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Abstract

Throughout the last several decades, vaccination has been key to prevent and eradicate

infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influ-

enza, dengue, and others) have resisted vaccine development efforts, largely because of

the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling

of human B cells often reveals potent neutralizing antibodies that emerge from natural infec-

tion, but these specificities are generally subdominant (i.e., are present in low titers). A

major challenge for next-generation vaccines is to overcome established immunodomi-

nance hierarchies and focus antibody responses on crucial neutralization epitopes. Here,

we show that a computationally designed epitope-focused immunogen presenting a single

RSV neutralization epitope elicits superior epitope-specific responses compared to the viral

fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies tar-

geting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that

epitope-focused immunogens can boost subdominant neutralizing antibody responses in

vivo and reshape established antibody hierarchies.

Author summary

Vaccines are one of the most valuable instruments to prevent and control infectious dis-

eases. Their primary correlate of protection is the level of induction of neutralizing anti-

bodies that target critical antigenic sites and thereby block infection. Natural infections

with pathogens such as the respiratory syncytial virus (RSV) or influenza induce a broad

repertoire of antibodies that target multiple epitopes. Among those, functional antibodies
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with key specificities are often subdominant (present in low titers). Thus, a central goal

for vaccine development is to focus antibody responses on such neutralization epitopes.

Here, we show that a computationally designed, epitope-focused immunogen mimicking

an important RSV neutralization epitope (site II) can focus antibodies onto this well-

defined epitope. In a scenario of preexisting immunity, in which site II–specific antibodies

were subdominant, the epitope-focused immunogen selectively boosted site II–specific

antibodies, resulting in an increased viral neutralization through this epitope. We propose

that rationally designed immunogens spotlighting defined epitopes have a unique poten-

tial to focus antibody responses on functionally conserved sites in cases of preexisting

immunity. Our results have broad implications for vaccine design as a strategy to steer

preexisting antibody responses away from immunodominant, variable epitopes and

toward subdominant epitopes that confer broad and potent neutralization.

Introduction

The development of vaccines has proven to be one of the most successful medical interven-

tions to reduce the burden of infectious diseases [1], and their correlate of protection is the

induction of neutralizing antibodies (nAbs) that block infection [2].

In recent years, advances in high-throughput B cell technologies have revealed a plethora of

potent nAbs for different pathogens that have resisted the traditional means of vaccine devel-

opment for several decades, including HIV-1 [3], influenza [4], respiratory syncytial virus

(RSV) [5, 6], Zika [7, 8], dengue [9], and others [10–12]. A major target of these nAb responses

is the pathogen’s fusion protein, which drives the viral and host cell membrane fusion while

undergoing a conformational rearrangement from a prefusion to a postfusion state [13]. Many

of these nAbs have been structurally characterized in complex with their target, unveiling the

atomic details of neutralization epitopes [7, 14, 15]. Together, these studies have provided

comprehensive antigenic maps of the viral fusion proteins, which delineate epitopes suscepti-

ble to antibody-mediated neutralization and provide a road map for rational and structure-

based vaccine design approaches.

The conceptual framework to leverage nAb-defined epitopes for vaccine development is

commonly referred to as reverse vaccinology [16–18]. Although reverse vaccinology-inspired

approaches have yielded a number of exciting advances in the last decade, the design of immu-

nogens that elicit such focused antibody responses remains challenging. Successful examples

of structure-based immunogen design approaches include conformational stabilization of

RSV fusion protein (RSVF) in its prefusion state, which induces superior serum neutralization

titers when compared to immunization with RSVF in the postfusion conformation [19]. In the

case of influenza, several epitopes targeted by broadly neutralizing antibodies (bnAbs) were

identified within the hemagglutinin (HA) stem domain, and an HA stem–only immunogen

elicited a broader nAb response than full-length HA [20, 21]. Commonly, these approaches

have aimed to focus antibody responses on specific conformations or subdomains of viral pro-

teins. In a more aggressive approach, Correia and colleagues [22] computationally designed a

synthetic immunogen presenting the RSV antigenic site II and provided a proof of principle

for the induction of site-specific, RSV nAbs, using a synthetic immunogen.

The absence of a potent and long-lasting immune response upon natural infection is a

major challenge associated with RSV, influenza virus, and other pathogens. Whereas a single

exposure to pathogens like poliovirus confers life-long immunity, RSV, influenza, and other

pathogens have developed mechanisms to subvert the development of a durable and potent
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nAb response, thereby allowing such pathogens to infect humans repeatedly throughout their

lives [23]. One of the major factors hindering the induction of long-lasting protection after the

first infection is related to the antibody specificities induced. Upon exposure to a pathogen,

such as influenza, the human antibody responses predominantly target strain-specific anti-

genic sites, whereas potent bnAbs are subdominant [24]. This phenomenon is generally

referred to as B cell immunodominance, which describes the unbalanced immunogenicity of

certain antigenic sites within an antigen, favoring strain-specific, variable, nonneutralizing epi-

topes to the detriment of conserved, neutralization-sensitive epitopes [25]. The factors that

determine the antigenicity of specific epitopes remain unclear, making the categorization of

immunodominant and subdominant epitopes an empirical classification based on serological

analysis. The presence of high levels of antibodies directed against immunodominant epitopes

can sterically mask surrounding subdominant epitopes that may be targeted by bnAbs, pre-

venting the immune system from mounting productive antibody responses against subdomi-

nant epitopes and potentially limiting vaccination efficacy [24–27].

The immunodominance hierarchy is established within the germinal center, where B cells

undergo a binding affinity–based competition for available antigen and subsequently initiate a

clonal expansion stage, ultimately becoming long-lived plasma cells or memory B cells [28].

Controlling this competition and driving antibody responses toward the increased recognition

of subdominant, neutralizing epitopes is of primary importance to enable development of novel

vaccines against pathogens that have resisted traditional strategies. One of the few strategies to

guide antibody maturation was tested in the HIV field and is referred to as germline targeting,

which relies upon the activation and expansion of rare but specific B cell lineages in naïve indi-

viduals [29, 30]. In contrast, under conditions of preexisting immunity acquired during natural

infection or previous vaccination, the challenge is to manipulate already established B cell immu-

nodominance hierarchies and reshape serum antibody responses toward desired specificities. In

an indirect approach toward increasing subdominant B cell populations, Silva and colleagues

[31] have shown that the targeted suppression of immunodominant clones during an active ger-

minal center reaction can allow subdominant B cell populations to overtake the germinal center

response. Other approaches have used heterologous prime–boost immunization regimens with

either alternative viral strains or rationally modified versions of the priming immunogen in

order to steer antibody responses toward more conserved domains [32–35]. However, leverag-

ing structural information of defined neutralization epitopes to guide bulk antibody responses

toward specific, well-characterized single epitopes remains an unmet challenge.

Here, we investigate whether, under conditions of preexisting immunity, a computationally

designed immunogen presenting a single epitope is able to reshape serum antibody responses

toward increased recognition of a specific neutralizing epitope. To mimic a scenario of preexist-

ing immunity against a relevant pathogen, we immunized mice with a prefusion-stabilized ver-

sion of RSVF and found that antibody titers against RSV antigenic site II were present in very

low levels—i.e., a subdominant site II–specific response was elicited. Based on a previously devel-

oped epitope-focused immunogen for RSV site II (FFL_001) [22], we engineered an optimized

nanoparticle presenting this immunogen and investigated the potential of a rationally designed

epitope-focused immunogen to boost these subdominant levels of site-specific antibodies.

We show that multivalent presentation of a designed epitope-focused immunogen elicits

superior levels of epitope-specific antibodies compared to prefusion RSVF in naïve mice, indi-

cating that the subdominance of a particular epitope can be altered through its presentation in

a distinct molecular context. Repeated immunizations with RSVF failed to increase site II–spe-

cific antibodies and instead further dampened site II–specific responses. In contrast, heterolo-

gous boosts with an epitope-scaffold nanoparticle enhanced serum responses toward the

subdominant site II epitope, and the boosted antibodies neutralized RSV in vitro. For the first
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time, to our knowledge, we provide compelling evidence that synthetic immunogens compris-

ing a single epitope can efficiently redirect specificities in bulk antibody responses in vivo and

enhance subdominant nAb responses. Such strategy may present an important alternative for

pathogens in which future vaccines are required to reshape preexisting immunity and elicit

finely tuned antibody specificities.

Results

Design of an RSV-based nanoparticle displaying a site II epitope–focused

immunogen

In a previous study, a computationally designed, RSV site II epitope-scaffold nanoparticle was

shown to elicit serum neutralization activity in nonhuman primates (NHPs) [22]. Despite the

fact that very potent monoclonal antibodies were isolated from the immunized NHPs, the neu-

tralization potency at the serum level was modest, indicating low titers of the potent antibod-

ies. Therefore, our first aim was to take the best previously tested immunogen (FFL_001) and

further optimize delivery and immunization conditions to maximize the induction of site II–

specific antibodies. A comparative study of four different adjuvants revealed that alum, an

adjuvant approved for human use, yielded the highest overall immunogenicity and elicited

antibodies cross-reactive with prefusion RSVF in four out of five mice (S1 Fig).

