
HAL Id: inserm-02140108
https://inserm.hal.science/inserm-02140108v1

Submitted on 27 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Passive Dendrites Enable Single Neurons to Compute
Linearly Non-separable Functions

Romain Daniel Cazé, Mark Humphries, Boris Gutkin

To cite this version:
Romain Daniel Cazé, Mark Humphries, Boris Gutkin. Passive Dendrites Enable Single Neurons to
Compute Linearly Non-separable Functions. PLoS Computational Biology, 2013, 9 (2), pp.e1002867.
�10.1371/journal.pcbi.1002867�. �inserm-02140108�

https://inserm.hal.science/inserm-02140108v1
https://hal.archives-ouvertes.fr


Passive Dendrites Enable Single Neurons to Compute
Linearly Non-separable Functions
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Abstract

Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results
in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of
computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may
possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear,
and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable
functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with
a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these
numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in
addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically
prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with
purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two
strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the
cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with
both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly
non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model
of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to
enable neurons to compute linearly non-separable functions.
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Introduction

Seminal neuron models, like the McCulloch & Pitts unit [1] or

point neurons (see [2] for an overview), assume that synaptic

integration is linear. Despite being pervasive mental models of

single neuron computation, and frequently used in network

models, the linearity assumption has long been known to be false.

Measurements using evoked excitatory post-synaptic potentials

(EPSPs) have shown that the summation of excitatory inputs can

be supra-linear or sub-linear [3,4,5,6,7,8,9,10,11,12], and can

summate in quasi-independent regions of dendrite [13].

Supra-linear summation, the dendritic spikes, has been

described for a variety of active dendritic mechanisms. For this

type of local summation the measured EPSP peak is first above

then below the expected arithmetic sum of EPSPs as shown on

Figure 1A. Synapse-driven membrane potential depolarization

can open Naz [3,4], Ca2z [5,6], or NMDA receptor [6,7,8,9]

channels sufficiently to amplify the initial depolarization, and

evoke a dendritic spike.

Contrary to the supra-linear summation of dendritic spikes, a

saturating sub-linear summation can arise from passive properties

of the dendrite [10,11,12]. For this type of local summation the

measured EPSP peak is always below the expected arithmetic sum

of all EPSPs as shown on Figure 1B. Rall’s theoretical work

[14,15], subsequently confirmed experimentally [12], showed that

passive sub-linear summation of overlapping inputs is a straight-

forward consequence of the classic model I(t)~g(t)(V (t){Vr) for

conductance-driven current injection into the membrane (where

I(t), g(t), and V (t) are respectively the time varying current, the

synaptic conductance, and the membrane voltage, and where Vr is

the equilibrium voltage of the channel).

Dendritic spikes inevitably alter the potential range of single

neuron computation. Prior theoretical studies found that dendrites

could be divided up into multiple, independent sub-units of

integration [16,17,18,19,20] with sigmoidal or Heaviside activa-

tion functions (as shown on Figure 1C). They argued that these

dendritic spikes turn synaptic integration into a two stage process:

first, synaptic inputs are summed in independent sub-units;

second, the output of these sub-units is linearly summed at the

soma. Such a two-stage architecture makes the neuron computa-

tionally equivalent to a two-layer artificial neural network, greatly

expanding a neuron’s computational capacities. It has been shown
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that spiking dendritic sub-units can enhance the feature storage

capacity [18], the generalization capacity [17,21], the computa-

tion of binocular disparity [22], the direction selectivity [23,24],

the creation of multiple place fields [25] or the computation of

object-feature binding problems [26]. These enhancements may

be explained by the ability of a neuron with a sufficient number of

spiking dendritic sub-units to compute linearly non-separable

functions whereas seminal neuron models like McCulloch & Pitts

cannot [27].

These prior studies made two assumptions that may not

generalize to all neurons. Firstly, they supposed that the number of

independent dendritic sub-units is potentially large; however, for

different dendritic morphologies this number may be greatly

reduced due to electrotonic coupling or compactness [28,29,30].

Secondly, dendritic spikes may not be present in all neuron types,

because they lack the specific voltage-gated channels or because

the active channel types act to balance each other [10,11,31,32].

Consequently these neuron types could only support a saturating

form of non-linear integration. The cerebellar stellate cell is an

interesting example because it contradicts both assumptions: it is

electrically compact, resulting in a modest number of independent

dendritic non-linear sub-units, perhaps on the order of 10 sub-

units, as has also been estimated for retinal ganglion cells [33]; and

its dendrites are passive, with linear integration of inputs in the

peri-somatic region and strictly sub-linear integration in the distal

dendritic region [10].

If non-linear computation by dendrites were possible for small

numbers of sub-units and for passive dendrites, then this would

show that enabling linearly non-separable computation by single

neurons is, in principle, a general property of dendrites. We thus

set out to answer three key questions: (1) whether a single non-

linear dendritic sub-unit is sufficient to enable a neuron to

compute linearly non-separable functions, so that multiple sub-

units are not a necessary requirement; (2) whether saturating

dendritic sub-units, and not just a spiking dendritic sub-units,

are sufficient to enable a neuron to compute linearly

non-separable functions; and (3) if so, whether the saturating

and spiking non-linearities increase computational capacity in

the same way.

To answer these questions, we have used a binary neuron model

that accounts for non-linear dendritic integration, using either

spiking (Figure 1C) or saturating (Figure 1D) activation functions.

Using a binary model (Figure 1E) allowed us to study the

quantitative increase and qualitative changes in computational

capacity using Boolean algebra [34]. A Boolean function is defined

by a set of n input variables, each taking the value 0 or 1, and a

target output value of 0 or 1 for each n-dimensional vector that

can be made by all possible combinations of values of the input

variables (see Material and Methods Boolean Algebra for formal

definition). Figure 1F illustrates three well-known examples of

Boolean functions, each a function of n~2 input variables: AND,

NAND, and XOR. The set of Boolean functions computable by a

binary neuron model provides a lower bound on the realm of

potentially computable algebraic functions by a neuron. Thus,

specifying capacity in terms of Boolean functions lets us list the

boundaries on a neuron’s accessible set of all computable

functions.

Using this model, we proceeded on two fronts: first, we used

numerical analysis to test if and how much an additional non-

linear dendritic sub-unit enables a neuron to compute linearly

non-separable functions; second, we used formal analytical proofs

to show that the numerical results generalise to an arbitrary

number of non-linear sub-units. We found numerically that adding

a single non-linear dendritic sub-unit, either a spiking or a

saturating unit, allows the neuron to compute some positive

linearly non-separable Boolean functions. Analytically, we showed

that provided a sufficient number of either spiking or saturating

dendritic sub-units a neuron is capable of computing all positive

linearly non-separable Boolean function.

Second, our numerical analysis showed that a neuron could

compute a function using two distinct implementation strategies:

a local strategy where each dendritic sub-unit can trigger a

somatic spike, implying that the maximal responses of a

dendritic sub-unit always correspond to a somatic spike; and a

global strategy where a somatic spike requires the activation of

multiple dendritic sub-units, implying that the maximal

response of a dendritic sub-unit may not correspond to a

somatic spike. This last result may explain why neurons in layer

2/3 of the visual cortex can stay silent when a calcium response

from a dendritic sub-unit is maximal [35]. Analytically, we

prove that a neuron with spiking dendritic sub-units can use

both strategies to compute a function, whereas a neuron with

saturating dendritic sub-units can use only a global strategy to

compute a function.

Finally, we show how examples of linearly non-separable

functions can be implemented in a reduced, generic biophysical

model with either a saturating or a spiking dendrites. Moreover,

we show that with electrically compact and passive dendrites, a

realistic biophysical model of the cerebellar stellate cell can

compute a linearly non-separable function. In conclusion, our

study thus extends prior work [16,19,20] to show that even a

compact neuron with passive dendrites can compute linearly non-

separable functions.

