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Abstract

Objective

Premature babies have several immature functions and begin their life under high medical supervision.

Since the sleep organization di�ers across postmenstrual age, its analysis may give a good indication of the

degree of brain maturation. However, sleep analysis (polysomnography or behavioral observation) is di�cult

to install, time consuming and cannot systematically be used. In this context, development of new ways to

automatically monitor the neonates, using contactless modalities, is necessary. Therefore, this study presents

an innovative non-invasive approach to semi-automatize the classi�cation of infant behavioral sleep states.

Methods

First, three descriptors were extracted from audio and video recordings: vocalizations, motion and eye

state of the baby. For this purpose, an original semi-automatic algorithm for the estimation of the eye state

was proposed. Secondly, the three descriptors were used in order to obtain an estimation of the behavioral

sleep states. Five classi�ers (K-Nearest Neighbors, Linear Discriminant Analysis, Support Vector Machine,

Random Forest and Multi-Layer Perceptron) were compared to an expert annotation.

Results

Firstly, the comparison of the semi-automatic eye state estimation to manual annotations of 10 videos led

to a mean accuracy of 99.4%. Secondly, sleep stage classi�cation was performed. Best results were obtained

with Random Forest, for Quiet Alert and Active Alert stages, with 93.5% and 99.0% of accuracy respectively.

Conclusion

The proposed method provides a high capacity to identify alert sleep stages but the di�erentiation between

Quiet Sleep and Active Sleep only by behavioral observations still remains a di�cult task to achieve.

Signi�cance

Results presented in this paper are new since no similar approach was proposed in the literature in the

context of neonatal intensive care unit. They augur well for the automatic sleep organization assessment to

improve newborn care.
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1. Introduction

Preterm birth, de�ned as birth before 37 weeks of gestation, is concerning 15 million babies per year or

11% of all live births worldwide and this number tends to increase every year [1].

Premature babies have several immature functions such as digestive, immunological, cardio-respiratory

or neurological functions and begin their life in a Neonatal Intensive Care Unit (NICU), generally in an

incubator, under high medical supervision. Their health status is monitored, as well as their maturation, in

order to program the incubator exit and then the discharge home. This monitoring relies on several vital

signs (cardiac activity, breathing, blood pressure. . . ), and may be extended by a sleep analysis, leading to a

sleep stage sequence as a function of time, also called hypnogram [2, 3].

Since the sleep behavior di�ers across PostMenstrual Age (PMA), its analysis may give a good indication

of the degree of brain maturation. In particular, the duration of sleep/wake cycles is supposed to increase

with PMA and the sleep organization to evolve with more time spent in quiet sleep [4]. For neonates, two

sleep scoring techniques exist: the polysomnography based on the analysis of the ElectroEncephaloGram

(EEG) and the direct behavioral observation, which is most commonly used. Based on the rules of Prechtl

[5], the sleep scoring is performed in the presence of the baby, by observing body activity levels, eye state

(open or closed), respiration regularity, vocalizations. . . This technique, contactless and without constraint

for the baby, is particularly recommended in the NIDCAP (Newborn Individualized Developmental Care and

Assessment Program) [6], centered on the comfort of the baby. However, sleep analysis (polysomnography

or behavioral observation) is di�cult to install, time consuming and cannot systematically be used. In this

context, development of new ways to automatically monitor the neonates, using contactless modalities, is

necessary.

This work is a part of the Digi-NewB project, funded by the European Union programme for Research

and Innovation Horizon2020. Its objective is to reduce mortality, morbidity and health costs of hospitalized

newborns by assisting clinicians in their decision-making related to sepsis risk and neurobehavioral matura-

tion. For this purpose, the project aims to develop a new generation of monitoring systems in NICU, using

clinical and signal data from di�erent sources (electrophysiological, audio and video).