Next, we sought to develop an improved, easily produced nanoparticle to multimerize the epi-

tope-scaffold for efficient B cell receptor cross-linking. Previously, Correia and colleagues [22]

employed a chemical conjugation strategy of FFL_001 to a hepatitis B core antigen–based nano-

particle, which resulted in a difficult construct with a laborious purification process. Recently, sev-

eral studies have reported the use of the RSV nucleoprotein (RSVN) as a nanoparticle platform for

immunogen presentation [36, 37]. When expressed in Escherichia coli, RSVN forms nanorings, 17

nm in diameter, containing 10 or 11 RSVN protomers [38]. We reasoned that RSVN would be an

ideal particle platform to multimerize an RSV epitope-scaffold, as RSVN contains strong, RSV-

directed T-cell epitopes [37]. However, our initial attempts to genetically fuse FFL_001 to RSVN

yielded poorly soluble proteins that rapidly aggregated after purification. We therefore employed

structure-based protein resurfacing [39], attempting to improve the solubility of this site II epi-

tope-scaffold when arrayed in high density on RSVN. To guide our resurfacing design process, we

leveraged information from a sequence homolog of the ribosomal recycling factor (Protein Data

Bank [PDB]: 1ISE), the structural template originally used to design FFL_001. Based on a

sequence alignment of the mouse homolog (National Center for Biotechnology Information

[NCBI] reference: NP_080698.1) and FFL_001, we exchanged the FFL_001 amino acids for the

mouse sequence homolog and used Rosetta fixed backbone design [40] to ensure that the muta-

tions were not energetically unfavorable, resulting in 38 amino acid substitutions (34.2% overall).

We named this variant FFLM, whose expression yields in E. coli showed a 5-fold increase when

compared to FFL_001, and it was confirmed to be monomeric in solution (S2 Fig).

To confirm that the resurfacing did not alter the epitope integrity, we measured the binding

affinities of FFLM to motavizumab, a high-affinity variant of palivizumab [41], and to a panel

of human site II nAbs previously isolated [5], using surface plasmon resonance (SPR). All anti-

bodies bound with high affinity to FFLM, indicating broad reactivity of this immunogen with

a diverse panel of human nAbs (Figs 1B and S3). The tested nAbs showed approximately one

order of magnitude higher affinity to the epitope-scaffold as compared to the latest version of

prefusion RSVF, originally called DS2 [42], suggesting that the epitope is properly presented

and likely further stabilized in a relevant conformation.

The FFLM-RSVN fusion protein expressed with high yields in E. coli (>10 mg/liter), form-

ing a nanoring particle, dubbed NRM, that was monodisperse in solution, with a diameter of
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approximately 21 nm (Fig 1C). Negative stain electron microscopy confirmed the ring-like

structure as suggested by the model (Fig 1D). Although we cannot fully rationalize the factors

that contributed to the solubility improvement upon multimerization, our strategy to trans-

plant surface residues from a sequence homolog to synthetic proteins may prove useful to

enhance the solubility of other computationally designed proteins.

NRM enhances the induction of site II–specific antibodies

We next tested the immunogenicity of NRM and its ability to elicit site II–specific antibodies.

Three groups of 10 mice were subjected to three immunizations with 10 μg of NRM,

Fig 1. Design of an RSV-based nanoparticle displaying a site II epitope–focused immunogen. (A) Structural model of the prefusion RSVF trimer (PDBID:

4JHW), with two subunits shown as a gray surface and one subunit shown as a light blue cartoon representation with the epitope targeted by palivizumab

(antigenic site II) highlighted in red. FFL_001 was previously designed to present the site II epitope in a computationally designed scaffold. FFLM was designed by

evolution-guided resurfacing, where changes in amino acid identity are highlighted in blue. FFLM was genetically fused to the N terminus of RSVN, resulting in a

high-density array of the epitope-scaffold, as shown by the structural model (based on PDBID: 2WJ8). (B) Kinetic binding affinities of site II–specific human nAbs

measured by SPR. KDs were measured with RSVF/FFLM immobilized as ligand and antibody Fabs as analyte. Sensorgrams and fits are shown in S3 Fig. (C) DLS

profiles for FFL_001 and FFLM fused to RSVN. The FFL_001-RSVN fusion protein formed higher-order oligomers in solution (66.6 nm of median diameter),

whereas the resurfaced FFLM-RSVN fusion protein (NRM) was monodisperse, with a median diameter of 21 nm. (D) Analysis of the NRM nanoparticles by

negative stain electron microscopy. Shown are the 2D class averages of two representative classes. Data are available in S1 Data. DLS, dynamic light scattering; Fab,

antibody variable fragment; nAb, neutralizing antibody; PDB, Protein Data Bank; RSV, respiratory syncytial virus; RSVF, RSV fusion protein; RSVN, RSV

nucleoprotein; SPR, surface plasmon resonance.

https://doi.org/10.1371/journal.pbio.3000164.g001

Boosting subdominant neutralizing antibody responses with a computationally designed immunogen

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000164 February 21, 2019 5 / 27

https://doi.org/10.1371/journal.pbio.3000164.g001
https://doi.org/10.1371/journal.pbio.3000164


monomeric FFLM, and prefusion RSVF [42], which is currently the leading immunogen for

an RSV vaccine (Fig 2A). Based on the results of our adjuvant screen (S1 Fig), all the immuno-

gens were formulated in alum. As compared to FFLM, NRM showed a higher overall immuno-

genicity (directed both against RSVN and FFLM) (Fig 2B).

A key aspect of epitope-focused vaccines is to understand how much of the antibody

response targets the viral epitope presented to the immune system. Therefore, we sought to

measure the site II–specific antibody titers elicited by NRM and FFLM and compare these epi-

tope-specific antibody responses to those elicited by prefusion RSVF. We established an SPR

competition assay (described in the Methods and shown in S4 Fig) to quantify the fraction of

site II–specific antibodies elicited by each immunogen (FFLM, NRM, or prefusion RSVF).

Briefly, the respective antigen was immobilized on the sensor chip surface, and the fraction of

the serum antibody response competed by motavizumab was measured, serving as a proxy for

site II–specific antibodies. We observed that NRM elicited site II–specific antibody responses

superior to those elicited by RSVF (Fig 2C). This was surprising, given that the ratio of site II

epitope surface area to overall immunogen surface is similar in both NRM and RSVF (S2 Fig).

To confirm this finding through a direct binding assay rather than a competitive format, we

measured the binding levels of sera to the site II epitope in a peptide ELISA, where the site II

peptide was immobilized on a streptavidin-coated surface. Peptides mimicking site II are

Fig 2. Immunogenicity and quantification of site II–specific antibody responses. (A) Immunization scheme. Balb/c

mice were immunized three times on days 0, 21, and 42, and blood was drawn 14 days after each vaccination. (B)

Serum antibody titers elicited by FFLM and NRM at different time points measured by ELISA against the respective

immunogen. NRM shows significantly increased immunogenicity at days 14, 35, and 56 relative to FFLM. (C) SPR

competition assay with motavizumab. Day 56 sera of mice immunized with RSVF, FFLM, or NRM were diluted 1:100,

and SPR RU were measured on sensor chip surfaces containing the respective immunogen. Motavizumab binding sites

were then blocked by saturating amounts of motavizumab, and the residual serum response was measured to calculate

the serum fraction competed by motavizumab binding. Mice immunized with FFLM or NRM show significantly

higher levels of serum antibodies that are competed by motavizumab binding. (D) Site II–specific serum titers at day

56 from mice immunized with RSVF, FFLM, and NRM, measured by ELISA against site II peptide. Three

immunizations with prefusion RSVF elicited low levels of site II–specific antibodies, whereas FFLM and NRM

vaccinations yielded significantly higher peptide-specific serum titers. Data shown are derived from at least two

independent experiments, with each sample assayed in duplicate. Statistical comparisons were calculated using two-

tailed Mann-Whitney U tests. ��p< 0.01, ���p< 0.0001, ����p< 0.0001. Data are available in S1 Data. RSVF,

respiratory syncytial virus fusion protein; RU, response units; SPR, surface plasmon resonance.

https://doi.org/10.1371/journal.pbio.3000164.g002
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known to be conformationally flexible [43] (S5 Fig) but have been show to adopt a very similar

conformation upon antibody binding to the one presented in the context of pre- and postfu-

sion RSVF [44]. Consistent with the previous experiment, we found that NRM elicited site II–

specific responses that were two orders of magnitude higher than those of RSVF (Fig 2D).

Together, we concluded that an epitope-focused immunogen, despite similar molecular sur-

face area, can elicit substantially higher levels of site-specific antibodies compared to a viral

fusion protein.