Modelling two types of local and non-linear summation
We present in this section the binary neuron models we used to

address our questions with a numerical and a formal analysis. We

considered two types of dendritic non-linearities modeled by two

families of non-linear activation functions D, (Figure 1B–C and

definition in Materials and Methods spiking and saturating

Author Summary

Classical views on single neuron computation treat
dendrites as mere collectors of inputs, that is forwarded
to the soma for linear summation and causes a spike
output if it is sufficiently large. Such a single neuron model
can only compute linearly separable input-output func-
tions, representing a small fraction of all possible
functions. Recent experimental findings show that in
certain pyramidal cells excitatory inputs can be supra-
linearly integrated within a dendritic branch, turning this
branch into a spiking dendritic sub-unit. Neurons contain-
ing many of these dendritic sub-units can compute both
linearly separable and linearly non-separable functions.
Nevertheless, other neuron types have dendrites which do
not spike because the required voltage gated channels are
absent. However, these dendrites sub-linearly sum excit-
atory inputs turning branches into saturating sub-units.
We wanted to test if this last type of non-linear summation
is sufficient for a single neuron to compute linearly non-
separable functions. Using a combination of Boolean
algebra and biophysical modeling, we show that a neuron
with a single non-linear dendritic sub-unit whether spiking
or saturating is able to compute linearly non-separable
functions. Thus, in principle, any neuron with a dendritic
tree, even passive, can compute linearly non-separable
functions.

Non-linear Synaptic Integration in Dendrites
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dendritic activation functions). The first family, Dspk, modeled

dendritic spikes as observed in [6,13,4]. The second family, Dsat,

modeled dendritic saturation as observed in [12,10,11]. Both are

parameterized by two non-negative parameters for threshold h
and maximum output h.

For our numerical analysis, based on large parameter

searches, we added the output of either of these activation

functions D to a strictly linear sub-unit integrating the same

inputs:

y~H(W s:XzD(W d :X )), ð1Þ

where X~½x1,x2, . . . ,xn� is a binary input vector of length n,

W s and W d are non-negative integer-valued weight vectors,

Figure 1. Two types of local dendritic non-linearities. (A–B) The x-axis (Expected EPSP) is the arithmetic sum of two EPSPs induced by two
distinct stimulations and y-axis (Measured EPSP) is the measured EPSP when the stimulations are made simultaneously. (A) Observations made on
pyramidal neurons (redrawn from [13]). Summation is supra-linear and sub-linear due to the occurrence of a dendritic spike. (B) Â Observations
made on cerebellar interneurons (redrawn from [10]). In this case summation is purely sub-linear due to a saturation caused by a reduced driving
force. (C) Â The activation function modeling the dendritic spike type non-linear summation: both supra-linear and sub-linear on ½0,?�. (D) Â The
activation function modeling the saturation type non-linear summation: strictly sub-linear on ½0,?�. (E) Structure and parameters of the neuron
model: xi and y are binary variables describing pre and post-synaptic neuronal activity; in circles are two independent sets of non-negative integer-
valued synaptic weights respectively for the linear (black) and the non-linear integration (blue) sub-units; in the blue square, h and h are the non-
negative integer-valued threshold and height that parameterize the dendritic activation function D; in the black square H is a positive integer-
valued threshold determining post-synaptic firing. (F) Â Truth tables of three Boolean functions for n~2 inputs: AND, NAND, and XOR. The first
column gives the possible values of the input vector X ; the other three columns give the binary outputs Y in response to each X for the three
functions considered.
doi:10.1371/journal.pcbi.1002867.g001

Non-linear Synaptic Integration in Dendrites
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and the somatic activation function H gives y~1 if the result of

synaptic integration is above H and y~0 otherwise. (Note that if

D is a linear function (Dlin) then the previous equation can be

rewritten as a single linear weighted sum corresponding to the

seminal linear neuron model known as the McCulloch & Pitts

unit [1]). Poirazi et al [18] have already established that a single

non-linear dendritic sub-unit on its own is not sufficient to

increase a neuron model’s computation capacity. We thus added

a non-linear dendritic sub-unit to the somatic non-linearity

precisely to assess the impact of adding either a spiking dendritic

non-linearity (Dspk) or a saturating dendritic non-linearity (Dsat)

on single neuron computation. As a corollary, this model

includes neuron classes that have a peri-somatic and a distal

dendritic region of integration, like cerebellar stellate cell

interneurons [10] and layer 2/3 pyramidal neurons [36].

For our formal analysis, which are the three Propositions

presented in the Results, we used the generic two-stage neuron

model with m dendritic sub-units, analogous to [18]:

y~H(
Xm

j~1

Dj(Wj :X )): ð2Þ

For both our numerical and formal analysis, the neuron input-

output mapping is defined as a Boolean function, and each

parameter set produces a unique Boolean function Y . Here we

focused on the effect of non-linear EPSP summation, and thus

used only non-negative weight vectors. Consequently, an

increase in input X could only increase (or not change) the

output y, never decrease it; therefore we were studying the

neuron’s ability to compute positive Boolean functions (see

Material and Methods Boolean Algebra for formal definition

and Lemma 1 for proof).

In terms of neuron physiology, these binary models are quite

general. One can interpret the binary input vector across multiple

scales, from the pattern of active and inactive individual pre-

synaptic neurons up to the set of active and inactive pre-synaptic

cell assemblies afferent to the neuron. In this perspective, the

weight represents the peak EPSP magnitude produced when a pre-

synaptic neuron or a pre-synaptic cell assembly is active. Similarly

the Boolean output of 1 could represent a single spike, a burst of

spikes, or a change in rate – whatever it is that is read out by the

downstream neurons. For instance, in our biophysical model, a

single binary variable xi~1 corresponds to the synchronous

activity of a 100 pre-synaptic neurons, and will show that binary

models can lead to informative results in situations where the

actual number of pre-synaptic input neurons is in the range

consistent with existing data.

Results

The computation capacity enabled by spiking or
saturating dendrites

We first sought answers to two questions: (1) whether a single

non-linear dendritic sub-unit is sufficient to enable a neuron to

compute linearly non-separable functions, so that multiple sub-

units are not a necessary requirement; (2) whether saturating

dendritic sub-units, instead of spiking dendritic sub-units, are

sufficient to enable a neuron to compute linearly non-separable

functions. For a given size n of the input vector X , we numerically

enumerated the sets of positive Boolean functions computable by

the different models (Dlin, Dsat, or Dspk), by searching through

their free parameters: the dendritic sub-unit activation function

parameters (h,h), the weight vectors (W s,W d ), and the neuron

output threshold H. For each set of parameter values, we

computed the corresponding Boolean function for that neuron

model. This numerical analysis enabled us to determine the

computational capacity for each neuron model (Dlin, Dsat, and

Dspk) as the number of Boolean functions these models can

compute.

To determine the computational capacity, we counted only the

computable representative Boolean functions (see Materials and

Methods Boolean Algebra for formal definition). Moreover, we

controlled the parameter searches using two analytically known

sizes of Boolean function sets: first, the size of the set of all

representative positive Boolean functions [34,37], known for a

number of binary variables n up to 6; second, within this set of

functions, the number of linearly separable representative Boolean

functions [37]. This last number corresponded to the exact

computational capacity for the purely linear model (Dlin).

Therefore by comparing to these two known sizes we could see

if the model including a dendritic non-linearity (Dsat or Dspk)

enabled computation of linearly non-separable functions and, if so,

what proportion of those functions could be accessed. The

relationship between these sets of functions and the set that can

be accessed by a model including a non-linear dendritic sub-unit is

illustrated schematically in Figure 2B.