First studies using video as a support of sleep analysis appeared in 1969, when the Association of the

Psychophysiological Study of Sleep (APSS) highlighted the importance to develop a guide for assessing infant

sleep. In fact, contemporary criteria (Rechtscha�en and Kales [7]) were not applicable to the infants, who

present unique behavioral features of development. Two years later, this manual was proposed by Anders

et al. and recommended to supply polysomnographic recordings by behavioral observations [8]. From there,

Anders et al. proposed to study infants using only behavioral observations, sometimes supplemented by

time-lapse video recordings, an alternative method for long-term recordings. In [9], a study was performed

with full-term infants, at two and eight weeks of age. Behavioral states were scored from video considering
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eye state, vocalizations and movements. The polygraphic scoring was based on EEG, electrooculogram,

electromyogram and respiratory signals. A correlation of 0.79 was obtained between both scorings of the

three states (Active REM Sleep, Quiet REM Sleep, Wakefulness). Fuller et al. proposed a similar approach

with premature newborns, but only focused on the eye state and the body movements. Furthermore, only

sleep stages were considered and vocalizations were not included [10].

The automatic sleep stage classi�cation has been much less addressed in newborns, full-term or preterm,

than in adults. However, several modalities were studied including EEG [11�16], cardiorespiratory signals

[17] and facial expressions [18]. Though, these methods o�er a sleep stage classi�cation more or less speci�c

regarding the PMA. In fact, EEG can only be investigated to distinguish quiet sleep from all other sleep

stage under the age of 32 weeks PMA, whereas facial expression assessment can provide a more speci�c

sleep stage classi�cation since 26 weeks PMA. For their part, cardiorespiratory analyses can be reliable for

particular sleep stage quali�cation before 32 weeks PMA [3].

This paper proposes to estimate behavioral sleep states from audio and video acquisitions, which is

suitable with a contactless and non invasive monitoring, an approach never envisaged before in the context

of NICU [19]. It is based on two main steps (Figure 1):

• Audio and video processing, leading to the characterization of information of three types: i) vocaliza-

tions, ii) motion and iii) eye state.

• Combination of the three signals in order to obtain an estimation of the behavioral sleep states.

Figure 1: Work�ow of the methodological steps for the behavioral sleep state estimation.

Paper is organized as follows. In section 2, methods for the extraction of vocalizations, motion and

eye state and the automatic estimation of sleep stages are described. Section 3 is devoted to the results

concerning the eye state estimation algorithm and the classi�cation of sleep stages.
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2. Methods

In this section, methodology for the extraction of information from audio and video is �rst presented. A

larger part is devoted to the description of the method we developed for the eye state estimation. Then, we

propose to estimate sleep stages from these extracted signals by the use of di�erent classi�ers.

2.1. Database

Videos were acquired during a project conducted at the University Hospital of Rennes, approved by the

Committee on Protection of Individuals (CPP Ouest 6-598) and complying with standards established by the

Declaration of Helsinki. Ten newborns were included in this study and the signing of an informed consent,

was obtained from parents for each of them.

During the experiments, a camera was set up in the room of the babies to record the scene. It was

installed near the bed in order to observe the major part of the body. Recordings were performed in

moderate obscurity. The camera had a resolution of 720x756 pixels and recorded 25 frames per second.

Sound was acquired by a microphone integrated in the camera with a frequency sampling of 8 kHz. The

choice of this low sampling rate has been motivated by our objective to simply detect periods with sound

activity while keeping a fast computation time. To consider conditions compatible with a monitoring context,

no speci�c setup was imposed.

Recordings were performed between the 7th and the 11th day of life of premature newborns having a GA

ranged from 26 to 32 weeks and, consequently, a PMA comprised between 28 and 33 weeks (see Table 2).

Each video duration was between 10 and 32 minutes, leading to a total duration of more than 4 hours (242

minutes and 14 seconds).

For each video recording, a frame was randomly selected and reported on Figure 2 to illustrate the

complexity of the database. One can observe that all infants lay on one side and are most of the time

covered by a blanket. Four of them are equipped with a ventilatory support and six of them are intubated.