NRM induces low levels of RSVF cross-reactive antibodies with low

neutralization potency

Given the substantial site II peptide–specific serum titers elicited by NRM in mice, we investi-

gated whether these antibodies cross-reacted with prefusion RSVF and were sufficient to neu-

tralize RSV in vitro.

Following three immunizations with NRM, all the mice (n = 10) developed detectable

serum cross-reactivity with prefusion RSVF (mean serum titer = 980) (Fig 3A). Sera also cross-

reacted with the postfusion conformation of RSVF (mean serum titer = 380), but binding to

virus-infected cell lysate was negligible for mice immunized with the epitope-scaffold (S6 Fig).

The overall quantity of RSVF cross-reactive antibodies elicited by immunization with an

immunogen presenting a single epitope was found to be more than two orders of magnitude

lower than those of mice immunized with prefusion RSVF, which comprises at least six anti-

genic sites [5]. Similarly, a B cell enzyme-linked immunospot assay (ELISpot) revealed that

NRM-immunized mice presented prefusion RSVF-reactive antibody-secreting cells, but their

frequency was approximately one order of magnitude lower than it was upon immunization

with prefusion RSVF (Fig 3C).

The major determinant for antibody specificity is attributed to the heavy chain complemen-

tarity-determining region 3 (HCDR3) [45]. Whereas for certain classes of nAbs the antibody

lineages and their sequence features are well-defined (e.g., HIV neutralizing VRC01 class anti-

bodies [46] or RSV-neutralizing MPE8-like antibodies [47]), antibodies targeting RSV anti-

genic site II seem to be derived from diverse precursors and do not show HCDR3 sequence

convergence in humans [5]. Although we did not expect to find dominant lineages or HCDR3

sequence patterns in mice, we used next-generation antibody repertoire sequencing (NGS)

[48] to ask whether NRM could elicit antibodies with similar sequence signatures to those elic-

ited by prefusion RSVF. Indeed, we found 300 clonotypes, defined as antibodies derived from

the same VH gene with the same HCDR3 length and 80% sequence similarity, that overlapped

between NRM and the prefusion RSVF–immunized cohort, suggesting that at the molecular

level, relevant antibody lineages can be activated with the NRM immunogen (S7 Fig). Nine out

of the 20 most expanded clonotypes in the NRM cohort were also present in mice immunized

with prefusion RSVF, albeit not as expanded (Fig 3B). This finding might reflect the enrich-

ment of site II–specific antibodies in the NRM cohort (Fig 2D).

We further investigated whether these low levels of prefusion RSVF-binding antibodies

were sufficient to neutralize RSV in vitro. Although three immunizations with prefusion RSVF

elicited potent RSV-neutralizing serum titers (mean IC50 = 10,827), for NRM we only detected

low levels of RSV-neutralizing serum activity in three out of 10 mice (Fig 3D). This result is

consistent with that of Correia and colleagues [22], who observed no serum neutralization in

mice but succeeded in inducing nAbs in NHPs with prior RSV seronegativity.

Altogether, we concluded that despite NRM’s superior potential to induce high levels of site

II–specific antibodies, the majority of antibodies activated from the naïve repertoire are not

functional for RSV neutralization. A potential explanation, stemming from structural
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comparison between the epitope-focused immunogen and RSVF, is that these antibodies do

not recognize the site II epitope in its native, quaternary environment in prefusion RSVF or on

virions in sufficient amounts and with high enough affinity to potently neutralize RSV.

NRM boosts site II–specific antibodies under conditions of preexisting

immunity

Although vaccination studies in naïve animal models are an important first step to validate

novel immunogens, previous studies [22] and results presented here imply that epitope-scaf-

folds may not be able to elicit robust RSV-neutralizing serum activity from a naïve antibody

repertoire. However, given the high affinity of the epitope-scaffold toward a panel of site II–

Fig 3. RSVF cross-reactivity and serum neutralization. (A) NRM elicits prefusion RSVF cross-reactive serum levels, the quantity of

which is two orders of magnitude lower compared to that elicited by prefusion RSVF immunization. Mice immunized only with

adjuvant (naïve) do not show RSVF cross-reactivity. (B) Next-generation sequencing of antibody repertoire. Antibody variable heavy

chains of mice immunized with RSVF or NRM (5 mice per cohort) were sequenced at day 56 and grouped into clonotypes. The circos

plot shows the 20 most expanded clonotypes from both cohorts, with identical clonotypes connected. Height of bars indicates number

of mice that showed the respective clonotype; width represents the clonal expansion within a clonotype (i.e., the number of clones

grouped into the respective clonotype). Three clonotypes that occurred both in the RSVF and the NRM cohort but were expanded

within the NRM cohort were analyzed for their HCDR3 sequence profile, as shown by sequence logo plots (top). Dark blue color

represents amino acid identities that occurred in RSVF cohort; light blue color represents amino acids uniquely found following

NRM immunization. The frequency of each amino acid in the NRM cohort is indicated by the size of the letter. (C) B cell ELISpot of

mouse splenocytes to quantify prefusion RSVF-specific ASCs. Number of ASCs per 106 splenocytes that secrete prefusion RSVF-

specific antibodies following three immunizations with adjuvant only (naïve), NRM, or prefusion RSVF. (D) RSV-neutralizing

activity of mouse sera from day 56 shown as neutralization IC50. Three out of 10 mice immunized with NRM showed detectable RSV-

neutralizing activity, whereas all mice immunized with prefusion RSVF neutralized RSV (mean IC50 = 10,827). Data shown are from

one out of two independent experiments. Statistical comparisons were calculated using two-tailed Mann-Whitney U tests.
���p< 0.001, ����p< 0.0001. Data are available in S1 Data. ASC, antibody-secreting cell; ELISpot, enzyme-linked immunospot assay;

HCDR3, heavy chain complementarity-determining region 3; IGHV, immunoglobulin heavy chain variable gene; RSV, respiratory

syncytial virus; RSVF, RSV fusion protein.

https://doi.org/10.1371/journal.pbio.3000164.g003
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specific nAbs, together with the ability to elicit high titers of site II–specific antibodies in vivo,

we hypothesized that such an epitope-focused immunogen could be efficient in recalling site

II–specific B cells in a scenario of preexisting immunity, thereby achieving an enhanced site-

specific neutralization response.

Our initial immunization studies with prefusion RSVF showed that site II–specific

responses were subdominant (Fig 2C and 2D). Given that subdominance is a common immu-

nological phenotype for many of the neutralization epitopes that are relevant for vaccine devel-

opment [49], we sought to test if NRM could boost subdominant antibody lineages that should

ultimately be functional and recognize the epitope in the quaternary environment of the viral

protein. To test this hypothesis, we designed a mouse immunization experiment with three

cohorts, as outlined in Fig 4A. Following a priming immunization with RSVF, cohort 1 was

boosted with adjuvant only (“prime-only”), cohort 2 received two boosting immunizations

with prefusion RSVF (“homologous boost”), and cohort 3 received two boosts with NRM

(“heterologous boost”).

A comparison between the prefusion RSV-immunized groups prime-only and homologous

boost revealed that the two additional boosting immunizations with RSVF only slightly

increased overall titers of prefusion RSVF-specific antibodies (p = 0.02), indicating that a single

immunization with adjuvanted RSVF is sufficient to induce close to maximal serum titers

against RSVF (Fig 4B). Following the heterologous boost with NRM, overall RSVF-specific

antibody titers remained statistically comparable to the prime-only group (p = 0.22).

Next, we quantified the site II–specific endpoint serum titers in a peptide ELISA format

(Fig 4C). The homologous boost with prefusion RSVF failed to increase site II–specific anti-

body levels, reducing the responses directed to site II to the lower limit of detection by ELISA.

This result is yet another example of the underlying complexity inherent to the fine specificity

of antibody responses elicited by immunogens and how important specificities can be damp-

ened throughout the development of an antibody response. In contrast to the homologous

boost, the heterologous boost with NRM significantly increased site II peptide–specific serum

titers (p< 0.0001).

In order to understand whether this increase relied at least partially on an actual recall of

antibodies primed by RSVF, or rather on an independent antibody response irrelevant for

RSVF binding and RSV neutralization, we dissected the epitope specificity within the RSVF-

specific serum response. In an SPR competition assay, a significantly higher fraction (p = 0.02)

of prefusion RSVF-reactive antibodies were competed by motavizumab in mouse sera primed

with prefusion RSVF and boosted with NRM (mean percent blocking = 37.5% ± 14.5%), as

compared to mice immunized once or three times with prefusion RSVF (21.5% ± 12.1% or

19.5% ± 3.7%, respectively) (Fig 4D). Control mice immunized that were not primed with pre-

fusion RSVF and instead were immunized three times with NRM did not yield detectable

binding signals against prefusion RSVF in an SPR assay, despite detectable ELISA signals (Fig

3A). Thus, while the heterologous boost with NRM will also prime antibodies that do not bind

RSVF, the increased fraction of prefusion RSVF-binding, site II–specific antibodies is likely to

arise from a recall of RSVF-primed, site II–specific antibodies. Similarly, a competition ELISA

revealed that a significantly larger fraction of overall RSVF reactivity was attributed to site II–

specific antibodies upon heterologous boost, as compared to both control groups (mean per-

cent competition = 36.1% ± 2.5% versus 22.6% ± 9.1% or 14.4% ± 5.9%, respectively, p = 0.002

and p< 0.0001). In contrast, site II–specific antibodies were significantly higher in mice that

received only one as opposed to three RSVF immunizations, indicating that RSVF boosting

immunizations further dampened site II–specific antibody titers (p = 0.03) (Fig 4E).

