., bursting and

regular firing. a7-containing nAChs could play a role in nicotine

induced bursting [49,50]. The tonic inhibitory input from

GABAergic cells may be setting the overall level of excitability

of DA cells by controling the mean membrane potential. When

the DA cells are disinhibited through desensitization of a4b2

nAChRs, the a7 nAChR activation could induce burst firing on

top of the elevated membrane potential. Hence GABA cells

would gate the DA burst firing, as suggested in a biophysically

detailed model by Komendantov et al. [51]. Furthermore,

bursting induced by a7 nAChR activation could be crucial

for the induction of long-term potentiation of Glu synapses

onto DA cells [18,52]. These topics remain subject of active

investigations.

We note that we focus only on feedforward afferent input

(glutamatergic and cholinergic) and a simplified local circuitry of

the VTA. While we leave aside the possible involvement of other

neuronal structures [46,53], we find that our setup is sufficient to

account for a wide range of data on nicotine/DA interactions.

Furthermore, we chose to not address the potential heterogeneity

of the VTA itself [35,54,55]. However, our proposed circuitry can

be seen either as a global description of the VTA or as a model of a

local computational unit within the VTA. Whether the experi-

mentally observed diversity of DA cell behavior could be explained

by the coexistent presence of direct stimulation and disinhibition

subcircuits or whether recurrent inhibition has to be taken into

account remains an area for future studies. However, already in

our model the activities of the DA and GABAergic cells show a

variety of temporal profiles depending on the a4b2 nAChR

expression and the cholinergic input rate.

Data and theory suggest that dopamine levels modulate

synaptic plasticity and learning [56,57]. Our results together

with this fact lead us to speculate that if salient characteristics of

environmental cues are reflected in the overall cholinergic tone

[58], the nicotine induced increase of phasic DA may explain the

strong associations formed between these cues and the habit of

smoking [59,60].

Our results provide a clear paradigm for understanding the

interactions between endogenous acetylcholine input and the

mechanism by which exogenous nicotine may provoke DA

changes: differential control over the local VTA mechanisms by

endogenous ACh input rates. Endogenous ACh inputs determine

whether Nic evokes a positive DA response or a DA depression for

either scenarios discussed here, i.e., direct stimulation and

disinhibition. For example, nicotine-evoked DA increases and

high ACh input imply disinhibition, while DA increases and low

ACh implicate direct stimulation. Furthermore, taking diural

rhythms of cholinergic signaling into account, the VTA may give

rise to different DA outputs at different times of the day, e.g., the

morning cigarette may deploy different mechanisms than an

evening cigarette. In turn this state-dependency of nicotine-

induced reinforcement could imply that the therapeutic strategies

for smoking cessation may need to be tailored for a variety of

cognitive states in order to act on specific targets within the

predominant pathway of nicotine action.

Cholinergic Input Governs DA Response to Nicotine
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Models

In order to examine the mechanisms of nicotine action, we built

a neural population model of the ventral tegmental area

microcircuit using the mean-field approach [61]. Our minimal

local circuit model of the VTA incorporates the glutamatergic

(Glu) and cholinergic (ACh) afferents to the DA and GABA cells in

the VTA, as well as local inhibition of DA cells by GABA neurons

(Fig. 1A). The activation and desensitization of the nAChRs in

response to Nic and ACh were described by a simple 4-state model

adapted from [22,23] (Fig. 1B,C; see Text S2.).

Mean-field description of dopaminergic and GABAergic
VTA neurons

The temporal dynamics of the average activities of dopaminer-

gic and GABAergic neuron populations is characterized by

tD _nnD~{nDzW(I0{IGABAzIGluzrIa4b2), ð1Þ

tG _nnG~{nGzW(IGluz(1{r)Ia4b2): ð2Þ

vD and vG are the mean firing rates of the DA and GABAergic

neuron populations, respectively. tD and tG are membrane time

constants of the neurons specifying how quickly the neurons

integrate input changes (tD~tG~20 ms). IGlu and Ia4b2 charac-

terize excitatory inputs to both neuron populations mediated by

glutamate receptors and a4b2-containing nAChRs, respectively.