Di�erences can also be noticed in luminosity conditions and camera distances. In audio recordings, only

background noises of low energy, for example emitted by the ventilator, were reported.

A scoring of sleep stages, based on a direct behavioral observation [5], was synchronously carried out

by a NIDCAP expert during the recording, considering �ve stages: Quiet Sleep (QS), Active Sleep (AS),

Drowsiness (D), Quiet Alert (QA) and Active Alert (AA).

2.2. Vocalizations' extraction

The development of automated sound processing began in the 1960s (see [20] for an historical review). In

the context of monitoring, the main issue is to extract newborns vocalizations, also called Voiced/UnVoiced

(V/UV) detection. Several strategies were recently proposed to perform this detection automatically. A

V/UV detection procedure was proposed in [21], where an interval was selected as voiced if the maximum of
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Figure 2: Overview of 10 videos of premature newborns with a PMA comprised between 28 and 33 weeks. All infants lay on

one side and are most of the time covered by a blanket. Four of them are equipped with a ventilatory support and six of them

are intubated.

the autocorrelation function is greater than a �xed threshold. Several techniques based on the thresholding

of the Short-Term Energy (STE) were also investigated [22�27].

Here, baby vocalization detection is performed by applying the methodology proposed in [24]. It is based

on the computation of the STE in 20 ms length windows, with 50% overlap between adjacent windows.

Then, the highest STE intervals, corresponding to baby vocalizations, are detected using two thresholds,

automatically selected using Otsu method [28]. Finally, to construct V (t) signal, values of unvoiced frames

are set to 0. An example of a raw sound signal and the resulting vocalization signal V (t) is given in Figure 3.

Figure 3: Example of a soundtrack processing (video 9): Top: Raw sound signal - Bottom: Vocalization signal V (t).
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2.3. Motion estimation

Many methods have been proposed in the literature to estimate and characterize motion in videos [29].

In paediatrics, speci�c topics such as general movement assessment or detection of neonatal seizures were

addressed [30�32]. In this work, the goal is not to estimate the local motion of the baby, which would be very

challenging because of the unconstrained acquisition setup, but to globally characterize its activity. For this

purpose, we consider the modi�cations between two successive frames by computing their di�erence [33].

In order to limit the in�uence of noise, the resulting di�erence image is thresholded with a value TM

(typically low). The amount of activity at a time t, or "motion signal" M(t), is obtained by counting the

number of pixels above the threshold. An example is given in Figure 4.

Figure 4: Example of a motion signal M(t) (video 9). Frames acquired before and during movements are presented.

2.4. Eye state estimation

As for adults, where the conditions are usually controlled (full face, front view and open eyes, good

luminosity, no occlusion. . . ) [34], eye tracking of infants has been only addressed in a few speci�c studies.

For instance, they were always located in front of the camera and seated either on a parent's lap [35], in an

infant chair [36] or in a baby car seat [37, 38].

These conditions being not ful�lled, a speci�c algorithm was developed for the estimation of the eye state

E(t). As the baby may move during the recordings, the algorithm relies on a tracking step of the region of

an eye associated with a detection step in this area. It is a semi-automatic procedure, with a limited number

of user interactions.
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2.4.1. Initialization

The region of the eye has to be tracked since the baby moves during the video acquisition. However,

since the state of the eye is changing (open, closed, or in-between), its appearance is often modi�ed. Thus,

we decided to perform the tracking of another region of the face, supposed to keep the same appearance and

to be at a constant distance from the eye. This region is called the "reference" region of interest (RRef ),

and may for example include the nose or an ear. Depending on the acquisition characteristics, the choice is

left to the user and performed during the initialization of the processing, i.e. on the �rst frame (RRef (0)).

The user has also to select the region of the eye (REye(0)). The link between both regions is de�ned by the

relative position between the regions' centers, called δROI (Figure 5(a)).