A spiking dendritic nonlinearity enables a neuron to

compute linearly non-separable functions. Figure 2A shows

that the addition of a single spiking sub-unit (Dspk) is sufficient to

increase the computational capacity of a neuron model, by

enabling the neuron to compute linearly non-separable functions.

For nƒ3 input variables, the computation capacity was the same

with or without a dendritic spiking sub-unit. For n~4, the

addition of the spiking sub-unit enabled the computation of 3 new

Boolean functions. For n~5, the advantage was 89 new Boolean

functions. Finally, for n~6, the spiking sub-unit enabled the

computation of over 9000 new Boolean functions. For all tested n,

a spiking dendritic sub-unit enabled a neuron to compute all

linearly separable Boolean functions computable by a neuron with

purely linear integration. These numerical results show that a

single spiking dendritic sub-unit is sufficient for a two-stage neuron

to compute a substantial fraction of linearly non-separable and

positive Boolean functions. Interestingly, these numerical results

also show that the addition of a single spiking dendritic sub-unit

does not allow a neuron to compute all positive functions, as it is

already happening for n~5.

Analytically, we can easily show that such a neuron, equipped

with a sufficient number of spiking sub-units, can compute every

linearly non-separable positive Boolean function. This result is

equivalent to the well-known proof that a two-layer neural

network with supra-linear activation functions can compute all

Boolean functions (see [38] Theorem 13.9). The following

proposition restricts this Theorem to positive Boolean functions

and it explicitly describes the method to implement a function. We

briefly state the proof here, which follows from the Lemmas and

definitions given in Materials and Methods.

Proposition 1. A two stage neuron (Eq. 2) with non-negative

synaptic weights and a sufficient number of dendritic units with

spiking activation functions can implement only and all positive

Boolean functions based on their positive complete disjunctive

normal form (DNF)

Proof. A two stage neuron can only compute positive Boolean

functions (Lemma 1). All positive Boolean functions can be

expressed as a positive complete DNF; because a spiking dendritic

unit has a supra-linear activation function it can implement any of

the possible terms in that DNF (Lemma 2). Therefore, a two stage

neuron model without inhibition can implement only and all

Non-linear Synaptic Integration in Dendrites
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positive Boolean functions with as many dendritic units as there

are terms in the functions’ positive complete DNF.

While this proof is general, it does not necessarily imply that a

real neuron can compute a linearly non-separable function with a

small finite number of spiking sub-units. However, our numerical

results show that even a single dendritic spiking sub-unit is

sufficient to access the space of linearly non-separable functions.

A saturating dendritic nonlinearity also enables a neuron

to compute linearly non-separable functions. Figure 2A

shows that the addition of a single saturating sub-unit (Dsat) is also

sufficient to increase computational capacity by enabling a neuron

to compute linearly non-separable functions. Similar to the spiking

sub-unit, a saturating sub-unit enables the computation of the 3

linearly non-separable functions for n~4. Moreover, our numer-

ical results showed that the addition of the single saturating sub-

unit (Dsat) allowed the neuron to compute up to 9000 more

functions than the purely linear neuron model (for n~6). The

numerical analysis also showed that, for an identical range of

searched parameters at n~6, a saturating sub-unit (Dsat) enabled a

neuron to compute fewer functions than a spiking sub-unit (Dspk),

(see Figure 2 and Table 1). We analytically address potential

reasons for this difference in the next section. Nonetheless, these

numerical results show that a single saturating sub-unit is also

sufficient for a two-stage neuron to compute a notable fraction of

positive linearly non-separable Boolean functions.

Analytically, we can also show that a neuron, equipped with a

sufficient number of saturating sub-units can compute every

linearly non-separable positive Boolean function. We briefly state

the proof here, Lemmas and definitions are given in Material and

Methods:

Proposition 2. A two stage neuron (Eq. 2) with non-negative

synaptic weights and a sufficient number of dendritic units with

spiking or saturating activation functions can implement only and

all positive Boolean functions based on their positive complete

conjunctive normal form (CNF)

Proof. A two stage neuron can only compute positive Boolean

functions (Lemma 1). All positive Boolean functions can be

expressed as a positive complete CNF; because a spiking or a

saturating dendritic unit has a sub-linear activation function it can

implement every possible clause (Lemma 2). Therefore a two stage

neuron model without inhibition can implement only and all

positive Boolean functions with as many saturating dendritic units

as there are clauses in the functions’ positive complete CNF.

Consequently, a neuron with sufficient multiple saturating sub-

units in its dendrites has, in principle, the same computational

Table 1. The integer-valued parameter range used in our
parameter searches depending on the neuron model [lin; sat;
spk], for at most n~6 input binary variables.

n wmax hmax hmax Hmax

6 [9;4;4] [-;8;8] [-;12;12] [18;20;20]

5 [5;3;3] [-;3;3] [-;4;7] [9;8;12]

4 [3;2;2] [-;2;2] [-;2;3] [5;4;6]

In the first line, numbers give the maximal parameters values used in our
searches up to n~6. In all lines, the other numbers are the sufficient parameter
values, meaning that if one was to launch a parameter search with a value
higher than the one given in this table, one would find the same computation
capacity as the one presented in Figure 2. For instance for n~6, if one wants to
implement all positive linearly separable Boolean function with a purely linear
neuron, the first line of this table (first element between square brackets) shows
that it is sufficient to have integer-valued synaptic weights between 0 and 9,
and an integer-valued threshold between 0 and 18; this range is also given in
[37]. We built this table using a large parameter search (see Materials and
Methods), using this method we computed the Boolean function for more than

1010 parameter sets.
doi:10.1371/journal.pcbi.1002867.t001

Figure 2. A dendritic non-linearity enables the computation of linearly non-separable Boolean functions. (A) Number of computable
representative positive Boolean functions depending on the number of input variables n and on the type of synaptic integration: purely linear
(lin:black), linear with a spiking dendritic sub-unit (spk:green), linear with saturating dendritic sub-unit (sat:blue). In red is the maximal number of
positive representative functions computable for a given n, this number is taken from [37] as the number of functions in condition lin (black). Upper
panel: number of computable functions (in bold are lower bounds); lower panel: summary bar charts on logarithmic scale. (B) Venn diagram for the
sets of Boolean functions for n§6. The set border color depends on the type of integration, as per panel A (relative size of sets not to scale). Stars are
examples of Boolean functions within each set.
doi:10.1371/journal.pcbi.1002867.g002

Non-linear Synaptic Integration in Dendrites
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capacity as a neuron with spiking sub-units. Moreover, our

numerical results extend this to show that, even if a real neuron

can only sustain one independent saturating sub-unit, this is

sufficient to enhance computation.

Linearly non-separable functions can be implemented
using at least two distinct methods

Having established that saturating dendritic sub-units also

enhance the computational capacity of a neuron, we then sought

to answer the third question: do the saturating and spiking non-

linearities increase computational capacity in the same way? Our

aim was to understand how the implementation of linearly non-

separable Boolean functions depends on the type of dendritic non-

linearity. For concreteness, we numerically assessed the imple-

mentation of all three linearly non-separable Boolean functions

defined for n~4 inputs; the functions are presented in Table 2.

Interestingly, these three functions map onto known computa-

tional problems in neuroscience.

To help identify these functions we named them in reference to

[26]: the Feature Binding Problem (FBP), the dual Feature

Binding Problem (dFBP), and the partial Feature Binding Problem

(pFBP). In the FBP, the function gives an output only when

disjoint sets of inputs are active (½x1,x2�~½1,1� or ½x3,x4�~½1,1�)
and not when any other mixture is active, and is hence analogous

to the problem of responding only to combinations of sensory

features that uniquely identify objects [26]; conversely, the dFBP is

the dual of the FBP (for a definition of duality see [34]); finally the

pFBP is another form of the feature binding problem where the

neuron fires for objects with overlapping features. We return to the

general implications of identifying these binding problem functions

in the Discussion.