IGABA is the local inhibitory input to DA neurons emanating

from VTA GABAergic neurons. I0 is an intrinsic current of DA

cells giving rise to intrinsic activity in the absence of external

inputs [62]. We further assumed that I0 accounts for other input

sources which are not affected by nicotine and therefore provide

a constant background input (e.g., a6-containing nAChR medi-

ated cholinergic input to DA cells [63]; inhibitory input

originating in other brain regions, etc.). W(I) is the steady-state

current-to-rate transfer function. For simplicity, we assumed that

W(I) is threshold-linear: W(I)~1 if I§0 and W(I)~0 otherwise.

The control parameter r sets the balance of a4b2 nAChR action

through GABAergic or DA cells in the VTA. For r~0: a4b2

containing nAChRs act through GABAergic neurons only,

whereas for r~1: a4b2 receptors influence DA neurons only.

Both neuron populations are influenced by a4b2 nAChRs for

intermediate values of r. In practice, this balance is determined by

the expression level of a4b2 nAChRs, the overall impact of local

GABAergic inputs on DA activity, and by the location of a4b2

nAChRs on the somatodendritic tree of DA and GABAergic

cells.

The input currents in Eqs. (1) and (2) are given by

IGABA~wGnG, ð3Þ

IGlu~wGlu nGluzna7½ �1, ð4Þ

Ia4b2~wa4b2na4b2, ð5Þ

where the wx’s (with x = G, Glu, a4b2) specify the total strength of

the respective input since the activation variables (vG, va7, va4b2)

are normalized to vary between 0 and 1. For our qualitative

investigations, we used wx~1 (with x = G, Glu, a4b2). Inhibitory

input to DA cells, IGABA, depends on the GABAergic neuron

population activity, vG. Glutamatergic input is provided either

by upstream glutamatergic activity, vGlu, or by activation of

a7 nAChRs on presynaptic glutamatergic terminals, va7 (see

below). Nicotine-evoked glutamatergic transmission is indepen-

dent of action potential activation in presynaptic neurons [18].

Hence, either of both inputs can fully activate glutamatergic

transmission

nGluzna7½ �1~
nGluzna7 if nGluzna7ƒ1

1 if nGluzna7w1

�
: ð6Þ

The activation of a4b2 nAChRs, va4b2 (see next section),

determines the level of direct excitatory input, Ia4b2, evoked by

nicotine or acetylcholine [63].

Modeling the activation and desensitization of nAChRs
driven by Nic and ACh

We implemented nAChR activation and desensitization as

transitions of two independent state variables: an activation gate

and a desensitization gate. This yields four different states of the

nAChR: deactivated/sensitized (also resting or responsive state),

activated/sensitized, activated/desensitized and deactivated/de-

sensitized state (Fig. 1B). Of those states, three are closed and the

activated/sensitized state is the only open state of the receptor in

which it mediates an excitatory current. Note that compared to

other models of allosteric transitions of the nAChR, we chose to

leave aside the rapidly and slowly desensitized states [64], deeper-

level desensitized state or inactivated states [65]. Such states are

collapsed in the desensitized state here. Our model was modified

from the cyclic desensitization model of Katz and Thesleff [22]

where ‘‘effective’’ and ‘‘refractory’’ in their model refer to

sensitized and desensitized here, respectively (see Text S2.).

Assuming independent transitions of the activation and the

desensitization variables entails another simplification compared

to cyclic allosteric transition schemes. In our model, the reaction

rates are the same on opposite sides of the reaction cycle (Fig. 1B),

e.g., the rate from deactivated/sensitized to activated/sensitized is

the same as the transition rate from deactivated/desensitized to

activated/desensitized.