Figure 5: Illustration of the eye state estimation algorithm (video 1): (a) Initialization; (b) Processing steps for the eye

segmentation; (c) Example of an eye state signal E(t) with normalized values.

2.4.2. Tracking of the reference region

For each new frame, the reference region is �rstly tracked using the template matching approach. It

is based on the comparison between the template and each possible position in the new frame. Since the

motion amplitude is limited between two successive frames, the search is restricted to a region centered

on the previous position of the reference. For each position in the search region, a metric is computed to

evaluate the correspondence between the template and the new frame's region centered on this position.

The reference region being supposed to keep its appearance, the considered metric was the Sum of Squared

Di�erences (SSD) between the pixels' intensities.

For each new frame at time t, the considered template is, �rstly, the initial reference region (RRef (0)).

Then, the minimal value of the metric SSD(t) obtained by the template matching is compared to two

threshold values D1 and D2, as follows:

• SSD(t) < D1: the reference region is considered to have been found in the frame t; ROIRef (t) is

de�ned as the corresponding position;
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• D1 ≤ SSD(t) ≤ D2: the resulting position has to be re�ned; a new template matching is applied,

using RRef (t− 1) as the template;

• SSD(t) > D2: the reference region has been lost, the tracking is stopped and the system waits for

user's interactions.

At each frame t, after the estimation of RRef (t), the eye region REye(t) is retrieved thanks to the relative

position δROI .

2.4.3. Eye detection

Once the eye region REye(t) has been found in the frame t, a segmentation process is used to extract the

eye contour. It includes the following steps (Figure 5(b)):

• A "black hat" morphological transformation using a structuring element of size 15x15 to enhance the

contrast between the darkest regions and their neighborhood;

• A thresholding of the resulting image by a value TE ;

• A morphological erosion using a structuring element of size 5x5 to remove small regions;

• An edge detection of the extreme outer contours, using Green's theorem.

Then, the eye state E(t) is de�ned by its surface, depending on the number k of detected contours, as

follows:

• k = 0: the eye is considered closed and E(t) = 0;

• k = 1 or k = 2: the eye is considered as open, E(t) is the sum of the surfaces of the k detected edges

and δROI is updated with the center of the eye area. The case k = 2 occurs when the contour is divided

in two areas separated by the pupil;

• k > 2, this result corresponds to noisy detections. The eye is taken for not detected, the tracking is

stopped and the system waits for a user interaction.

2.4.4. User interactions

In the case of uncertainty concerning the tracking (SSD(t) > D2) or concerning the detection (k > 2),

the algorithm stops and the user has to select again both regions of interest (as in the �rst frame), possibly

after forwarding the video if one occlusion occurs.
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2.4.5. Smoothing of the eye state signal

Once the video recording has been processed, a sliding median �lter is applied on the eye opening values

to limit the brief incoherent changes. Since an eye blanking has been observed to last less than �ve successive

frames, the median �lter window length has been set up at 5.

An example of a eye state signal is given in Figure 5(c).

2.5. Sleep stage estimation

In this section, we propose a strategy to characterize newborn sleep organization based on the fusion of

the extracted descriptors.

In this objective, data are �rst standardized by applying a set of post-processing to the three signals

V (t), M(t) and E(t):

• A Hilbert transform is applied to the vocalizations signal V (t) to recover the signal envelope and

proceed next with a positive signal;

• It is also downsampled to 25 Hz, the sampling frequency of motion and eye state signals;

• The three signals are smoothed using a median �lter on 1-second length windows;

• The three signals are normalized to the range [0, 1], relatively to the global maximum of the database

(separately for each type of signal).

The resulting signals are called V̄ (t), M̄(t) and Ē(t).

Then, a model to estimate sleep stages on the whole population, based on machine learning, can be built.