Propositions 1 and 2 demonstrate that a Boolean function can

be implemented using at least two different methods. These

methods are either based on the disjunctive (DNF) or the

conjunctive (CNF) normal form expressions. The DNF expression

decomposes a Boolean function into a disjunction of terms: using

this method each dendritic sub-unit computes a term, and an input

vector elicits a somatic spike when this input vector activates at

least one dendritic sub-unit. The CNF expression decomposes the

Boolean function into a conjunction of clauses: using this method

each dendritic sub-unit computes a clause, and an input vector

elicits a somatic spike when this input vector activates all dendritic

sub-units at the same time.

The DNF and CNF expressions provide rigorous methods for

implementing Boolean functions where dendritic sub-units respec-

tively correspond to terms or clauses. They are also respective

examples of two distinct classes of implementation strategies: local

strategies in which the activation of a single dendritic sub-unit can

make the neuron spike for at least one input vector (e.g. the DNF-

based method); and global strategies in the which a single dendritic

sub-unit is insufficient to make the neuron spike for any input

vector (e.g. the CNF-based method). Local and global correspond

to two distinct categories of implementation method, the DNF-

based or CNF-based methods are two extreme examples of these

categories. Notably, when there is more than one dendritic sub-

unit, we can distinguish multiple forms of local strategy according

to how many of the N sub-units are able individually to make the

neuron spike at least once (see Figure S4 in Text S1).

Our numerical analyses provide further examples of how this

local vs global distinction can be observed even with only one non-

linear dendritic sub-unit.

Both local and global strategies are possible with spiking

dendrites. Proposition 1 shows that a sufficient number of

spiking dendritic sub-units allows any Boolean function to be

implemented using the DNF expression (e.g. a local implemen-

tation strategy). Moreover, it follows from the proposition 2 that a

two-stage neuron with a sufficient number of spiking sub-units

can also implement any Boolean function using the CNF

expression (e.g. a global implementation strategy). Such dual

construction is possible because a spiking dendritic sub-unit has

both sub-linear and supra-linear components in its activation

function (see Materials and Methods spiking and saturating

dendritic activation functions). On the one hand, the supra-

linearity ensures the possibity of a DNF implementation. On the

other hand, the sub-linear part of the dendritic non-linearity

ensures the possibility of a CNF implementation (as already

pointed out in the proof of proposition 2). Thus, spiking sub-units

allow, in principle, the implementation of any positive Boolean

function using either a DNF or CNF based method. In other

words, both local and global strategies are possible with spiking

dendritic sub-units.

Our numerical analysis found multiple parameter sets that

could implement the three functions using either a local or a global

strategy. Figure 3 (left) shows an example of how a neuron with a

spiking dendritic sub-unit can compute the FBP function using a

local strategy. In this strategy the neuron’s output is triggered

either because of the direct stimulation of the somatic sub-unit (to

input vector X~½1,1,0,0�), or because of a dendritic spike

produced by the dendritic sub-unit (to input vector

X~½0,0,1,1�); in both cases the other sub-unit contributed nothing

to the whole neuron’s output. Figure 3 (right) shows an example of

how a neuron with a spiking sub-unit can compute the FBP

function using a global strategy. In this case an input vector

triggers an output spike when both the somatic and dendritic sub-

units are stimulated simultaneously. Examples of a neuron with a

single spiking dendritic sub-unit implementing the dFBP and pFBP

using either a local or a global strategy are shown respectively in

Figure S1 and Figure S2 in Text S1. Thus a neuron with a single

additional spiking dendritic sub-unit can solve binding problems

using either a local or a global implementation strategy.

A local strategy is impossible with saturating

dendrites. We did not find parameter sets with a saturating

dendritic non-linearity implementing a binding problem using a

local strategy. The lack of parameter sets using this strategy was

not a product of the parameter search, but rather a strict limitation

of Dsat. The informal proof by contradiction for the FBP is

presented in Material and Methods.

We confirmed the generality of this result using the generic two-

stage neuron model (Eq 2):

Proposition 3. A two stage neuron with non-negative synaptic

weights and only dendritic units with saturating activation

Table 2. The partial truth tables for the three linearly non-
separable Boolean functions of n~4 variables.

x1 1 1 1 0 0 0

x2 1 0 0 1 1 0

x3 0 1 0 1 0 1

x4 0 0 1 0 1 1

FBP 1 0 0 0 0 1

dFBP 0 1 1 1 1 0

pFBP 1 1 0 0 0 1

All input vectors inferior (as defined in our definition of positive functions) to
the one below give y~0; all input vectors superior to the one below give y~1.
doi:10.1371/journal.pcbi.1002867.t002
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functions cannot implement a positive Boolean function based on

its complete DNF

Proof. The activation function of a saturating dendritic unit is

strictly sub-linear, therefore this unit cannot implement a term

(Lemma 3).

This shows that irrespective of the number of saturating sub-

units, the two-stage neuron model cannot compute Boolean

functions using a local implementation strategy.

Nevertheless, a neuron with a saturating dendritic non-linearity

(Dsat) can compute the FBPs using a global strategy (Figure 3 and

Figure S1, S2 in Text S1). Similar to a neuron with a spiking

dendritic sub-unit, for this implementation strategy an input vector

triggered the neuron output only if both the somatic and dendritic

sub-unit are activated simultaneously.

These results suggest that spiking dendritic sub-units are more

flexible than saturating dendritic sub-units. In principle, dendritic

spikes allow the computation of Boolean functions through either a

DNF (local) or CNF-based (global) method, whereas dendritic

saturation cannot implement Boolean functions using a DNF-

based (local) method. For certain Boolean functions, the length of

the DNF and CNF differ significantly [39], implying a significant

difference in the necessary range of synaptic weights to implement

those functions [40]. A neuron with spiking sub-units can

implement either the CNF or DNF decomposition, so it can be

configured to use the smallest range of synaptic weights, whereas a

neuron with saturating sub-units is restricted to the CNF

decomposition. Consequently, for a neuron with a fixed, finite

range of synaptic weights, it is probable that there exists a sub-set

of Boolean functions inaccessible to neuron with only saturating

dendrites and yet accessible with spiking dendrites. We showed

previously [41] that the same limitation applies when the number

of nonlinear dendritic sub-units is finite: in that study we provided

an example of computation that might require an exponential

number of saturating sub-units but requires a linear number of

spiking sub-units.

Linearly non-separable functions can be implemented in
reduced and in realistic biophysical models

The preceding work used the framework of binary neuron

models to establish the qualitative and quantitative gain in

computational capacity obtained through the addition of a single

dendritic non-linearity. This framework enabled us to study in

detail how a linearly non-separable function can be implemented.

Furthermore, this Boolean framework also enabled us to formally

prove the results (Proposition 1,2,3) extracted from our large

parameter searches (Figure 2). To demonstrate that this approach

also gave us meaningful insights into biological single neuron

computations, we implemented linearly non-separable Boolean

Figure 3. Two strategies to implement a linearly non-separable function. On top, the name of two possible strategies to implement the
feature binding problem (FBP) based either on its DNF or CNF expression: the colored part of these expressions is the term or the clauses
implemented by the dendritic sub-unit. Below, three schematics which represent parameter sets implementing FBP using either a spiking (green) or a
saturating (blue) dendritic sub-unit. In circles are the value of synaptic weights (Black:linear, green:spiking, blue:saturating); in colored squares
(green:spiking; blue:saturating) are the parameters of the dendritic activation function [threshold;height], in black squares is the threshold H of the
somatic sub-unit. Left, the local implementation strategy; Right, the global implementation strategy; note that a neuron cannot implement the FBP
using the local strategy with a saturating dendritic sub-unit. Bottom, truth tables where the X column is the input vectors, Y columns describe the
neuron’s input-output function, here the FBP. The int. column is the result of synaptic integration of each dendritic sub-unit (black:linear,
green:spiking, blue:saturating). In bold and italic are the maximum possible outputs for each sub-unit, note that for the global strategy a maximal
output from a dendritic sub-unit may not trigger a somatic spike.
doi:10.1371/journal.pcbi.1002867.g003
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functions in reduced and in realistic biophysical models; specifi-

cally, we showed that both the saturating and spiking forms of

nonlinear dendritic summation enabled a neuron to implement

linearly non-separable function in a more realistic framework.