Together, we have shown that the serum antibody specificity can be steered toward a well-

defined antigenic site by boosting preexisting, subdominant antibody levels with an epitope-
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focused immunogen. This is an important and distinctive feature of the epitope-focused

immunogen compared to an immunogen based on a viral protein (prefusion RSVF), which

was shown to decrease already subdominant antibody responses under the same conditions.

Fig 4. Heterologous prime–boost reshapes antibody responses enhancing levels of site II–specific antibodies. (A)

Heterologous prime–boost study groups. Three mouse cohorts were immunized with either 1x RSVF (“prime-only”),

3x RSVF (“homologous boost”), or 1x RSVF followed by two boosts with NRM (“heterologous boost”). (B) Antibody

titers directed against prefusion RSVF. Mice receiving homologous boosting immunizations show slightly higher

RSVF-specific serum titers compared to the prime-only cohort, whereas heterologous boosting yielded statistically

comparable titers to the prime-only group. The difference between the homologous and heterologous boost cohorts

was statistically significant. (C) Site II–specific titers measured by ELISA showed that the heterologous boost

significantly increases site II–specific titers compared to both prime and homologous boost groups. Albeit not

statistically significant (p = 0.06), mice receiving a homologous boost had lower levels of site II–specific antibodies

compared to prime-only group. (D) SPR competition assay with motavizumab on a prefusion RSVF-coated sensor

chip. Sera from indicated groups were diluted 1:100, and RSVF binding responses were quantified. Site II was then

blocked with motavizumab, and the remaining serum response was quantified. The heterologous (“heterol.”) boost

induced a significantly higher fraction of site II–directed antibodies that competed with motavizumab for RSVF

binding, as compared to both prime-only and homologous (“homol.”) boost groups. (E) Quantification of site II–

specific responses in a competition ELISA. Binding was measured against prefusion RSVF, and the AUC was

calculated in the presence of NRM competitor, normalized to the AUC in the presence of RSVN as a control

competitor. Compared to the prime-only group, the homologous boost resulted in significantly lower site II–specific

serum titers, confirming the trend observed in (C). The heterologous boost increased the fraction of site II–targeting

antibodies within the pool of prefusion RSVF-specific antibodies compared to both control groups. Data presented are

from at least two independent experiments, with each sample assayed in duplicates. Statistical comparisons were

calculated using two-tailed Mann-Whitney U tests. �p< 0.05, ��p< 0.01, ���p< 0.0001, ����p< 0.0001. Data are

available in S1 Data. AUC, area under the curve; RSVF, RSV fusion protein; RSVN, RSV nucleoprotein; SPR, surface

plasmon resonance.

https://doi.org/10.1371/journal.pbio.3000164.g004
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These results may have broad implications for strategies to control antibody fine specificities

in vaccination schemes, both for RSV and other pathogens.

Boosted antibodies neutralize RSV in vitro

The enhanced reactivity to site II observed in the heterologous prime–boost scheme led us to

investigate if the antibodies boosted by a synthetic immunogen were functionally relevant for

virus neutralization. In bulk sera, we observed 2.3-fold higher serum neutralization titers in

mice receiving the heterologous boost (mean IC50 = 7,654) compared to the prime-only con-

trol group (mean IC50 = 3,275) (Fig 5A). Although this increase in serum neutralization was

not statistically significant, we next assessed if this increase in neutralization was driven by

increased levels of epitope-specific antibodies. We observed that site II–directed antibody lev-

els correlated with overall serum neutralization titers in the heterologous prime–boost group

Fig 5. Boosted site II–specific antibodies are functional and mediate increased neutralization activity. (A) In vitro

RSV neutralization IC50 for each group. Compared to the prime-only group, mice receiving a homologous (“homol.”)

boost showed increased RSV neutralization titers. On average, the heterologous (“heterol.”) boost yielded a 2.3-fold

increase in serum neutralization titers compared to prime-only, but these differences were statistically not significant

when compared to either group. (B) Correlation of site II–specific serum titer (measured by peptide ELISA) with RSV

neutralization IC50 as determined for each mouse within the heterologous prime–boost cohort. Correlations for

control groups are shown in S8 Fig. Data represent the mean of two independent experiments, each measured in

duplicate. Pearson correlation coefficient (r2) and p-value were calculated in GraphPad Prism. (C) Serum fractionation

revealed increased levels of site II–mediated neutralization. Site II–specific antibodies from mouse sera were enriched

in an affinity purification as described in the Methods and shown in S9 Fig. The IC50 values are the dilution factor of

site II–specific antibodies eluted and quantify the total site II–mediated neutralization. Antibodies purified from the

heterologous boost group showed a 15-fold increase in RSV-neutralizing activity compared to the prime-only and

homologous boost control groups. No site II–mediated neutralization was detected for mice receiving three

immunizations of NRM. (D) RSV neutralization potency of affinity-purified site II–specific antibodies. Purified

antibodies from each group were diluted to a concentration of 70 μg/ml to measure their RSV neutralization potencies.

Site II antibodies from prime-only, heterologous boost, and homologous boost exhibited similar neutralization

potencies (IC50 = 4.9 μg/ml, IC50 = 3.0 μg/ml, and IC50 = 1.7 μg/ml, respectively). Data are presented from two

independent experiments, and each sample was assayed in duplicate with additional controls shown in S9 Fig.

Statistical comparisons were calculated using two-tailed Mann-Whitney U tests. �p< 0.05. Data are available in S1

Data. IgG, immunoglobulin G; N.D., nondetectable; RLU, relative light units; RSV, respiratory syncytial virus.

https://doi.org/10.1371/journal.pbio.3000164.g005
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(r2 = 0.76, p = 0.0009) (Fig 5B), whereas the prime-only (r2 = 0.32, p = 0.09) or the homologous

boost cohorts showed no such correlation (r2 = 0.18, p = 0.22) (S8 Fig).

To characterize the RSV-neutralizing activity mediated by site II–specific antibodies, we

pooled sera from each cohort, enriched site II–specific antibodies, and measured viral neutrali-

zation (see Methods and S9 Fig). Briefly, we incubated pooled sera from each group with strep-

tavidin beads, which were conjugated to biotin-labeled antigenic site II peptide, and eluted

bound antibodies. To control for the quality of the enrichment protocol, we verified by ELISA

that the column flow-through was depleted of site II–specific antibodies (S9 Fig). In agreement

with the different site II peptide–specific serum levels shown in Fig 4, the overall quantity of

site II–specific antibodies purified from equivalent amounts of sera differed between groups,

with the heterologous boost and the 3x NRM groups showing the highest levels (S9 Fig).

Next, we tested neutralization of this polyclonal pool of site II–specific antibodies. We

found that the heterologous boost cohort showed a 15-fold greater site II–specific neutraliza-

tion titer (IC50 = 99.6) as compared to the prime-only and homologous boost cohorts (IC50 =

6.6 and IC50 = 4.9, respectively). It is important to note that although the homologous boost

with RSVF showed increased serum neutralizing activity compared to the prime-only control

group, site II–mediated neutralization was similar. This finding is consistent with our observa-

tion that site II–specific antibodies do not increase with repeated immunizations of prefusion

RSVF. Enriched antibodies from the 3x NRM group were nonneutralizing, despite the high

concentration of site II–specific antibodies (S9 Fig). Thus, NRM significantly enhances site II–

mediated RSV neutralization but requires the priming of a relevant subset of RSVF-binding

antibodies. Finally, we addressed whether this increase in site II–mediated neutralization was

due to higher amounts of site II–specific antibodies or the intrinsic neutralization potency of

the same antibodies. As shown in Fig 5D, antibodies from the prime-only, heterologous boost,

and homologous boost cohorts exhibit similar neutralization potencies (IC50 ranging from

1.7 μg/ml to 4.9 μg/ml) of site II–specific antibodies. Consequently, the heterologous boosting

scheme yielded higher amounts of site-specific, functional antibodies, rather than an increased

potency of the same antibodies.

Altogether, we dissected the mode of action of the synthetic immunogens when used as het-

erologous boosters, in which the observed enhanced neutralization resulted from the increase

of sheer amounts of antibodies directed to site II.

Discussion

Despite a rapid increase in our atomic-level understanding of antibody–antigen interactions

for various pathogens, the translation of structural information into efficacious immunogens

that elicit antibody responses specific to bona fide epitopes remains a key challenge for next-

generation vaccine development.