The model accounts for the opening of the channel (transition

from deactivated/sensitive to activated/sensitive, Fig. 1B,C) in

response to both Nic and ACh; while desensitization is driven by

nicotine and ACh if gw0 (transition into the activated/desensi-

tized state, Fig. 1B,C). The inverse transitions, i.e., from activated

to deactivated and from desensitized to sensitized, occur after the

removal of Nic and ACh.

The mean total activation level of nAChRs (va4b2, va7) is

modeled as the product of the fraction of receptors in the activated

state, a, and the fraction of receptors in the sensitized state, s. The

total normalized nAChR activation is therefore vx~ax
:sx with

x = a4b2 or a7. The time course of the activation and the

sensitization variables is given by

dy

dt
~(y?(Nic,ACh){y)=ty(Nic,ACh): ð7Þ

where ty(Nic,ACh) refers to the Nic/ACh concentration-depen-

dent time constant at which the asymptotically achievable steady-

state y?(Nic,ACh) is attained. The maximal achievable activation

or sensitization, for a given Nic/ACh concentration,

a?(Nic,ACh) or s?(Nic,ACh) respectively, are given by Hill

equations of the form

Cholinergic Input Governs DA Response to Nicotine
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a?(Nic,ACh)~
(AChzaNic)na

EC50
naz(AChzaNic)na

, ð8Þ

s?(Nic,ACh)~
IC50

ns

IC50
nsz(NiczgACh)ns

: ð9Þ

EC50 and IC50 are the half-maximal concentrations of nAChR

activation and sensitization, respectively. The factor a.1 accounts

for the higher potency of Nic to evoke a response as compared to

ACh: aa4b2~3, aa7~2 [26–28,30] (see Fig. 2C,D and Table 1). na

and ns are the Hill coefficients of activation and sensitization. g
varies between 0 and 1 and controls the fraction of the ACh

concentration driving receptor desensitization.

The transition from the deactivated to the activated state is fast

(,ms, ms) [64] compared to the time scales investigated here that

are of the order of seconds to minutes. We therefore simplified the

activation time constant, ta, to be independent of the acetylcho-

line/nicotine concentration, i.e., ta(Nic,ACh)~ta~const:. The

time course of Nic-driven desensitization is characterized by a

concentration-dependent time constant

td(Nic,ACh)~t0ztmax
Kt

nt

Kt
ntz(NiczgACh)nt

: ð10Þ

tmax refers to the recovery time constant from desensitization in

the absence of ligands (tmax&t0). t0 is the fastest time constant at

which the receptor is driven into the desensitized state at high

ligand concentrations. Kt is the concentration at which the

desensitization time constant attains half of its minimum

(tmax&t0). g varies between 0 and 1 and controls the fraction

of the ACh concentration influencing the desensitization time

constant. The parameters describing activation and desensitization

of the two nAChR subtypes were taken from a number of studies

on heterologously expressed human nAChRs and are listed in

Table 1 [25–30]. Note that we used tmax~10 min for a4b2

nAChRs in order to match the time course of DA activity recorded

in vivo, while Fenster et al. [25] recorded a value of tmax~86:9 min

in vitro during experiments at room temperature. We adjusted the

minimal time constant by which the receptors are driven into the

desensitized state, t0, such that the model currents qualitatively

captured the experimentally measured time course of nAChR

currents evoked by Nic and ACh [25–30]. This fit yielded a faster

minimal desensitization time constant for the a7 nAChR, i.e.,

10t0
a7~t0

a4b2 (Table 1).

In our simulations, we assumed that both the nicotine bath

application and the intravenous injection imply a slow build-up of

the nicotine concentration at the site of the receptor. That is, the

applied nicotine concentration is not immediately available but

increases/decays exponentially with a time constant of 1 min. The

fast activation of nAChRs, a (transition from deactivated/sensitive

to activated/sensitive, Fig. 1B), was therefore taken to be in steady-

state with the Nic concentration at all times (except in Fig. 2).