Implementation of the FBP in reduced biophysical

models. We implemented the FBP function in two-compart-

ment Hodgkin-Huxley biophysical models containing a somatic

and a dendritic compartment, as shown in Figure 4. The

biophysical models provided a test of two assumptions made in

our binary neuron model. First, we assumed that the sub-units

summed their inputs independently, but in a real neuron the

different sections of the neuron are electrically coupled. Here, a

high intracellular resistance, Ri~175V=m and a small dendritic

diameter, d~0:5mm guaranteed a sufficient independence of the

integration sites as discussed in [10]. Second, in the binary model

we used discontinuous or peaked activation functions to model

non-linear summation, but in neurons non-linear summation is a

smooth function of the inputs. Consequently, in the biophysical

model we used time-dependent AMPA conductances to generate

saturations as shown on Figure 4A similar to the experimental

result presented in Figure 1B. We also used NMDA time-

dependent and voltage-gated conductances to generate dendritic

spikes as shown on Figure 4A similar to the experimental result

presented in Figure 1A. Consequently, our proof of principle

model demonstrated not only how a neuron might implement

linearly non-separable Boolean functions, but also how it can do so

when moderately relaxing two assumptions: complete indepen-

dence of sub-units and sharp activation functions.

Whereas EPSP summation in the peri-somatic region was

linear, EPSP summation in the distal dendritic region was of either

type of non-linearity, as shown on Figure 4A. The dendritic-spike

nonlinearity was created by including only NMDA receptors in the

dendritic distal dendritic region: their voltage-dependent depolar-

ization of the membrane led to a step-like total EPSP response to

multiple synaptic inputs, consistent with the measurements of

Polsky et al [13]. The dendritic saturating non-linearity was a

straightforward consequence of using conductance-based synaptic

inputs: because the diameter of the distal dendrites was small, local

depolarization due to a synaptic input was high, markedly

reducing the local driving force (V{Vr); consequently, summa-

tion of multiple EPSPs was strongly sub-linear, consistent with the

measurements of Abrahamsson et al [10].

To show that the biophysical model could compute the FBP

function, we needed to define the mapping between the binary

model and the biophysical model and what we meant by input and

output. For the input, we considered here that the four input

variables xi corresponded to four afferent neural ensembles of 100

neurons each, and that an ensemble was active, signaling xi~1,

when all neurons in the ensemble fired a spike almost synchro-

nously. For example, the input vector X~½1,1,0,0� corresponded

to two simultaneously active neural ensembles (x1 and x2) and the

arrival of 200 pre-synaptic spikes in a 10 ms time window. For the

output, we considered a single post-synaptic spike as the response

to an input vector, such that if the neuron fired a somatic spike

then this was equivalent to y~1, and no somatic spike was

equivalent to y~0. Thus, to implement the FBP function

successfully, the biophysical model should only spike in response

to the input vectors X~½1,1,0,0� and X~½0,0,1,1�, and not to any

other of the six tested input vectors (corresponding to the truth

table displayed in Table 2).

We used the results obtained previously with the binary model

to set the weight and placement of the different synapses from each

neural ensemble. Maximal conductances for each synapses

ensemble were constrained to remain in the ratios of the weights

found in binary neuron implementations in Figure 3. Similarly,

placement of input ensemble synapses followed those example

implementations, and thus inputs to a sub-unit were omitted if the

weight was zero. With the conductances constrained to those ratios

and placements, we easily found by hand values for which the

biophysical neuron model implements the FBP function.

Figure 4B shows the successful implementation of the FBP

function for the biophysical dendritic-spike non-linearity. For this

model, we placed the inputs on the peri-somatic region and the

distal dendrite following a local implementation strategy, meaning

that each input stream targeted a single region, as shown in

Figure 3 and Figure 4B. Thus, either a somatic spike was triggered

directly, or the dendritic spike could in turn trigger a somatic spike,

but any other combination of inputs correctly resulted in the

absence of a somatic spike. Figure 4C shows the successful

implementation of the FBP function by the biophysical model with

a saturation type non-linearity. For this model, we placed the

inputs on the peri-somatic and the distal dendrite following a

global implementation strategy, meaning that each input stream

targeted both regions, as shown in Figure 3 and Figure 4C. Thus,

for this biophysical model, correctly triggering a somatic spike

required sufficient stimulation of both the peri-somatic and the

distal dendritic region. If only the peri-somatic or the distal

dendritic region receives a strong stimulation, then the dendritic

saturation correctly prevented a somatic spike.

Implementation of the dFBP in a cerebellar stellate

cell. Next, we looked at how a realistic biophysical model can

implement a linearly non-separable positive Boolean function.

Figure 5 shows how the dFBP can be implemented in a realistic

model of cerebellar stellate cell. This cell type is interesting because

it is an experimentally-studied example of an electrotonically

compact neuron with ‘passive’ dendrites [10]. Moreover, the same

study demonstrated using patch-clamp and simultaneous gluta-

mate uncaging that integration is strictly sub-linear in the distal

dendritic region (w30 mm away from the soma). These features

make the cerebellar stellate cell an ideal candidate to see if our

binary model leads to testable experimental predictions.

We used a global strategy with three non-linear passive

dendrites to implement a linearly non-separable function. The

four input streams xi, each made of 100 neurons, make synaptic

contacts on the distal dendrites between 30 and 100 mm from the

soma every 0.35 mm. We split the input streams into two sets:

(x1,x2) made synaptic contacts on one dendrite, (x3,x4) targeted

another dendrite, and the third dendrite was not targeted. This

synaptic placement corresponded to the implementation of the

dFBP using a global strategy, as shown on Figure S1 in Text S1

and Figure 5A.

To test if a cerebellar stellate cell can actually implement the

dFBP, we measured its membrane voltage trace in response to two

different conditions. The scattered condition corresponded to the

following input vectors, where inputs arrive at both targeted

dendrites: f½1,0,1,0�,½1,0,0,1�,½0,1,1,0�,½0,1,0,1�g (which are equiv-

alent due to symmetry). The clustered condition corresponded to

the following input vectors, where inputs arrive at just one dendrite:

f½1,1,0,0�,½0,0,1,1�g (which are again equivalent due to symmetry).

In both conditions, the neuron received exactly the same number of

spikes, so that the only difference was the spatial repartition of

synaptic activation and not its magnitude. However, the probability

of spiking for the cerebellar stellate cell model was significantly

higher in the scattered condition than in the clustered condition

(Binomial test with n~10 trials and pv0:05), as illustrated on

Figure 5C. This differential response to the scattered and clustered

conditions revealed that our model of cerebellar stellate cell was

successfully implementing an approximation to the dFBP.

Non-linear Synaptic Integration in Dendrites
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Together, these biophysical models showed a proof-of-principle

that a neuron with passive and compact dendrites can compute

linearly non-separable Boolean functions.