Multiple strategies have been investigated to focus nAb responses on defined neutralization

epitopes [50]. Among them, epitope-scaffolds have been shown to elicit RSV site II–specific

nAb responses in naïve NHPs. Although the overall serum neutralization was modest, a mono-

clonal antibody induced by vaccination showed superior neutralization potency to that of pali-

vizumab [22]. However, a major limitation of epitope-scaffold immunogens [43, 51, 52] is that

the quaternary environment of the epitope presented in the native viral protein is lost. Thus,

the binding mode of a significant fraction of the elicited antibodies is likely incompatible with

the epitope in its native environment. This observation is reinforced by our finding that

although NRM elicited high serum levels of site II peptide–specific antibodies, only low levels

were cross-reactive with RSVF, and neutralizing activity was residual. This finding is consis-

tent with previous studies using epitope-scaffolds [43, 53, 54]. Together, these results highlight
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the limitations of synthetic scaffolds in an epitope-focused vaccine approach in naïve

individuals.

However, our finding—that an epitope that is subdominant (site II) in its native environ-

ment (prefusion RSVF) is readily targeted by the immune system when presented in a distinct

molecular context (NRM)—supported the potential use of synthetic immunogens to reshape

antibody responses toward such well-defined antigenic sites. Preexisting immunity against a

viral protein (RSVF, influenza HA, or others), in which certain antibody specificities are sub-

dominant, is a common scenario in humans that have encountered repeated natural infections

throughout their life [27, 55–57]. Therefore, a major challenge for vaccine development is to

boost preexisting, subdominant antibodies and enhance site-specific neutralization.

To date, boosting nAbs that target specific epitopes under conditions of preexisting immu-

nity has been challenging. For instance, strong antibody responses against immunodominant

epitopes can sterically mask the neutralization epitope, preventing the induction of a potent

antibody response targeting the subdominant site [24, 26, 27, 58]. Overcoming these estab-

lished immunodominance hierarchies is complex, as such hierarchies seem to be impacted by

multiple factors, including serological antibody levels, their specificity, memory B cell counts,

adjuvants, and the immunization or infection route [25].

Heterologous prime–boost schemes are a promising strategy to guide the fine specificity of

antibody responses and to focus these responses on vulnerable antigenic sites. Several vaccine

studies have been conducted for influenza [34, 35], RSV [32], and HIV [29], in which the het-

erologous immunogens were alternative strains or modified viral fusion proteins but yet not as

heterologous as a computationally designed epitope-scaffold. It is possible that immunogens

based on modified viral proteins retain immunodominant signatures that steer antibody

responses away from the target epitopes. Although this scenario may not be fully absent in syn-

thetic epitope-scaffolds, it is at least mitigated by the fact that the protein has not evolved

under the pressure of escaping the immune system.

Our study demonstrates that a heterologous boosting immunogen that optimally presents a

single neutralization epitope can boost preexisting, subdominant antibody responses that tar-

get this epitope, yielding increased epitope-mediated neutralization. The ability to narrowly

focus antibody responses to a single epitope that mediates clinical protection underlines the

potential of rationally designed immunogens for vaccine development against elusive patho-

gens. In particular, our results demonstrate that although single-epitope immunogens may not

be the most powerful to select functional antibodies from a naïve repertoire, they have a

unique ability to boost neutralizing epitope-specific antibodies primed by a viral protein. Fur-

ther studies in more relevant animal models will reveal if nAbs primed by natural infection

with RSV can also be boosted, mimicking a more realistic vaccination scenario.

Given that the approach presented here is generalizable and that epitope-scaffold nanopar-

ticles can be proven successful in boosting nAbs specific for other sites, this strategy holds

great potential to tune levels of antibody specificities through heterologous prime–boost vacci-

nation schemes, which are now frequently used for challenging pathogens [29, 34, 59].

The original antigenic sin theory in the influenza field describes that the first viral exposure

permanently shapes the antibody response, which causes individuals to respond to seasonal

vaccines in a manner dependent on their immune history [24, 60]. Seasonal vaccines generally

fail to boost antibodies targeting broadly neutralization epitopes on the HA stem region [24].

Focusing antibody responses on these defined epitopes may remove the need for annual vac-

cine reformulation and may also protect against emerging pandemic strains [14, 49, 61, 62].

The influenza vaccine challenge seems particularly well suited to our approach, considering

that the human population has preexisting immunity to influenza, including some subdomi-

nant bnAbs that seasonal vaccines fail to stimulate [24].
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Lastly, vaccine development against antigenically related viruses such as Zika and dengue

could benefit from the approach presented here, as antibodies mounted against the envelope

protein of a dengue subtype can facilitate infection with Zika [63] or other dengue subtypes [64].

A site conserved between all four dengue subtypes and Zika envelope protein has been structur-

ally characterized and suggested for the development of an epitope-focused immunogen [7].

When seeking to apply an immunofocusing strategy to other antigenic sites and pathogens,

one challenge is the development of epitope-scaffolds stably presenting the epitope in a syn-

thetic immunogen that is compatible with antibody binding. Whereas the RSV antigenic site II

is a structurally simple helix-turn-helix motif, many other identified neutralization epitopes

comprise multiple, discontinuous segments. However, continuous advances in rational protein

design techniques [65] will allow the design of more complex protein scaffolds to stabilize

increasingly complex epitopes.

Altogether, we have shown how an optimized presentation of a computationally designed

immunogen in an RSVN-based nanoparticle can reshape bulk serum responses and boost sub-

dominant nAb responses in vivo. This is a distinctive feature compared to using prefusion

RSVF as a boosting immunogen and underscores how subdominant epitopes can be converted

to immunodominant epitopes when presented in a different environment. We foresee the great

promise of this strategy to overcome the challenge of boosting and focusing preexisting immu-

nity toward defined neutralization epitopes, potentially applicable to multiple pathogens.

Methods

Ethics statement

All animal experiments were approved by the Veterinary Authority of the Canton of Vaud

(Switzerland) according to Swiss regulations of animal welfare (animal protocol number 3074).

Resurfacing

The previously published RSV site II epitope-scaffold (“FFL_001”) [22] was designed based on

a crystal structure of a mutant of ribosome recycling factor from E. coli (PDB entry 1ISE).

Using BLAST, we identified sequence homologs of 1ISE from eukaryotic organisms and cre-

ated a multiple-sequence alignment with clustal omega (CLUSTALO [1.2.1]) [66] of the

mouse homolog sequence (NCBI reference NP_080698.1), 1ISE, and FFL_001. Surface-

exposed residues of FFL_001 were then mutated to the respective residue of the mouse homo-

log using the Rosetta fixed backbone design application [40], resulting in 38 surface mutations.

Amino acid changes were verified to not impact overall Rosetta energy score term.

Protein expression and purification

FFLM. DNA sequences of the epitope-scaffold designs were purchased from Genscript

and cloned in pET29b, in frame with a C-terminal 6x His tag. The plasmid was transformed

in E. coli BL21 (DE3) and grown in Terrific Broth supplemented with kanamycin (50 μg/

ml). Cultures were inoculated to an OD600 of 0.1 from an overnight culture and incubated

at 37˚C. After reaching an OD600 of 0.6, expression was induced by the addition of 1 mM

isopropyl-β-D-thiogalactoside (IPTG), and cells were incubated for a further 4–5 hours at

37˚C. Cell pellets were resuspended in lysis buffer (50 mM TRIS [pH 7.5], 500 mM NaCl,

5% Glycerol, 1 mg/ml lysozyme, 1 mM PMSF, 1 μg/ml DNase) and sonicated on ice for a

total of 12 minutes, in intervals of 15-second sonication followed by a 45-second pause.

Lysates were clarified by centrifugation (18,000 rpm, 20 minutes), sterile-filtered, and puri-

fied using a His-Trap FF column on an Äkta pure system (GE Healthcare). Bound proteins
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were eluted in buffer containing 50 mM Tris, 500 mM NaCl, and 300 mM imidazole (pH

7.5). Concentrated proteins were further purified by size-exclusion chromatography on a

Superdex 75 300/10 (GE Healthcare) in phosphate-buffered saline (PBS). Protein concen-

trations were determined by measuring the absorbance at 280 nm on a Nanodrop (Thermo

Scientific). Proteins were concentrated by centrifugation (Millipore, #UFC900324) to 1 mg/

ml, snap frozen in liquid nitrogen, and stored at −80˚C.