For this purpose, each t is considered as a sample de�ned by three values V̄ (t), M̄(t) and Ē(t), associated

with its sleep stage label (QS, AS, D, QA or AA). We selected �ve commonly known approaches that cover

a large scope of classi�cation hypotheses: K-Nearest Neighbors (KNN) [39], Linear Discriminant Analysis

(LDA) [40], Support Vector Machine (SVM) [41], Random Forest (RF) [42] and Multi-Layer Perceptron

(MLP) [43]. Since those methods need balanced dataset, a random under-sampling method was �rst applied

to equalize the number of elements of each sleep stage class. Then, the dataset is randomly split into a

training and a testing part containing respectively 60% and 40% of the balanced dataset. These operations

are repeated 30 times.

3. Results

This section is dedicated to the validation of our approach. First, software and platforms that were used

to produce these results are reported. As sound segmentation and motion estimation have been already
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evaluated by their authors, their conformity was only con�rmed by visual assessment. Nevertheless, an

original strategy was de�ned for the evaluation of our eye state estimation method.

Then, performances concerning sleep stage estimation are given by comparing the results of the �ve

di�erent machine learning approaches to an expert annotation.

3.1. Software and Platforms

Several software and platforms have been involved in this project. Video processing (motion and eye state

estimation) was developed in C++ with OpenCV 3.0 library whereas vocalization extraction and statistical

analyses were performed with Matlab R2018a. Machine learning approaches were implemented in Python

3.6 using scikit-learn 0.20.0 [44].

3.2. Tuning of the parameters

Eye state detection. Some parameters in motion as well as in eye state detection algorithms had to be tuned

to �t the database properties.

Regarding motion analysis, the threshold TM has been de�ned by studying the cumulative histogram of

video sequences with empty rooms (without baby or adult), resulting to a low value of 10, initial intensity

ranging in [0, 255].

Three thresholds were used in the eye state estimation algorithm. Thresholds D1 and D2 (intensity

ratios), that de�ned the accepted appearance modi�cations of the reference region, were empirically set to

0.02 and 0.04, respectively. The threshold TE was manually selected between 15 and 25, depending on the

video luminosity. In fact, the contrast is less pronounced in low luminosity videos and consequently, a lower

threshold is necessary.

Classi�er parameters. In section 3.4.1, �ve classi�ers are compared. For each of them, the set of parameters

resulting to the highest performances was �rst identi�ed. For that purpose, several parameters and hyper-

parameters have been tuned. A summary of the tests is reported in Table 1. From there, the best set of

parameters (in bold in Table 1) was retained for each method. It is important to note that some parameters

had little or no in�uence on the performances. When several values were suitable, we chose to keep the one

with the lowest computational time.

3.3. Performances of the eye state estimation method

The eye state estimation algorithm was evaluated by comparing its results with a manual analysis of the

videos. On the one hand, video durations and sampling rate implied that a visual scoring frame by frame

was not possible. A scoring with another resolution (for example one value per second) was also rejected

because it could avoid some short events (as eye blinking). For these reasons, we chose to perform a scoring

of 5% of randomly selected frames. On the other hand, intermediate states being di�cult to objectively
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Table 1: Parameters testing summary. Final selecting sets of parameters are marked in bold.

Method Parameters

KNN Number of neighbors ∈ [1, 3, 5, 10, 20]

Minkowski distance: Manhattan or Euclidean

LDA Solver ∈ [singular value decomposition, least squares solution, eigenvalue decomposition]

SVM Kernel ∈ [linear, Gaussian, polynomial]

Hyper-parameters depending on the kernel:

→ linear: no additional parameter

→ Gaussian: margin ∈ [0.01, 0.1, 1, 10, 100, 103, 104, 105, 106, 107]

gamma ∈ [0.01, 0.1, 1, 10, 100, 103, 104, 105, 106, 107]

→ polynomial: degree ∈ [1, 2, 3, 4]

RF Number of trees ∈ [5, 10, 50, 100, 200]

Quality split criterion: gini or entropy

MLP Hidden layer size ∈ [1, 2, 5, 10, 20]

Activation function ∈ [identity, logistic sigmoid, hyperbolic tan, recti�ed linear unit]

determine, the user decided if the eyes were 'Open' (=1) or 'Closed' (=0). In this context, the values of the

surfaces provided by the algorithm (Figure 5(c)) were binarized i.e. all the non-zero values were set to 1 (i.e.