Discussion

Our study addressed the implication of non-linear dendritic

summation of inputs for single neuron computation (for reviews

see [42,43,44]). Previous theoretical studies which addressed this

question assumed that two conditions may be necessary: (1)

dendritic spikes [16] and (2) the existence of multiple non-linear

sub-units [18]. These two conditions are true only for neurons that

possess the right balance of voltage-gated channels in their

dendrites to produce dendritic spikes (e.g. see [8]), and spatially

extended dendritic trees to ensure sufficient electrotonic distance

between dendritic sections (e.g. see [13]). In this paper we

investigated whether these two conditions, dendritic spikes and a

large number of independent sub-units, were necessary for

neurons to compute linearly non-separable Boolean functions.

We have shown that a single non-linear dendritic sub-unit,

spiking or not, is sufficient to increase a neuron’s computational

capacity. Using large parameter searches, we showed that a

spiking or a saturating dendritic sub-unit enables a neuron to

compute linearly non-separable functions. Moreover, we analyt-

ically proved that with a sufficient number of saturating dendritic

sub-units a neuron could compute all positive Boolean functions

(Proposition 2). To our knowledge, this is the first demonstration

that passive dendrites can expand the number of Boolean function

computable by a single neuron.

We have shown that a neuron with multiple dendritic sub-units

can implement a Boolean function using either a DNF/local

strategy, where each dendritic sub-unit can independently trigger

the post-synaptic spike response, or a CNF/global strategy, where

dendritic sub-units must cooperate to trigger a post-synaptic spike

response. In the latter implementation strategy dendritic tuning

does not imply the neuron tuning: a given stimulus can elicit the

maximal response for a dendritic branch and yet elicit no response

for the neuron, as observed in [35]. Moreover, we showed that a

Figure 4. Reduced biophysical models can implement linearly non-separable functions using dendritic saturations or dendritic
spikes. (A) The biophysical model. Upper panel: schematic representation of the biophysical model, where synaptic inputs are clustered (Prox and
Dist), and its morphological parameters (input locations, diameters, and dendritic length are in mm). Below, expected arithmetic sum versus measured
somatic EPSPs: for peri-somatic AMPA stimulation (black dots) producing a linear EPSP integration; for distal NMDA stimulation (green dots)
producing a spiking type non-linear summation; for distal AMPA stimulation (in blue) producing a saturation type non-linear summation. (B)
Implementation of the feature binding problem using NMDA receptor synapses for the distal dendritic region, illustrating the DNF/local strategy of
synaptic placement. Top panel shows how each input makes synaptic contacts in a 10 mm zone either on the peri-somatic or on the distal dendritic
region. Below, voltage traces (black:soma; green:distal dendrites) in response to the various input patterns. Each voltage trace corresponds to
stimulation by a different input vector where an active input variable is a neural ensemble of 100 neurons firing nearly synchronously in a 10 ms
window. (C) Implementation of the feature binding problem using only AMPA synapses corresponding to a saturation type non-linear sub-unit and a
CNF/global strategy. Top panel shows how each input makes synaptic contacts in a 10 mm zone either on the peri-somatic or on the distal dendritic
region. Below: voltage traces in response to the various input vectors (black:soma; blue:distal dendrites).
doi:10.1371/journal.pcbi.1002867.g004
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neuron with saturating dendritic sub-units cannot implement

Boolean functions using a DNF/local strategy.

Finally, we used reduced and realistic biophysical neuron

models to provide a proof-of-concept. We showed that a realistic

model of cerebellar stellate cell interneuron can implement a

linearly non-separable Boolean function.

Sufficient conditions for changing the computational
capacity of the single neuron

Our study has established three sufficient conditions for how

nonlinear summation in dendrites increases the computational

capacity of a single neuron. First, we showed that a single non-

linear dendritic sub-unit is sufficient for a neuron to compute a

significant amount of linearly non-separable functions. This result

apparently differs from previous studies which found that a single

non-linear sub-unit was insufficient to increase the capacity of

neurons to compute arithmetic functions [18]. This previous study

considered only dendritic non-linearities, but we have shown here

that a dendritic non-linearity associated with the somatic non-

linearity enables the computation of linearly non-separable

functions. We have presented in the present study a situation

where a spiking dendritic sub-unit did not trigger a somatic spike,

as observed in [45,46,3], and still this sub-unit enabled the

computation of a linearly non-separable function. Therefore a

single dendritic branch is sufficient to boost the computational

capacity of a neuron even if its non-linear region cannot trigger on

its own a somatic spike. The existence of linear and non-linear

integrating regions in our reduced models is supported by the

recent demonstration that cerebellar stellate cells or layer 2/3

cortical pyramidal neurons can display both types of integration,

even on single dendritic branches: linear EPSP summation in

proximal/peri-somatic regions and nonlinear summation in distal

regions [10,36]. While this proximal-distal arrangement could

amplify the distal EPSPs and compensate for the electrotonic

Figure 5. Cerebellar stellate cell interneurons can implement the dual feature binding problem. (A) A schematic representation of the
biophysical model, the circle represents the soma and the 3 cylinders correspond to dendrites, their size is expressed in mm, the blue bars represent
the region where the four cell assemblies xi , each made of 100 pre-synaptic neurons, makes contacts every 0:35mm, between 30 and 100 mm away
from the soma. x1 and x2 make contact on the the left dendrite, whereas x3 and x4 make contact on the right dendrite. (B) Above, a spike density
plot of the cell assembly i, each made of 100 pre-synaptic neurons, when xi~1 (blue) or xi~0 (black). Below, the corresponding raster plot. (C)
Above, the probability of a post-synaptic spike averaged over 10 trials, when two scattered inputs are active (Scat: X~½1,0,1,0�, X~½1,0,0,1�,
X~½0,1,1,0�, or X~½0,1,0,1�) or when two clustered inputs are active (Clust: X~½1,1,0,0� or X~½0,0,1,1�). The bars correspond to the variance of the
binomial distribution for p(post spike). Below, somatic voltage traces in clustered (black) or in scattered (blue) condition. Note that our model of
cerebellar stellate cells fires significantly more often (Binomial test, n~10 pv0:05) when inputs are scattered over the dendritic tree.
doi:10.1371/journal.pcbi.1002867.g005
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distance between the inputs and the soma, as the authors argued in

[47,48], we showed how this arrangement can allow neurons to

compute linearly non-separable functions.

Second, we showed that a saturating non-linear sub-unit is

sufficient for a neuron to compute linearly non-separable

functions. To the best of our knowledge, only a single prior study

proposed that saturation can enhance single neuron computation,

within the context of the coincidence detection in the auditory

system [49]. Our study extends this result and show that a neuron

with passive dendrites can compute linearly non-separable

functions.

Third, we found that scattered synaptic contact is sufficient to

implement linearly non-separable functions. This is in contrast to a

prior study [26] which suggested that, to implement feature object

binding problems, synaptic inputs carrying information about an

object should cluster on a single dendritic sub-unit. We have

shown here implementation strategies solving FBPs where inputs

coding for separate features of the same object are distributed over

the whole dendritic tree (see Figure 3 and Supplementary Figures

S1 and S2 in Text S1).

Linearly non-separable functions and Object-Feature
binding problems

The positive linearly non-separable functions that a neuron can

compute using a nonlinear dendritic integration can be described

as feature binding problems (see Table 2) as defined in [26]: the

task of signaling that separate elementary features belong to the

same object, and are separate from features defining other objects.

For example, a feature can be a sensory input corresponding to a

position or an orientation of a bar and an object can be any

conjunction of these two features, such as an oriented bar at a

given location. The binding problem to be solved by the neuron is

then to fire for a bar with a specific orientation present at a specific

location, indicating its preferred object, and not to fire for any

other combination of such features.