Clearly, the above presented simple model of nAChR activation

and desensitization did not resolve all the details of nAChR

kinetics. For example, it was assumed that ACh- and Nic-evoked

responses reach the same maximal amplitude and that, despite

different potencies, Nic and ACh dose-response curves can be

characterized by the same Hill coefficient. These assumptions are

approximately met for a7-containing nAChRs [66]. ACh evokes

however twice the response of Nic with human a4b2 nAChRs in a

study by Chavez-Noriega et al. [66], but the same response

according to other studies [28,67]. We simplified the dose-

response curve using a single Hill equation, rather than using a

sum of two Hill equations as suggested by Buisson and Bertrand

[28]. Nevertheless the simple model presented here captured the

qualitative time course of nAChR currents evoked in response to

Nic and ACh exposures (see Results, [24]). It furthermore

quantitatively accounts for the time course of DA and GABA

neuron activity responses in vivo for single and repetitive Nic

applications [37].

Supporting Information

Figure S1 a4b2 nAChR-mediated current for various
endogenous ACh input rates and ACh-driven desensiti-
zation levels. Three different levels of ACh-driven desensitiza-

tion are considered in the three columns (see top of each column;

see also Model and Methods). (A,C,E) Steady-state activation (a?,

blue) and sensitization (s?, green) curves of the a4b2 nAChR

model (Table 1). The three endogenous ACh input rate cases

depicted in each column are indicated by arrows. (B,D,F, top) The

dynamics of the activation, a, (full lines) and sensitization, s,

(dashed lines) variables in response to 1 mM nicotine for 2 min.

(B,D,F, bottom) The dynamics of the total normalized receptor

current during the nicotine application. The total current is given

by a times s. The three color in (B,D,F) correspond to different

endogenous ACh input rates indicated in A, C, and E in the same

color (A: 0.1, 1.77, 10 mM; B: 0.1, 1.77, 20 mM; C: 0.1, 1.77,

20 mM).

(EPS)

Figure S2 nAChR mediated current in case of no
overlap between the activation and sensitization func-
tions. Same format as in Fig. S1, the mediated current is studied

for various endogenous ACh input rates (shown in cyan, magenta

and gray; see arrows in A,C,E) and three ACh-driven desensiti-

zation levels (see top of each column). (A,C,E) Steady-state

activation (a?, blue) and sensitization (s?, green) curves. The

three endogenous ACh input rate cases depicted in each column

are indicated by arrows. (B,D,F, top) The dynamics of the

activation, a, (full lines) and sensitization, s, (dashed lines) variables

in response to 1 mM nicotine for 2 min. Modified parameters are

IC50~0:01 mM and nd~1, all other parameters are unchanged

from the a4b2 nAChR model (Table 1).

(EPS)

Figure S3 nAChR mediated current in case of a large
overlap between the activation and sensitization func-
tions. Same format as in Fig. S1, the mediated current is studied

for various endogenous ACh input rates (shown in cyan, magenta

and gray; see arrows in A,C,E) and three ACh-driven desensiti-

zation levels (see top of each column). (A,C,E) Steady-state

activation (a?, blue) and sensitization (s?, green) curves. The

three endogenous ACh input rate cases depicted in each column

are indicated by arrows. (B,D,F, top) The dynamics of the

activation, a, (full lines) and sensitization, s, (dashed lines) variables

in response to 1 mM nicotine for 2 min. Modified parameters are

EC50~0:1 mM, IC50~1 mM and nd~1, all other parameters are

unchanged from the a4b2 nAChR model (Table 1).

(EPS)

Figure S4 The different stages in the construction of the
two-gate model for nAChRs. (A) The cyclic model by
Katz and Thesleff (1957) [22]. (B) The two-gate model

mapped onto the Katz-Thesleff model. (C) Separation of the

activation and desensitization gates in the two-gate model. (D)

Generic two-gate model with concentration-dependent rate
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constants. (E) Steady-state curves (‘) and (F) respective time-

constants (t) for the activation (a, black curves) and sensitization

gates (s, grey) of the a7 nAChR. See text for details.