NRM. The full-length N gene (sequence derived from the human RSV strain Long,

ATCC VR-26; GenBank accession number AY911262.1) was PCR amplified using the Phu-

sion DNA polymerase (Thermo Scientific) and cloned into pET28a+ at NcoI-XhoI sites to

obtain the pET-N plasmid. The sequence of FFLM was then PCR amplified and cloned into

pET-N at NcoI site to the pET-NRM plasmid. E. coli BL21 (DE3) bacteria were cotrans-

formed with pGEX-PCT [67] and pET-FFLM-N plasmids and grown in LB medium con-

taining ampicillin (100 μg/ml) and kanamycin (50 μg/ml). The same volume of LB medium

was then added, and protein expression was induced by the addition of 0.33 mM IPTG to

the medium. Bacteria were incubated for 15 hours at 28˚C and then harvested by centrifuga-

tion. For protein purification, bacterial pellets were resuspended in lysis buffer (50 mM

Tris-HCl [pH 7.8], 60 mM NaCl, 1 mM EDTA, 2 mM dithiothreitol, 0.2% Triton X-100, 1

mg/ml lysozyme) supplemented with a complete protease inhibitor cocktail (Roche), incu-

bated for 1 hour on ice, and disrupted by sonication. The soluble fraction was collected by

centrifugation at 4˚C for 30 minutes at 10,000g. Glutathione-Sepharose 4B beads (GE

Healthcare) were added to clarify supernatants and incubated at 4˚C for 15 hours. The

beads were then washed one time in lysis buffer and two times in 20 mM Tris (pH 8.5), 150

mM NaCl. To isolate NRM, beads containing bound complex were incubated with throm-

bin for 16 hours at 20˚C. After cleavage of the GST tag, the supernatant was loaded onto a

Sephacryl S-200 HR 16/30 column (GE Healthcare) and eluted in 20 mM Tris-HCl, 150

mM NaCl (pH 8.5).

Antibody variable fragments (Fabs). For Fab expression, heavy and light chain DNA

sequences were purchased from Twist Biosciences and cloned separately into the pHLSec

mammalian expression vector (Addgene, #99845) using AgeI and XhoI restriction sites.

Expression plasmids were premixed in a 1:1 stoichiometric ratio, cotransfected into

HEK293-F cells, and cultured in FreeStyle medium (Gibco, #12338018). Supernatants were

harvested after 1 week by centrifugation and purified using a kappa-select column (GE Health-

care). Elution of bound proteins was conducted using 0.1 M glycine buffer (pH 2.7), and elu-

ates were immediately neutralized by the addition of 1 M Tris ethylamine (pH 9), followed by

buffer exchange to PBS (pH 7.4).

Prefusion RSVF. Protein sequence of prefusion RSVF corresponds to the sc9-10

DS-Cav1 A149C Y458C S46G E92D S215P K465Q variant designed by Joyce and col-

leagues [42], which we refer to as RSVF DS2. RSVF DS2 was codon optimized for mam-

malian expression and cloned into the pHCMV-1 vector together with two C-terminal

Strep-Tag II and one 8x His tag. Plasmids were transfected in HEK293-F cells and cul-

tured in FreeStyle medium. Supernatants were harvested 1 week after transfection and

purified via Ni-NTA affinity chromatography. Bound protein was eluted using buffer con-

taining 10 mM Tris, 500 mM NaCl, and 300 mM Imidazole (pH 7.5), and eluate was fur-

ther purified on a StrepTrap HP affinity column (GE Healthcare). Bound protein was

eluted in 10 mM Tris, 150 mM NaCl and 20 mM desthiobiotin (pH 8) (Sigma) and size

excluded in PBS (pH 7.4) on a Superdex 200 Increase 10/300 GL column (GE Healthcare)

to obtain trimeric RSVF.
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Negative-stained sample preparation, data acquisition, and image

processing

NRM was size excluded in PBS on a Superose 6 column (GE Healthcare) and diluted to a con-

centration of 0.015 mg/ml. The sample was adsorbed to a glow-discharged carbon-coated cop-

per grid (EMS, Hatfield, PA, United States) washed with deionized water and stained with a

solution of uranyl formate 0.75%. Observation was made using an F20 electron microscope

(Thermo Fisher, Hillsboro, OR, USA) operated at 200 kV. Digital images were collected using

a direct detector camera Falcon III (Thermo Fisher, Hillsboro, OR, USA) 4,098 × 4,098 pixels.

Automatic data collection was performed using EPU software (Thermo Fisher, Hillsboro, OR,

USA) at a nominal magnification of 50,000×, corresponding to a pixel size of 2 Å, and defocus

range of −1 μm to −2 μm.

Contrast transfer function for each image was estimated using CTFFIND4 [68]. One thou-

sand particles of nanorings were picked using XMIPP manual-picking utility within SCIPION

framework [69]. Manually picked particles were used as input into XMIPP auto-picking utility,

resulting in 13,861 particles. Particles were extracted and binned to have the box size of 100

pixels, corresponding to the pixel size of 4 Å; phase-flipped; and subjected for three rounds of

reference-free 2D classification without contrast transfer function correction in RELION-3.0

Beta [70].

Affinity determination using SPR

SPR experiments were performed on a Biacore 8K at room temperature with HBS-EP+ run-

ning buffer (10 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant

P20) (GE Healthcare). Approximately 100 response units (RU) of FFLM were immobilized via

amine coupling on a CM5 sensor chip (GE Healthcare). Serial dilutions of site II–specific Fabs

were injected as analyte at a flow rate of 30 μl/minute with 120 seconds of contact time. Follow-

ing each injection cycle, ligand regeneration was performed using 0.1 M glycine (pH 2). If not

stated otherwise, data analysis was performed using 1:1 Langmuir binding kinetic fits within

the Biacore evaluation software (GE Healthcare).

Mouse immunizations

Six-week-old, female Balb/c mice were ordered from Janvier labs and acclimatized for 1 week.

Immunogens were thawed on ice and diluted in PBS (pH 7.4) to a concentration of 0.2 mg/ml.

The immunogens were then mixed with an equal volume of 2% Alhydrogel (Invivogen),

resulting in a final Alhydrogel concentration of 1%. Other adjuvants were formulated accord-

ing to manufacturer’s instructions. After mixing immunogens and adjuvants for 1 hour at

4˚C, each mouse was injected with 100 μl, corresponding to 10 μg immunogen adsorbed to

Alhydrogel. All immunizations were done subcutaneously, with no visible irritation around

the injection site. Immunizations were performed on days 0, 21, and 42. Blood (100–200 μl)

was drawn on days 0, 14, and 35, and the maximum amount of blood (200–1,000 μl) was taken

by cardiac puncture at day 56, when mice were euthanized.

Antigen ELISA

Nunc MediSorp plates (Thermo Scientific, #467320) were coated overnight at 4˚C with 100 μl

of antigen (recombinant RSVF, FFLM, and NRM) diluted in coating buffer (100 mM sodium

bicarbonate [pH 9]) at a final concentration of 0.5 μg/ml. For blocking, plates were incubated

for 2 hours at room temperature with blocking buffer (PBS + 0.05% Tween 20 [PBST] supple-

mented with 5% skim milk powder [Sigma, #70166]). Mouse sera were serially diluted in
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blocking buffer and incubated for 1 hour at room temperature. Plates were washed five times

with PBST before adding 100 μl of anti-mouse HRP-conjugated secondary antibody diluted at

1:1,500 in blocking buffer (Abcam, #ab99617). An additional five washes were performed

before adding Pierce TMB substrate (Thermo Scientific, #34021). The reaction was stopped by

adding 100 μl of 2 M sulfuric acid, and absorbance at 450 nm was measured on a Tecan Safire

2 plate reader. Each plate contained a standard curve of motavizumab to normalize signals

between different plates and experiments. Normalization was done in GraphPad Prism. The

mean value was plotted for each cohort, and statistical analysis was performed using GraphPad

Prism.

Whole-virus ELISA

Nunc MaxiSorp ELISA plates (Thermo Scientific, #44-2404-21) were coated with heat-inacti-

vated, frozen-thawed cell lysates from Hep2 cells that were infected for 48 hours with RSV

[37]. A control lysate was prepared from uninfected Hep2 cells to subtract background signals.

ELISA was performed as described for the antigen ELISA.

Competition ELISA

Prior to incubation with a coated antigen plate, sera were serially diluted in the presence of

100 μg/ml competitor antigen and incubated overnight at 4˚C. ELISA curves of a positive con-

trol, motavizumab, are shown in S10 Fig. Curves were plotted using GraphPad Prism, and the

area under the curve (AUC) was calculated for the specific (NRM) and control (RSVN) com-

petitor. Percent competition was calculated using the following formula [71]:

% competition ¼ ð1 � ð
AUCðspecific competitor ðNRMÞÞ
AUCðcontrol competitor ðNRÞÞ

ÞÞ � 100

Peptide sandwich ELISA

The antigenic site II was synthesized as peptide by JPT Peptide Technologies, Germany. The

following sequence was synthesized and biotinylated at the N terminus:

MLTNSELLSKINDMPITNDQKKLMSNNVQI

For ELISA analysis of peptide-reactive serum antibodies, Nunc MediSorp plates were

coated with 5 μg/ml streptavidin (Thermo Scientific, #21122) for 1 hour at 37˚C. Subsequently,

ELISA plates were blocked as indicated above, followed by the addition of 2.4 μg/ml of the bio-

tinylated site II peptide. Coupling was performed for 1 hour at room temperature. The subse-

quent steps were performed as described for the antigen ELISA.