"Open").

Considering the manual scoring as the reference, the Sensitivity (Se), Speci�city (Sp) and Accuracy (Acc)

of the proposed method were computed for the 10 videos and are reported in Table 2. Results show that

accuracies range from 96.56% to 100% (99.4% on average). More precisely, sensitivity and speci�city are

always greater than 95% and 97% respectively, except in the case of the video 7 where Se is equal to 78.57%.

In this video, the baby had very rapid motions that led to tracking errors.

The total number of user interactions (Table 2) has also been quanti�ed and is supplemented by the

number of them not due to hidden eye. We can also notice that most of time only few interactions were

required (often none and up to two) except for three videos (5, 7 and 9). For video 5, the total number of

interactions is consistent since it appeared mostly in case of hidden eye. However, processing of videos 7 and

9 requested irrelevant manual interactions due to the change of appearance of the ROIRef , for example after

a rotary motion of the head. Nevertheless, performances on video 7 and 9 are high with a global concordance

of 96.56% and 99.25%, respectively.

Computational time of our approach is attractive since the algorithm takes 0.047 second to process one

frame, in its current version. As an example, the video 8 (duration: 41'02), that required no interaction
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Table 2: Newborn data (number, GA and PMA in weeks+days). Video data (duration in min'sec, number of frames visually

scored and their repartition 'Open'/'Closed' ). Algorithm's performance (sensitivity, speci�city, accuracy in %). Number of

user interactions (total number and regardless hidden eye).

Newborns Videos Performances Nb of Interactions

No GA PMA Duration Nb of frames Nb of frames Nb of frames Se Sp Acc Total Regardless

(w+d) (d) (min'sec) visually scored 'Open' 'Closed' (%) (%) (%) number hidden eye

1 28+4 29+6 17'27 1384 40 1344 98.21 99.68 99.64 2 2

2 28+4 29+4 31'50 2367 343 2024 99.71 99.75 99.75 1 1

3 28+4 29+4 30'58 2357 132 2225 97.73 99.87 99.75 2 2

4 28+6 30+0 27'10 2105 56 2049 98.21 100.00 99.11 0 0

5 27+0 28+4 10'11 831 0 831 - 100.00 100.00 25 2

6 28+6 29+6 24'04 1634 146 1478 99.32 100.00 99.66 0 0

7 30+6 32+0 15'07 1198 28 1170 78.57 99.74 99.25 43 37

8 26+0 27+1 41'02 3064 4 3060 100.00 100.00 100.00 0 0

9 31+3 32+4 16'03 1191 584 607 95.38 97.69 96.56 54 25

10 29+5 30+6 28'22 2156 4 2152 100.00 100.00 100.00 0 0

(except the initialization step), was processed in 48 minutes and 12 seconds. In case of interaction, time to

resume the algorithm is equivalent to the initialization step duration, meaning a few seconds. In addition,

several videos can be processed simultaneously optimizing considerably the time required to assess the sleep

of di�erent babies.

3.4. Results of sleep stage classi�cation from extracted descriptors

3.4.1. Descriptor analysis

As a �rst step, the distribution of the values (mean ± std) of signals V̄ (t), M̄(t) and Ē(t), obtained on

the whole database, as functions of the sleep stages provided by the expert, are reported in Figure 6.

Figure 6: Values (mean ± std) of signals V̄ (t), M̄(t) and Ē(t) as functions of the sleep stages: Quiet sleep (QS), Active

Sleep (AS), Drowsiness (D), Quiet Alert (QA) and Active Alert (AA). Pairwise comparison among sleep stages that revealed

statistically signi�cant di�erences (p<0.05) by Mann-Whitney U test are identi�ed by brackets.