(EPS)

Figure S5 Comparison of the responses generated by
the Katz-Thesleff model and the present two-gate model
for a7 nAChRs. (A) Implementation of the Katz-Thesleff model

following Papke (2010) (see reference list in Text S2). AR* is the

only open state. The rate-constants were hand-tuned to make the

model fit the response trace of the two-gate model during the

application of a 1 s 100 mM ACh pulse (left-lower panel in B). (B)

Response traces of the two-gate model (black curves) and the Katz-

Thesleff model (grey) to varying ACh concentrations. The

indicated concentrations are those used for ACh in the simulation

of the two-gate model. These concentrations were adapted for the

Katz-Thesleff simulations to account for the Hill exponent of two

in the two-gate model, yielding values for [A] of 1.86, 12.5, 100

and 669 mM, respectively. The open-channel probabilities, plotted

on the vertical axes, were calculated as [AR*] for the Katz-

Thesleff model, and as a times s for the two-gate model.

(EPS)

Text S1 Receptor currents for different activation/
sensitization realizations. We investigate in more detail the

a4b2 nAChR mediated current for different levels of ACh-driven

desensitization and varying endogenous ACh input rates. We

furthermore study receptor implementations with qualitatively

different concentration-response profiles for activation and

sensitization. These different realizations can be seen as charac-

terizing other subtypes of nAChRs for which we identify excitatory

and/or inhibitory receptor current regimes with respect to the

ACh input rate and ACh-driven desensitization levels.

(DOCX)

Text S2 From the cyclic Katz-Thesleff model to the two-
gate model. We explain in greater detail the relationship

between the present two-gate model for nAChRs, and the cyclic

Katz-Thesleff model from which it was derived.

(DOCX)

Acknowledgments

We thank Philippe Faure, Huibert Mansvelder, Jie Wu, Uwe Maskos and

Jean-Pierre Changeux for very helpful comments and fruitful discussions.

We are indebted to Andrew M. Oster for careful reading of this

manuscript.

Author Contributions

Conceived and designed the experiments: MG BG. Performed the

experiments: MG RM. Analyzed the data: MG. Wrote the paper: MG

RM BG.

References

1. Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine

related to addiction. Eur J Pharmacol 393: 295–314.

2. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction.

Science 278: 58–63.

3. Marti F, Arib O, Morel C, Dufresne V, Maskos U, et al. (2011) Smoke extracts

and nicotine, but not tobacco extracts, potentiate firing and burst activity of
ventral tegmental area dopaminergic neurons in mice. Neuropsychopharma-

cology 36: 2244–2257.

4. Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the

nucleus accumbens and similarity to those of addictive drugs. Nature 382: 255–
257.

5. Di Chiara G, Imperato a (1988) Drugs abused by humans preferentially increase

synaptic dopamine concentrations in the mesolimbic system of freely moving

rats. Proc Natl Acad Sci U S A 85: 5274–5278.

6. Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine
activates the mesolimbic dopamine system through the ventral tegmental area.

Brain Res 653: 278–284.

7. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, et al. (1998)

Brain nicotinic receptors: structure and regulation, role in learning and
reinforcement. Brain Res Brain Res Rev 26: 198–216.

8. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of
pontomesencephalic cholinergic neurons projecting to substantia nigra differs

significantly from those projecting to ventral tegmental area. J neurosci 15:
5859–5869.

9. Dani JA, Ji D, Zhou FM (2001) Synaptic plasticity and nicotine addiction.
Neuron 31: 349–352.

10. Giniatullin R, Nistri A, Yakel JL (2005) Desensitization of nicotinic ACh

receptors: shaping cholinergic signaling. Trends Neurosci 28: 371–378.

11. Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED (1993)

Higher levels of nicotine in arterial than in venous blood after cigarette smoking.
Drug Alcohol Depend 33: 23–29.

12. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and
desensitizes midbrain dopamine neurons. Nature 390: 401–404.

13. Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from

genetically modified mice. Nat Rev Neurosci 11: 389–401.

14. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic

receptors: allosteric transitions and therapeutic targets in the nervous system.
Nat Rev Drug Discov 8: 733–750.

15. Jones IW, Wonnacott S (2004) Precise localization of (alpha)7 nicotinic
acetylcholine receptors on glutamatergic axon terminals in the rat ventral

tegmental area. J Neurosci 24: 11244–11252.

16. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, et al. (1998)
Acetylcholine receptors containing the (beta)2 subunit are involved in the

reinforcing properties of nicotine. Nature 391: 173–177.

17. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, et al. (2006)

Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors.
Neuron 50: 911–921.

18. Mansvelder HD, Mcgehee DS (2000) Long-Term Potentiation of Excitatory

Inputs to Brain Reward Areas by Nicotine. Neuron 27: 349–357.

19. Mansvelder HD, Keath JR, Mcgehee DS (2002) Synaptic Mechanisms

Underlie Nicotine-Induced Excitability of Brain Reward Areas. Neuron 33:

905–919.

20. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, et al. (2004)

Nicotine activation of (alpha)4* receptors: sufficient for reward, tolerance, and

sensitization. Science 306: 1029–1032.

21. Exley R, Maubourguet N, David V, Eddine R, Evrard A, et al. (2011) Distinct

contributions of nicotinic acetylcholine receptor subunit (alpha)4 and subunit

(alpha)6 to the reinforcing effects of nicotine. Proc Natl Acad Sci U S A 108:

7577–7582.

22. Katz B, Thesleff S (1957) A study of the desensitization produced by

acetylcholine at the motor end-plate. J Physiol 138: 63–80.

23. Shelley C, Cull-Candy SG (2010) Desensitization and models of receptor-

channel activation. J Physiol 588: 1395–1397.

24. Graupner M, Gutkin B (2009) Modeling nicotinic neuromodulation from global

functional and network levels to nAChR based mechanisms. Acta Pharmacol Sin

30: 681–693.

25. Fenster CP, Rains MF, Noerager B, Quick MW, Lester Ra (1997) Influence of

subunit composition on desensitization of neuronal acetylcholine receptors at

low concentrations of nicotine. J Neurosci 17: 5747–5759.

26. Eaton JB, Peng J-H, Schroeder KM, George Aa, Fryer JD, et al. (2003)

Characterization of human (alpha)4(beta)2-nicotinic acetylcholine receptors

stably and heterologously expressed in native nicotinic receptor-null SH-EP1

human epithelial cells. Mol Pharmacol 64: 1283–1294.

27. Gerzanich V, Peng X, Wang F, Wells G, Anand R, et al. (1995) Comparative

pharmacology of epibatidine: a potent agonist for neuronal nicotinic

acetylcholine receptors. Mol Pharmacol 48: 774–782.

28. Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the

human (alpha)4(beta)2 nicotinic acetylcholine receptor function. J Neurosci 21:

1819–1829.

29. Papke RL (2006) Estimation of both the potency and efficacy of (alpha)7 nAChR

agonists from single-concentration responses. Life Sci 78: 2812–2819.

30. Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J (1994) Human (alpha)7

acetylcholine receptor: cloning of the (alpha)7 subunit from the SH-SY5Y cell

line and determination of pharmacological properties of native receptors and

functional (alpha)7 homomers expressed in Xenopus oocytes. Mol Pharmacol

45: 546–554.

31. Rose JE, Mukhin AG, Lokitz SJ, Turkington TG, Herskovic J, et al. (2010)

Kinetics of brain nicotine accumulation in dependent and nondependent

smokers assessed with PET and cigarettes containing 11C-nicotine. Proc Natl

Acad Sci U S A 107: 5190–5195.