Binocular disparity [22] is a type of FBP problem: in this case

input variables ½x1,x2� code for features coming from the left eye,

and ½x3,x4� code for features coming from the right eye; the

neuron then maximally responds if inputs only come from a single

eye. Second, the generation of multiple place fields in single

dentate gyrus cells [25] is a FBP problem; in this case ½x1,x2� and

½x3,x4� are independent sets of input features defining separate

spatial locations, and the neuron maximally responds for either of

these sets. Finally, binaural coincidence detection [49] is a dFBP

problem; in this case ½x1,x2� code for inputs coming from the left

ear and ½x3,x4� codes for inputs from the right ear; the neuron

maximally responds if inputs come from both ears simultaneously.

These example applications illustrate the ubiquity of FBP and

dFBP-like problems solved by the brain, and consequently why

implementations of these Boolean functions by single neurons may

be important for understanding neural computation.

Neuron vs dendrite as fundamental units of computation
The existence of non-linear summation in separate regions of

the same neuron’s dendrite suggests that a dendritic branch is a

finer-grained computational unit than the whole neuron [50]. Our

results show that, even when single neuron computation is

enhanced by dendritic nonlinearities, it does not necessarily follow

that there is a unit of computation smaller than the neuron. We

found that a DNF/local strategy implementing such strict

independence of dendritic sub-unit computation was possible,

but only for the dendritic-spike nonlinearity. We found that an

increase in computational capacity could be equally achieved by a

global coordination of dendritic sub-units whether the dendritic

nonlinearity was of saturating or spiking form. For such a global

strategy, there is no sense in which each dendritic sub-unit

separately computes a response to its inputs, and thus do not form

an independent computational part of the whole function. A

specific consequence of the CNF/global strategy is that separate

dendritic regions have a different tuning from the whole neuron.

This is consistent with Jia et al’s [35] observation that a cortical

layer 2/3 neuron can maximally respond to a given direction of

moving gratings, even though individual dendritic branches are

tuned to different orientations or to no orientation. Our results

thus show how such a lack of evidence for independent dendritic

integration does not imply a lack of dendritic computation.

Therefore, the CNF/global implementation strategy suggests that

non-linear dendrites may not replace neurons as a basic

computational unit but rather expand neurons’ computational

capacities.

Materials and Methods

Spiking and saturating dendritic activation functions
A activation function D takes as input a local weighted linear

sum x and output D(x), this output depends on the type of

activation function: spiking or saturating, and on two parameters

h, the threshold of the activation function, and h, the height. The

two type of activation functions are defined as follows:

Spiking activation function.

Dspk(x)~
h if x§h

0 otherwise

�

Saturating activation function.

Dsat(x)~
h if x§h

x(h=h) otherwise

�

The difference between a spiking and a saturating activation

functions is that Dspk(x)~0 whereas Dsat(x)~x=h if x below h.

To formally characterize this difference we define here sub-

linearity and supra-linearity of an activation function D on a given

interval I . These definitions are analogous to the one given in [20]:

Supra-linearity and sub-linearity.

N D is supra-linear on I if and only if D(x1zx2)w

D(x1)zD(x2) for at least one (x1,x2)[I2

N D is sub-linear on I if and only if D(x1zx2)vD(x1)zD(x2)

for at least one (x1,x2)[I2

N D is strictly sub-linear (resp. supra-linear) on I if it is sub-linear

(resp. supra-linear) but not supra-linear (resp. sub-linear) on I .

Note that these definitions also work when using n-tuples

instead of couples on the interval (useful in Lemma 3). Note that

whatever hw0, Dspk is both supra and sub-linear on I~½0,z?½
whereas Dsat is strictly sub-linear on the same interval.

Dsat is not supra-linear on I because Dsat(x1zx2)ƒ

Dsat(x1)zDsat(x2) for all (x1,x2)[I2, by definition of Dsat.

Moreover, Dsat is sub-linear on I because Dsat(azb)~h and

Dsat(a)zDsat(b)~2h for at least one (a,b)[I2 such that a§h and

b§h. All in all, Dsat is strictly sub-linear on I .

Similarly to Dsat, Dspk is sub-linear on I because Dspk(azb)~h

and Dspk(a)zDspk(b)~2h for at least one (a,b)[I2 such that a§h

and b§h. Moreover, Dspk is supra-linear because Dspk(czd)~1

Non-linear Synaptic Integration in Dendrites
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and Dspk(c)zDspk(d)~0 for at least one (c,d) such that cvh and

dvh but czd§h. All in all, Dspk is both sub-linear and supra-linear.

Note that Maass [51] determined the upper limit on the

computational capacity of networks made of piece-wise linear

threshold functions. However, these activation functions are defined

on ½{?,z?� whereas a saturating activation function is defined

on ½0,z?�, moreover, the ‘simplest’ studied examples of these type

of activation functions are both sub-linear and supra-linear whereas

a saturating activation function is strictly sub-linear.

Boolean algebra
The input output mapping of a binary neuron model is a

Boolean function. Let us recall some definitions of this extensively

studied mathematical object [34,52]:

Boolean function. A Boolean function f of n variables is a

function on f0,1gn
into f0,1g, where n is a positive integer.

We first introduce a definition what will be useful for our

numerical analysis:

Representative Boolean function. f is representative of a

set of functions F if f can generate all functions g[F by permuting

the labels of the input variables.

For example, for n~2, input vectors can be ordered as follows:

f½00�,½0,1�,½1,0�,½1,1�g; given these input vectors, the output

vectors Y1~½0,1,0,0� and Y2~½0,0,1,0� are two instances of a

function set, as swapping the input labels such that x2~x1 and

x1~x2 turns one into the other. This set can be represented by

either Y1 or Y2. We define the computational capacity of a neuron

as the number of representative functions it can compute for a

given n.

Because of their importance here we recall the definition of

positive Boolean functions and linearly separable Boolean functions:

Positive functions. Let f be a Boolean function on f0,1gn
. f

is positive Z[ f (X )§f (Z) V(X ,Z)[f0,1gn
such that X§Z

(meaning that Vi : xi§zi)

Linearly separable functions. Let f be a Boolean function

on f0,1gn
. f is linearly separable if and only if there exist a W in

Rn and a H in R such that for all X

f (X )~1 if and only if
Xn

i~1

wixiwH

If there exist no such W and H, we said that f is linearly non-

separable

In order to describe Boolean functions, it is useful to decompose

them into positive terms and positive clauses:

Terms and Clauses.

N Let X (j) be a tuple of kvn positive integers referencing the

different variables present in a term or a clause.

N A positive term j is a conjunction of variables written as

Tj(X )~^i[X (j) xi.

N A positive clause j is a disjunction of variables written as

Cj(X )~_i[X (j) xi.

N A term or (resp. clause) is prime if it is not implied by (resp.

does not imply) any other term (resp. clause) in a disjunction

(resp. conjunction) of multiple terms (resp. clauses).

These terms and clauses can then define the Disjunctive or

Conjunctive Normal Form (DNF or CNF) expression of a Boolean

function f , particularly:

Disjunctive Normal Form (DNF). A complete positive

DNF is a disjunction of prime positive terms T :

DNF(f ) : ~ _
Tj[T

^
i[X (j)

xi

 !

Conjunctive Normal Form (CNF). A complete positive

CNF is a conjunction of prime positive clauses C:

CNF(f ) : ~ ^
Cj[C

_
i[X (j)

xi

 !

It has been shown that all positive Boolean functions can be

expressed as a positive complete DNF ([34] Theorem 1.24);

similarly all positive Boolean functions can be expressed as a

positive complete CNF. These complete positive DNF or CNF are

the shortest possible DNF or CNF descriptions of positive Boolean

functions.