We can observe that there are no vocalization in QS and AS, very low amplitudes in D and QA, and
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higher values and dispersion in AA. Motion values are null in QS, very low in AS, moderate in D and QA,

and very high in AA.

Results are di�erent for eye state. Eyes are coherently closed in sleep stages QS and AS. In D, values

have a low mean amplitude with a moderate standard deviation, corresponding to short openings. Highest

values and dispersion of the values are observed in QA since infant eyes are most of the time opened, but

can also be closed. In AA, values are low, because a newborn closes most of the time the eyes when he is

nervous or while he is crying (see right picture in Figure 4).

Statistical analyses were also conducted by Mann-Whitney U test to discuss pairwise di�erences between

sleep stages for each descriptor. Bootstrap method [45] was applied to minimize the repetitive e�ect of

our dataset. Hence, 100 draws of 24 random samples (representing only 0.2% of the less represented class)

have been achieved. The resulting median p-values were studied. Only statistically signi�cant di�erences

(p<0.05) are identi�ed by brackets in Figure 6. These results con�rm that our set of descriptors is valuable

to characterize sleep since most of sleep states can be di�erentiated from others by at least one descriptor.

We can also note that vocalization and motion features are discriminating in more cases (7 over 10) than

eyes (4 only). However, no descriptor showed statistical di�erences for QS vs AS.

Figure 6 shows the complementarity of the three informations, since the value repartition according to

the sleep stages is di�erent from a modality to another. Moreover, they are in accordance with the stage

de�nitions for the newborns [5] and give a qualitative validation of the approach. However, they, as of now,

augur potential di�culties to di�erentiate Active Sleep and Quiet Sleep.

3.4.2. Classi�cation results

Performances of the sleep stage classi�cation are evaluated taking as reference the manual scoring per-

formed by the expert. The results of the 30 repeated operations were averaged, which led to a mean accuracy

and standard deviation for each sleep stage.

Results presented in Figure 7(a) show �rst that the �ve classi�cation methods have greater accuracy

values for the alert stages (QA and AA). Results with KNN and LDA are �uctuating with high standard

deviations observed for some stages (e.g., D, QS and AS for KNN or QS and AS for LDA). To a lesser

extent, the same observation can be made for MLP in QS and AS. Although they are closed to SVM results,

best performances are obtained with Random Forest for QA and AA, with 93.5% and 99.0% of accuracy

respectively, while the results for calm stages (QS, AS and D) are weaker (under 84.1%).

To complement these results, Cohen's Kappa [46] and Kendall's tau [47] coe�cients have been computed

and reported in Figure 7(b).

Cohen's Kappa coe�cient, that measures a ratio-scaled degree of disagreement between two approaches,

shows, with greater values than 0.44 for all methods except LDA, a moderate concordance between sleep

stages provided by the expert and the ones automatically estimated [48]. Kendall tau coe�cient aims to
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Figure 7: Five machine learning methods are compared: KNN, LDA, SVM, RF and MLP. (a) Classi�cation mean accuracy

(%) and standard deviation for each sleep stage: Quiet sleep (QS), Active Sleep (AS), Drowsiness (D), Quiet Alert (QA) and

Active Alert (AA); (b) Cohen's Kappa and Kendall's tau coe�cients (mean ± std).

measure the association between two quantities, assessing the similarity between ordered data. For this

purpose, each stage was a�ected with a value from 1 (QS) to 5 (AA). For each machine learning approach,

excluding LDA, high degrees of concordance are observed (above 0.67), meaning that the estimation errors

are mainly made from one stage to another close one (e.g., AS was estimated instead of QS). As proof, a

test considering only two classes, QS+AS+D versus QA+AA (in other terms calm vs alert stages), led to a

higher accuracy of 94.8% with Random Forest classi�er.

