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Abstract

Resting-state Arterial Spin Labeling (rs-ASL) is a rather confidential method
compared to resting-state BOLD but drives great prospects with respect to po-
tential clinical applications. By enabling the study of CBF maps, rs-ASL can
lead to significant clinical subject-scaled applications as CBF is a biomarker in
neuropathology. An important parameter to consider in functional imaging is
the acquisition duration. Despite directly impacting practicability and functional
networks representation, there is no standard for rs-ASL. Our work here focuses
on strengthening the confidence in ASL as a rs-fMRI method and on studying
the influence of the acquisition duration. To this end, we acquired a long rs-ASL
sequence and assessed the quality of typical functional brain networks quality over
time compared to gold-standard networks. Our results show that after 14 min
of duration acquisition, functional networks representation can be considered as
stable.
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1. Introduction

Functional MR imaging (fMRI) builds the links between location and func-
tion in the brain. The two main sub-domains in fMRI are task-based fMRI and
resting-state fMRI. In task-based fMRI, a functional location is considered to be
where the acquired signal matches with the task guidelines given to the subject.
In resting-state fMRI, as no task is given, the focus is on fluctuations in voxels
time-series induced by spontaneous neural activations. Similarities in these time-
series in different areas have shown to be not random, but matching function of
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the brain (Biswal et al., 1995). These similarities define the functional connec-
tivity of the brain and show the underlying cerebral architecture organized into
functional specialized units communicating with each other. Resting-state func-
tional imaging aims to identify functional areas of the brain and depict how they
interact outside any structural connectivity consideration (Van den Heuvel and
Hulshoff Pol, 2010) . Healthy and diseased subjects differ in functional networks
cartography and in the intensity of functional connectivity for major disorders
such as Parkinson’s disease (Gao and Wu, 2016), Alzheimer’s disease (Agosta
et al., 2012), severe depression (Craddock et al., 2009) or schizophrenia (Lynall
et al., 2010).

Another subdivision in fMRI concerns the way the signal is obtained. The
two major techniques are Blood Oxygen Level Dependent (BOLD) fMRI and
functional Arterial Spin Labeling (fASL). Based on neurovascular coupling ef-
fects, BOLD techniques rely on the local signal variation induced by the neuron
consumption of blood oxygen. Arterial Spin Labeling (ASL) is an MRI perfusion
technique which uses magnetically labeled arterial water protons as an endoge-
nous tracer. An inversion pulse labels the inflowing blood and after a delay called
post-labeling delay, a labeled image of the volume of interest is acquired. The
subtraction of the labeled image from a control image, i.e., non labeled, reflects
the quantity of spins that have perfused the imaged volume, producing what is
commonly called a perfusion-weighted (PW) image.

The PW map can be used to quantify the cerebral blood flow (CBF) under
some assumptions (Buxton et al., 1998; Borogovac and Asllani, 2012). The
quantification of CBF is the main advantage of ASL over BOLD. Indeed, the
latter provides an indirect and non-quantitative measurement of neural activity,
as it results from a combination of variations in CBF, cerebral blood volume and
cerebral metabolic rate of oxygen. While the pathologies mentioned above were
studied with BOLD, ASL allows to study a new set of pathologies with fMRI, such
as acute stroke (Wang et al., 2012) or chronic fatigue syndrome (Boissoneault
et al., 2016) since CBF abnormalities can characterize pathologies.