32. Paradiso KG, Steinbach JH (2003) Nicotine is highly effective at producing

desensitization of rat (alpha)4(beta)2 neuronal nicotinic receptors. J Physiol 553:

857–871.

Cholinergic Input Governs DA Response to Nicotine

PLOS Computational Biology | www.ploscompbiol.org 14 August 2013 | Volume 9 | Issue 8 | e1003183



33. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and

physiological diversity of nicotinic acetylcholine receptors in the midbrain

dopaminergic nuclei. J Neurosci 21: 1452–1463.

34. Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2008) It is not ‘‘either/or’’:

activation and desensitization of nicotinic acetylcholine receptors both

contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol

84: 329–342.

35. Garzón M, Vaughan Ra, Uhl GR, Kuhar MJ, Pickel VM (1999) Cholinergic

axon terminals in the ventral tegmental area target a subpopulation of neurons

expressing low levels of the dopamine transporter. J Comp Neurol 410: 197–

210.

36. Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, et al. (2007) Chronic

nicotine cell specifically upregulates functional (alpha)4* nicotinic receptors:

basis for both tolerance in midbrain and enhanced long-term potentiation in

perforant path. J Neurosci 27: 8202–8218.

37. Tolu S, Eddine R, Marti F, David V, Graupner M, et al. (2013) Co-activation of

VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry

18: 382–393.

38. Johnson SW, North RA (1992) Opioids excite dopamine neurons by

hyperpolarization of local interneurons. J Neurosci 12: 483–488.
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64. Changeux JP, Devillers-Thiéry a, Chemouilli P (1984) Acetylcholine receptor:

an allosteric protein. Science 225: 1335–1345.
65. Dani Ja, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse.

Neuron 16: 905–908.
66. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, et al.

(1997) Pharmacological characterization of recombinant human neuronal

nicotinic acetylcholine receptors h(alpha)2(beta)2, h(alpha)2(beta)4, h(alpha)3(-
beta)2, h(alpha)3(beta)4, h(alpha)4(beta)2, h(alpha)4(beta)4 and h(alpha)7

expressed in Xenopus oocytes. J Pharmacol Exp Ther 280: 346–356.
67. Grady SR, Drenan RM, Breining SR, Yohannes D, Wageman CR, et al. (2010)

Structural differences determine the relative selectivity of nicotinic compounds
for native (alpha)4(beta)2*-, (alpha)6(beta)2*-, (alpha)3(beta)4*- and (alpha)7-

nicotine acetylcholine receptors. Neuropharmacology 58: 1054–1066.

68. Christie MJ, Bridge S, James LB, Beart PM (1985) Excitotoxin lesions suggest an
aspartatergic projection from rat medial prefrontal cortex to ventral tegmental

area. Brain Res 333: 169–172.
69. Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on

unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens

septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol
320: 145–160.

70. Tong ZY, Overton PG, Clark D (1996) Stimulation of the prefrontal cortex in
the rat induces patterns of activity in midbrain dopaminergic neurons which

resemble natural burst events. Synapse 22: 195–208.
71. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological

characterization of GABAergic neurons in the ventral tegmental area. J Neurosci

18: 8003–8015.
72. Clements JR, Grant S (1990) Glutamate-like immunoreactivity in neurons of the

laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett
120: 70–73.

73. Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections

of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25: 271–284.
74. Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits

dopamine efflux in the rat nucleus accumbens by activation of acetylcholine
and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12: 3596–

3604.

75. Gerzanich V, Anand R, Lindstrom J (1994) Homomers of (alpha)8 and (alpha)7
subunits of nicotinic receptors exhibit similar channel but contrasting binding

site properties. Mol Pharmacol 45: 212–220.

Cholinergic Input Governs DA Response to Nicotine

PLOS Computational Biology | www.ploscompbiol.org 15 August 2013 | Volume 9 | Issue 8 | e1003183