Serum competition using SPR

Approximately 300 RU of antigen was immobilized via amine coupling on a CM5 chip. Mouse

sera were diluted 1:100 in HBS-EP+ running buffer and flowed as analyte with a contact time

of 120 seconds to obtain an initial RU (RUnon-blocked surface). The surface was regenerated using

50 mM NaOH. Sequentially, motavizumab was injected four times at a concentration of 2 μM,

leading to complete blocking of motavizumab binding sites as confirmed by signal saturation.

The same serum dilution was reinjected to determine the remaining response (RUblocked sur-

face). The delta serum response (SRÞ corresponds to the baseline-subtracted, maximum signal
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of the injected sera.

DSR ¼ RU ðnon� Þblocked surface � RUBaseline

Percent blocking was calculated as follows:

% blocking ¼ ð1 � ð
DSRblocked surface

DSRnon� blocked surface
ÞÞ�100

A schematic representation of the SPR experiment is shown in S4 Fig, and calculated block-

ing values are shown in S1 Data.

ELISpot

B cell ELISpot assays were performed using the Mouse IgG ELISpot HRP kit (Mabtech, #3825-

2H) according to the manufacturer’s instructions. Briefly, mouse spleens were isolated and

pressed through a cell strainer (Corning, #352350) to obtain a single-cell suspension. Spleno-

cytes were resuspended in RPMI media (Gibco, #11875093) supplemented with 10% FBS

(Gibco), Penicillin/Streptomycin (Gibco), 0.01 μg/ml IL2, 1 μg/ml R848 (Mabtech, #3825-2H),

and 50 μM β-mercaptoethanol (Sigma) for approximately 60 hours of stimulation at 37˚C, 5%

CO2. ELISpot plates (PVDF 96-well plates, Millipore, #MSIPS4510) were coated overnight

with 15 μg/ml antigen diluted in PBS, followed by careful washing and blocking using RPMI

+ 10% FBS. Live splenocytes were counted, and the cell number was adjusted to 1 × 107 cells/

ml. Serial dilutions of splenocytes were plated in duplicates and incubated overnight with

coated plates. After several wash steps with PBS buffer, plates were incubated for 2 hours with

biotinylated anti-mouse total IgG (Mabtech, # 3825-6-250) in PBS, followed by incubation

with streptavidin conjugated to HRP (Mabtech, #3310–9) for 1 hour. Spots were revealed

using tetramethylbenzidine (TMB, Mabtech, #3651–10) and counted with an automatic reader

(Bioreader 2000; BioSys GmbH). Results were represented as number of spots per 106

splenocytes.

RSV neutralization assay

The RSV A2 strain carrying a luciferase gene (RSV-Luc) was a kind gift of Marie-Anne

Rameix-Welti, UFR des Sciences et de la Santé, Paris. Hep2 cells were seeded in Corning

96-well tissue culture plates (Sigma, #CLS3595) at a density of 40,000 cells/well in 100 μl of

Minimum Essential Medium (MEM, Gibco, #11095–080) supplemented with 10% FBS

(Gibco, 10500–084), L-glutamine 2 mM (Gibco, #25030–081), and penicillin-streptomycin

(Gibco, #15140–122) and grown overnight at 37˚C with 5% CO2.

Sera were heat inactivated for 30 minutes at 56˚C. Serial 2-fold dilutions were prepared in

an untreated 96-well plate using MEM without phenol red (M0, Life Technologies, #51200–

038) containing 2 mM L-glutamine, penicillin + streptomycin, and mixed with 800 pfu/well

RSV-Luc (corresponding to a final MOI of 0.01). After incubating diluted sera and virus for 1

hour at 37˚C, growth media were removed from the Hep2 cell layer, and 100 μl/well of the

serum-virus mixture was added. After 48 hours, cells were lysed in 100 μl buffer containing 32

mM Tris (pH 7.9), 10 mM MgCl2, 1.25% Triton X-100, 18.75% glycerol, and 1 mM DTT.

Lysate (50 μl) was transferred to a 96-well plate with white background (Sigma, #CLS3912).

Lysis buffer (50 μl) supplemented with 1 μg/ml luciferin (Sigma, #L-6882) and 2 mM ATP

(Sigma, #A3377) was added to each well immediately before reading luminescence signal on a

Tecan Infinite 500 plate reader.

On each plate, a palivizumab dilution series was included to ensure comparability of neu-

tralization data. In our assay, we determined IC50 values for palivizumab of 0.32 μg/ml, which
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is similar to what other groups have reported [41]. The neutralization curve was plotted and

fitted using the GraphPad variable slope fitting model, weighted by 1/Y2.

Sera fractionation

Streptavidin agarose beads (400 μl, Thermo Scientific, #20347) were pelleted at 13,000 rpm for

2 minutes in a tabletop centrifuge and washed with PBS. Biotinylated site II peptide (200 μg)

was incubated for 2 hours at room temperature to allow coupling of biotinylated peptide to

streptavidin beads. Beads were washed three times with 1 ml PBS to remove excess of peptide

and resuspended to a total volume of 500 μl bead slurry. Mouse sera from the same cohort

(n = 10) were pooled (4 μl each, 40 μl total) in a total volume of 200 μl PBS, and 90 μl diluted

sera were mixed with 150 μl of bead slurry, followed by an overnight incubation at 4˚C. Beads

were pelleted by centrifugation, and the supernatant was carefully removed by pipetting. Beads

were then washed twice with 200 μl PBS, and the wash fractions were discarded. To elute site

II–specific antibodies, beads were resuspended in 200 μl elution buffer (0.1 M glycine [pH

2.7]) and incubated for 1 minute before centrifugation. Supernatant was removed, neutralized

with 40 μl neutralization buffer (1 M Tris [pH 7.5], 300 mM NaCl), and stored at −20˚C for

subsequent testing for RSV neutralization. As a control, unconjugated streptavidin was used

for each sample to account for nonspecific binding.

NGS

RNA isolation. Mouse bone marrow was isolated from femurs, resuspended in 1.5 ml Tri-

zol (Life Technologies, #15596), and stored at −80˚C until further processing. RNA extraction

was performed using the PureLink RNA Mini Kit (Life Technologies, #12183018A) following

the manufacturer guidelines.

Antibody sequencing library preparation. Library preparation for antibody variable

heavy chain regions was performed using a protocol that incorporates unique molecular iden-

tifier (UID) tagging, as previously described by Khan and colleagues [72]. Briefly, first-strand

cDNA synthesis was performed by using Maxima reverse transcriptase (Life Technologies,

#EP0742) following the manufacturer instructions, using 5 μg RNA with 20 pmol of IgG gene–

specific primers (binding IgG1, IgG2a, IgG2b, IgG2c, and IgG3) with an overhang of a reverse

UID (RID). After cDNA synthesis, samples were subjected to a left-hand-side SPRIselect bead

(Beckman Coulter, #B23318) cleanup at 0.8X. Quantification of target-specific cDNA by a dig-

ital droplet (dd)PCR assay allowed exact input of 135,000 copies into the next PCR step. Reac-

tion mixtures contained a forward multiplex primer set that was specific for variable heavy

region framework 1 and possessed forward UID (FID), a 30 Illumina adapter specific reverse

primer, and 1X KAPA HIFI HotStart Uracil+ ReadyMix (KAPA Biosystems, #KK2802). PCR

reactions were then left-hand-side SPRIselect bead cleaned as before and quantified using

ddPCR assay. Finally, an Illumina adaptor-extension PCR step was carried out using 820,000

copies of the previous PCR product. Following second-step adaptor-extension PCR, reactions

were cleaned using a double-sided SPRIselect bead cleanup process (0.5X–0.8X) and eluted in

TE buffer.

NGS with Illumina MiSeq (2 × 300 bp). After library preparation, individual NGS librar-

ies were characterized for quality and quantified by capillary electrophoresis using a fragment

analyzer (Advanced Analytical DNF-473 Standard Sensitivity). Samples were then pooled and

NGS was performed on the Illumina MiSeq platform with a MiSeq Reagent Kit V3, 2 × 300 bp

paired-end (Illumina, #MS-102-3003), using an input concentration of 10 pM with 10% PhiX.

Error and bias correction. Error and bias correction was performed using molecular

amplification fingerprinting pipeline, as previously described [72, 73]: (1) For bioinformatic
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preprocessing, paired-end FASTQ files obtained from Illumina MiSeq were imported into

CLC Genomics Workbench 10 on the ETH Zurich Euler High Performance Computing

(HPC) cluster. A preprocessing workflow was run containing the following steps: trimming of

low-quality reads, merging of paired-end reads, removal of sequences not aligning to mouse

IGH constant sequences, and length filtering. (2) For error correction by consensus building,

after preprocessing all datasets were downsampled to contain the same amount of sequencing

reads as the dataset with the lowest overall number of reads (361,749 sequencing reads). For

error correction, a custom Python script was used to perform consensus building on the

sequences, for which at least three reads per UID were required. VDJ annotation and fre-

quency calculation was then performed by our in-house aligner [72, 73]. The complete error

correction and alignment pipeline is available under https://gitlab.ethz.ch/reddy/MAF.