Generation of representative positive Boolean functions
First, we generated the list of positive Boolean functions of n

variables from the list of positive Boolean functions of n{1
variables based on [53]. This method generates multiple times the

same function, so we removed identical functions from the total list

of positive functions.

Second, we extracted from this list of functions the set of

representative Boolean functions. We sequentially enumerated

the list of monotone Boolean functions; for each monotone

function we permuted the input variables label to generate all its

children. If none of these children were present in the list of

representative functions - initially empty - we recorded the

current monotone function in this list. Finally we checked

whether the size of this list corresponded to the number of

representative positive Boolean functions, which is equal to the

number of NP-equivalence classes of unate functions of n or fewer

variables [37]. With our procedure we also found this number for

n~7, which is 490,013,148.

Systematic search for a given parameter range
In the three different conditions (Dlin, Dsat, and Dspk), we

systematically enumerated all the integer-valued sets of param-

eters for different parameter ranges up to the limits given in

Table 1 for n~6. This Table displays the parameter values for

which the number of computable Boolean functions stops

growing. For instance for n~5 all positive linearly separable

functions can be implemented in a linear model (Dlin) with

integer-valued weights between 0 and 5, and a threshold

between 0 and 9. For each parameter set we computed the

associated Boolean functions; if this function was in the

previously generated list of positive representative function we

removed it from the list and recorded the set of parameters in a

hdf5 data file. We then went to the next set of parameters and

repeated the operation.

All these operations were programmed using python 2.7.1. We

used numpy version 1.5 (www.numpy.org) for matrix operation,

and h5py 1.3.1 (A. Collette, HDF5 for Python, 2008; http://h5py.

alfven.org) to record the parameter sets in an hdf5 file.

This method provides lower bounds on the computational

capacity of a neuron with a non-linear dendritic sub-unit.

Therefore in Dsat and Dspk condition the actual computational

capacity is superior to the one presented in Figure 2, because we

may have missed parameter values for n~6.
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A neuron with saturating dendrites cannot implements
the FBP using a local strategy

For the neuron to correctly produce output of y~1 to both

input vectors ½1,1,0,0� and ½0,0,1,1� and for the strategy to be local

means that:

Dsat(w
d
1zwd

2 )§H

for response to ½1,1,0,0�, because the dendritic sub-unit triggers a

somatic spike and

ws
3zws

4§H

for response to ½0,0,1,1�, because in this case the dendritic sub-unit

also triggers a somatic spike. In each case, one weight is necessarily

larger than or equal to the other; let it be wd
1 for the first equation

and ws
3 for the second. As Dsat is strictly sub-linear (for definition

see Materials and Methods), it follows that:

2|Dsat(w
d
1 )§H

and

2|ws
3§H

As each weight is thus at least (1=2)H, we can add these two

inequalities to obtain:

Dsat(w
d
1 )zws

3§H

Finally, as adding any positive weight to the left-hand side does not

change the sign of the inequality, so the neuron must also output

y~1 for input X~½1,0,1,0�, giving a false positive. Therefore the

FBP function cannot be computed using a saturating nonlinearity

and a local implementation strategy.

Lemmas used to prove our propositions
Lemma 1. A two stage neuron with non-negative synaptic

weights and increasing activation functions necessarily implements

positive Boolean functions

Proof. Let f be the Boolean function representing the input-

output mapping of a two stage neuron, and two binary vectors X
and Z such that X§Z. We have Vj[f1,2, . . . ,dg non-negative

local weights wi,j§0, so for a given dendritic unit j we have:

wi,jxi§wi,jzi:

We can sum inequalities for all i, and because Dj are increasing

activation functions:

Dj(Wj :X )§Dj(Wj :Z):

We can sum the d inequalities corresponding to every dendritic

unit. As H , the Heaviside activation function of the somatic unit is

increasing we obtain:

f (X )§f (Z):

Lemma 2. A term (resp. a clause) can be implemented by a

unit with a supra-linear (resp. sub-linear) activation function

Proof. We need to provide the parameter sets of a activation

function implementing a term (resp. a clause) with the constraint

that the activation function is supra-linear (resp. sub-linear).

Indeed, a supra-linear activation function (like the spiking

activation function) with the parameter set wi~1 if i[X (j) and

wi~0 otherwise and H~card(X (j)) implements the term Tj . A

sub-linear activation function (like the saturating activation

function) with the parameter set wi~1 if i[X (j) and wi~0
otherwise and H~1 implements the clause Cj .

Lemma 3. A term (resp. a clause) cannot be implemented by a

unit with a strictly sub-linear (resp. supra-linear) activation function

Proof. We prove this lemma for a term, the proof is similar for a

clause. Let Tj be the term defined by X (j), with card(X (j))§2. First,

for all input vectors X such that xi~1 with i[X (j) and xk=i~0 it

follows that Tj(X )~0, implying that D(W :X )~D(wixi)~0. One

can sum all these elements to obtain the following equalityP
i[X (j) D(wixi)~0. Second, for all input vectors X such that

xi~1 for all i[X (j) then Tj(X )~1 implying that

D(
P

i[X (j) wixi)~1. Putting the two pieces together we obtain:

D(
X

i[X (j)

wixi)w
X

i[X (j)

D(wixi)

This inequality shows that the tuple of points (wixi Di[X (j)) defining

a term must have D supra-linear. Therefore, by Definition 2, D
cannot be both strictly sub-linear and implement a term.

A formal treatment of the three propositions is also given in

[41].

Biophysical model
We built the compartmental biophysical models with NEU-

RON software version 7.1 [54] coupled with Python 2.7.1. (www.

python.org) Morphological parameters (e.g. dendrites’ diameters)

are described in the Figure 4A. The axon is not modeled because

of its negligible contribution to the conductance load.

For the reduced models, the majority of parameters are set to

their default value within this NEURON version. The active

membrane parameters are the standard Hodgkin-Huxley channels

(hh in NEURON) also used with their default parameters; the

default and non-default parameters defining passive and active

properties of this model are given in Table 3. To model AMPA

synapses we used the built-in Exp2Syn synapses; for NMDA

Table 3. The parameters for the biophysical models.

Parameters Value

Rm 1kV=cm2

Ri 175V=cm from [10]

Eleak 265 mV

Cm 1mF=cm2

gHH (gna; gleak ; gk) 0.120 ; 0.0003 ; 0.036 S=cm2

eHH (ena; eleak ; ek) 50 ; 277 ; 254.3 mV

AMPAR (reduced model) trise~0:1, tfall~10ms

gmax~1nS in total

AMPAR (realistic model) gmax~0:07nS for each synapses

NMDA a~0:35ms{1 , b~0,035ms{1

gmax~1:5nS in total

Synaptic reversal potential(Ve) 0 mV

Number of segments per section 3 for soma and 9 for dendrites

doi:10.1371/journal.pcbi.1002867.t003
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synapses we used nmdanet.mod from [55]. The range of tested

synaptic weights which correspond to the maximum conductance

and the synaptic parameters are described in Table 3. We used

biophysical modeling to illustrate the mapping between our abstract

binary neuron model and a full multi-compartment dynamical

neuron model. We designed the scripts for testing the biophysical

models input-output mapping such that they can be used with any

type of arbitrarily detailed biophysical neuron model; the script is

available in the ModelDB (when this manuscript will be accepted).

For the realistic model of cerebellar stellate cells, the morpho-

logical and biophysical parameters are taken from [10].

Supporting Information

Text S1 Implementation of different feature binding problems.

We describe in this supplementary text how the pFBP and dFBP

can be implemented with a saturating or spiking dendritic subunit.

We also demonstrate how the FBP and the dFBP can be

implemented with a number of non-linear dendritic subunits

linearly proportional to the number of objects. This supplementary

text also shows how the pFBP can be implemented using an

intermediate strategy between local and global ones.

(PDF)
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