In conclusion, all these results suggest that the estimation of alert stages (QA and AA) is correctly

performed, but that the di�erentiation between the three calm stages (QS, AS and D) remains more di�cult.

These results are not surprising considering that Drowsiness is an intermediate state by de�nition, and that

QS and AS are close in terms of behavior, as shown by Figure 6.

4. Conclusion

In this paper, a whole process was de�ned to semi-automatically and contactless monitor premature

newborns using audio-video acquisitions. It includes di�erent processing to extract baby's vocalizations,

motion and eye state. For the last one, a specially developed algorithm based on a two-step approach was

evaluated with manual annotations of 10 videos and led to a mean accuracy of 99.4%. Weaknesses have been

pointed out in the presence of rapid motion and/or complex transformation of the reference region.

Then, the three descriptors were used in order to obtain an estimation of the behavioral sleep states.

Five classi�ers (KNN, LDA, SVM, RF and MLP) were compared to a NIDCAP expert annotation. Best

results were obtained with Random Forest for the two alert stages QA and AA.

Results presented in this paper are new since no similar approach was proposed in the literature in the

context of NICU. In fact, no automatic classi�cation of Prechtl sleep stages was ever conducted in preterm

infants. All studies dealing with early days of preterm newborns were based on EEG analyses and only

quiet sleep detection was performed [13�15]. Only two studies dealing with preterm and full-term newborns
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proposed to identify four sleep states with EEG, but was focused on newborns at 38 to 42 weeks PMA [11, 16].

Alternatively, an automatic classi�cation of three states (sleep, awake and crying) was proposed from face

analysis [18]. However, authors reported that its application in a realistic hospital environment was not

directly possible. In addition, to date, no automated video analysis of sleep has been conducted on preterm

infants [3]. The same observation can be made concerning audio analyses. Furthermore, regardless of the

clinical target, the combination of audio and video descriptors is also innovative. Despite a wide variety of

publications about audio or video processing in paediatrics, only one study integrating both automatically,

were, to our knowledge, published [25]. Nevertheless, they were investigated separately.

If this preliminary study shows encouraging results, they will have to be con�rmed on a larger database.

Although, it is worthwhile to remind that the constitution of such a database is di�cult, notably because

the annotation of sleep stages by an expert is time consuming.

In the present study, algorithms are applied o�-line, on video recordings. The manual interactions for

eye state estimation are only required when needed (e.g., occlusions). In that case, the processing is paused.

Thus, there is no need for the user nor to perform the analysis in newborn rooms nor to continuously supervise

the processing. Consequently, in a heavy workload context for nurses, the sleep analysis can be deferred and

thus more newborns may bene�t from this follow-up. However, re�nements can be envisaged to enhance

performances and move towards a fully automated solution. For example, the eye state detection algorithm

robustness may be improved by tracking several regions of interest. In addition, an automatic selection of

region(s) of interest by the use of a deep learning approach could be considered on a larger database.

Moreover, it is important to note that the level of discomfort induced to the baby by such a strat-

egy is lower or equivalent to actual techniques but its impact, in both forms (semi-automatic/deferred or

automatic/continuous), on daily care routine will have to be studied.

Additionally, a better di�erentiation between Quiet Sleep and Active Sleep may be achieved by adding the

cardio-respiratory information, since it has been shown to be discriminative in Quiet Sleep [17]. However,

rather than using additional sensors, it would be doubtless preferable to pursue a non-invasive strategy.

Indeed, heart rate and respiration were recently estimated by automatic video processing in NICU in real

conditions [49, 50].

Nonetheless, these results augur well for the automatic sleep organization assessment to improve newborn

care, but also infant well-being and development. Indeed, this work shows the relevance of our approach to

estimate sleep stages by the means of non-invasive techniques such as audio and video processing. These

results are directly linked to Digi-NewB objectives and suggest the possibility to monitor sleep in premature

newborns and, thus, to quantify their neuro-behavioral development ex-utero.
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