Sequence analysis and data visualization. Data analysis was done by customized scripts

in R. For the identification of clonotypes, hierarchical clustering [73] was utilized to group

CDR3 sequences together. The following criteria were used: identical IGHV and IGHJ gene

segment usage, identical CDR3 length, and at least 80% CDR3 amino acid similarity to one

other sequence in the given clonotype (single linkage). The overlap of clonotypes between

both cohorts was analyzed by extracting the 20 most expanded clonotypes from each cohort

and visualizing their size, occurrence, and Vgene usage by a circos plot using R software cir-

clize [74]. CDR3 sequence similarities between overlapping clonotypes were represented

graphically with the R software motifStack [75]. All scripts are available upon request.

Supporting information

S1 Fig. Adjuvant screen for FFL_001 immunogen. Female Balb/c mice (five animals/group)

were immunized three times (days 0, 21, 42) with 10 μg FFL_001 monomer adsorbed to differ-

ent adjuvants, and serum was analyzed on day 56. (A) Immunogenicity of FFL_001 formulated

in different adjuvants. Serum titers were determined against FFL_001 at day 56 of the immuni-

zation protocol. FFL_001 adsorbed to alum showed highest overall immunogenicity. (B) Pre-

fusion RSVF cross-reactivity of FFL_001 immunized mice after three immunizations. Four

out of five mice immunized with FFL_001 formulated in alum showed serum cross-reactivity

with prefusion RSVF. Data are available in S1 Data. RSVF, respiratory syncytial virus fusion

protein.

(TIF)

S2 Fig. Homology-guided resurfacing of FFL_001. (A) Sequence alignment of FFL_001 and

FFLM. (B) Resurfaced variant FFLM is monomeric in solution, as assessed by size exclusion

coupled to an online multiangle-light scattering detector. Determined mass in solution is 14.7

kDa ± 3.5%, which is close to the theoretical molecular weight of 14.4 kDa. (C) Relative surface

area of RSVF antigenic site II in prefusion RSVF (PDBID 4JHW), FFLM, and NRM (model

based on RSVN structure with PDBID 2WJ8). The motavizumab epitope is highlighted in red,

blue patches indicate sequence changes of FFLM compared to FFL_001, and pie charts show

the fraction of antigenic site II surface area compared to overall immunogen surface area.

SASA was computed in PyMol in presence and absence of motavizumab. Percent SASA of

antigenic site II is nearly identical when comparing RSVF and NRM, whereas the FFLM

monomer shows approximately 3-fold greater relative surface area of antigenic site II, because

of its small size. PDB, Protein Data Bank; RSVF, respiratory syncytial virus fusion protein;

SASA, solvent accessible surface area.

(TIF)
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S3 Fig. SPR sensorgrams for site II nAbs. Prefusion RSVF or FFLM was immobilized on the

sensor chip surface via amine coupling. Serial dilutions of site II–specific Fabs were injected as

analyte. With the exception of ADI15601, which was fitted to a two-state reaction model for

binding to FFLM, all data were fitted to a 1:1 Langmuir model within the Biacore evaluation

software (GE Healthcare). Fab, antibody variable fragment; nAb, neutralizing antibody; RSVF,

respiratory syncytial virus fusion protein; SPR, surface plasmon resonance.

(TIF)

S4 Fig. Schematic representation of the surface plasmon resonance competition assay.

Mouse sera were injected on an antigen-coated sensor chip surface to measure initial response

(orange). Following regeneration, motavizumab binding sites were blocked with saturating

amounts of motavizumab. Residual serum response was determined on a blocked surface

(blue). For data analysis, response units at indicated time points were extracted, and percent

competition was calculated as described in Methods and shown in S1 Data.

(TIF)

S5 Fig. Far-ultraviolet circular dichroism spectrum of antigenic site II peptide. The site II

peptide adopts a flexible conformation in solution, measured in phosphate-buffered saline

buffer at 25˚C.

(TIF)

S6 Fig. Mice immunized with synthetic immunogen show low levels of cross-reactivity

with recombinant RSVF and negligible binding to viral lysate. Mice were immunized three

times with prefusion RSVF, NRM, or FFLM as shown in Fig 2. (A) Sera from day 56 were ana-

lyzed by ELISA for binding to prefusion and postfusion RSVF. Prefusion RSVF–immunized

mice showed lower reactivity to postfusion RSVF than to the prefusion form. FFLM- and

NRM-immunized mice showed low levels of cross-reactivity with pre- and postfusion RSVF.

Data shown are from one out of three independent experiments. (B) Day 56 sera from 10 mice

were pooled and tested for binding to lysate of Hep2 cells, which had been infected for 48

hours with RSV. As background control, noninfected Hep2 cell lysate was prepared, and

curves shown were background-subtracted. NRM-immunized mouse sera strongly react with

viral lysate, whereas mice immunized with FFLM only showed negligible binding to viral

lysate. The strong reactivity of NRM-immunized mice derives from antibodies raised against

the RSVN carrier protein. Sera from prefusion RSVF–immunized mice are shown as control.

Data shown are from one experiment performed in triplicates. Data are available in S1 Data.

RSVF, respiratory syncytial virus fusion protein; RSVN, RSV nucleoprotein.

(TIF)

S7 Fig. Overlapping clonotypes obtained from next-generation antibody repertoire

sequencing of mice immunized with RSVF or NRM. When comparing clonotypes, defined

as the same VH gene and 80% sequence similarity in the HCDR3, NRM, and RSVF immuniza-

tions yield 300 overlapping clonotypes. HCDR3, heavy chain complementarity-determining

region 3; RSVF, respiratory syncytial virus fusion protein.

(TIF)

S8 Fig. Correlation of site II peptide–specific serum titer with RSV neutralization IC50.

Correlations for the (A) prime-only mouse cohort and the (B) homologous boost cohort. Data

represent the mean of two independent experiments, each measured in duplicates. Pearson

correlation coefficients (r2) and p-values were calculated in GraphPad Prism. Data are avail-

able in S1 Data. RSV, respiratory syncytial virus fusion protein.

(TIF)
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S9 Fig. Enrichment of site II–specific antibodies from mouse sera. (A) Experimental setup.

Streptavidin agarose beads were conjugated to biotinylated antigenic site II peptide. As con-

trol, unconjugated streptavidin beads were prepared. Sera from 10 mice within each cohort

were pooled and mixed with conjugated and unconjugated beads. Column flow-through and

elution fractions were analyzed by ELISA (B, C), and eluted site II–specific antibodies were

analyzed in an RSV neutralization assay (D). (B) Analysis of column flow-through for site II

peptide reactivity by ELISA. Immunization groups as described in Fig 4 (prime-only, homolo-

gous boost, heterologous boost, and 3x NRM). ELISA signal (OD at 450 nm) for site II peptide

reactivity is shown for column flow-through from serum fractionation as depicted in (A).

Streptavidin beads that were not coupled to antigenic site II peptide were used as controls and

did not deplete site II reactivity in the flow-through. Data and error bars presented are aver-

aged from two independent experiments. (C) ELISA against antigenic site II peptide of the elu-

tion fractions as shown in (A). Antibodies eluted bound specifically to the antigenic site II

peptide. (D) Example RSV neutralization assay curves from elution fractions, obtained from

site II conjugated (black) or unconjugated streptavidin beads (gray). Luciferase signal is plotted

on the y-axis and is a measure for RSV replication as previously reported [76]. The dilution

factor of purified antibodies is indicated on the x-axis. Data shown are from one experiment

performed in duplicates. Data are available in S1 Data. RSV, respiratory syncytial virus.

(TIF)

S10 Fig. Competition ELISA with motavizumab antibody control. Plates were coated with

prefusion RSVF as described in the Methods. Three-fold serial dilutions of motavizumab (ini-

tial concentration = 30 nanomolar) were prepared in presence of different competitors

(RSVN, NRM, or none). Following overnight competition at 4˚C, binding of motavizumab to

RSVF was measured. As expected, RSVN competition did not affect RSVF binding of motavi-

zumab. In contrast, NRM efficiently competed with RSVF for motavizumab binding at the

indicated competitor concentration. Data shown are from one experiment, with error bars

derived from technical duplicates. Data are available in S1 Data. RSVF, respiratory syncytial

virus fusion protein.

(TIF)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying data for Figs 1B,

2B, 2C, 2D, 3A, 3C, 3D, 4B, 4C, 4D, 4E, 5A, 5B, 5C and 5D and S1A, S1B, S6A, S6B, S8A,

S8B, S9B, S9C, S9D and S10.

(XLSX)
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