The main drawback of ASL is its lower signal-to-noise ratio compared to
BOLD fMRI. The repetition time (TR) is also twice to three times higher in fASL
compared to BOLD fMRI, which impacts its temporal resolution. Furthermore,
ASL can be implemented through numerous MRI sequences and meta-analyses
can be difficult to set up, for ASL shows a high sequence parameter depen-
dency(Grade et al., 2015; Mutsaerts et al., 2015). Nevertheless consensus seems
to overcome with years (Alsop et al., 2015). Predominant in clinical usage and
in academic research, BOLD is still considered as the gold standard in fMRI.
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However, as it provides quantification of CBF, ASL can be a serious contender
to BOLD when it comes to pathologies evaluation, especially for Alzheimer’s
disease (Alsop et al., 2010; Wolk and Detre, 2012; Zhang et al., 2016). The ab-
sence of contrast agent injection makes ASL well suited for longitudinal studies,
particularly for pediatric population or for population with poor venous access or
contrast agent contraindication.

The acquisition duration is an important parameter in an rs-fMRI study with
strong practical consequences. Most current studies work with a duration from
8 min to 13 min and a TR from 3 s to 4 s (i.e. 120 to 260 images). Intuitively,
one would assume the longer the duration, the better the sampling of the sig-
nal correlation across the brain and thus the better the acquisition. But this
requires to define what ”better” actually means and does not consider the prac-
tical questions of clinical implementation and subject resting-state upholding. To
the best of our knowledge, only few papers studied the influence of duration in
rs-BOLD (Birn et al., 2013; Bouix et al., 2017), whereas in rs-ASL, it has not
been explored yet. In this work, we first focus on the feasibility of detecting
functional connected regions of the brain from rs-ASL. We remain as close as
what a typical investigator of rs-ASL would experience by implementing usual se-
quence, processing and functional networks detection methods. We then assess
a trend over the duration influence on rs-ASL detected networks quality: we do
not directly assess whether an acquisition is good at a given time, but rather how
it evolves with longer durations. After describing the scores used and the mod-
eling approach, an in-depth analysis for the Default-Mode Network (DMN) will
be presented in order to illustrate scores evolution on the most typical resting-
state network. Finally, we will show results for all the functional networks under
consideration and discuss an optimal sequence duration in rs-ASL.

2. Material

2.1. Subjects

Seven healthy male right-handed subjects aged from 21 to 28 years (23.5 yo±2.5)
were involved in this study. All subjects gave informed written consent before par-
ticipating in the study. We have maintained the homogeneity of the population
in order to limit the influence of factors such as gender or age.

2.2. MR Acquisitions

The subjects were scanned on a 3.0T whole body Siemens MR scanner
(Magnetom Verio, Siemens Healthcare, Erlangen, Germany) with a 32-channel
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head coil. A 3D anatomical T1-weighted MP2RAGE image was acquired for
each subject. The resting-state ASL imaging was performed using a 2D EPI
pseudo-continuous (pCASL) sequence. Subjects were asked to keep their eyes
closed, to relax (mind-wandering) without falling asleep. We used the most com-
mon parameters reported in the literature: TR = 3500 ms, FoV = 224 x 224 mm2,
TE = 12 ms, LD = 1500 ms and a 1250 ms post-labeling delay (PLD). Volumes
were made of 24 slices of 64 × 64 voxels with 5 mm slice thickness with 20%
gap for a total resolution of 3.5×3.5×6 mm3. The number of volumes was 420
for a total duration of 24 min 30 s. For the 1250 ms PLD, we chose a balance
between a longer duration, about 1800 ms, recommended to optimize the qual-
ity of the CBF estimate (Alsop et al., 2015; Chen et al., 2015), and a shorter
duration, 600 ms, which seems to give a better functional representation (Liang
et al., 2012, 2014). We kept the PLD quite long as the main advantage of
ASL is ultimately to compute CBF although we will focus on functional areas
representation in this paper.

2.3. Data preprocessing

Each of the subjects’ raw acquisition is then divided into 46 sub-series. The
duration of these sub-series ranges from nearly 2 min (34 volumes) to 24 min 30,s
(420 volumes) with a time step of 30 s. For the sake of simplicity, we will only
mention rounded durations hereafter. All these subdivisions are made before any
preprocessing: the preprocessing is done independently on each sub-series. For
the preprocessing steps and their parameters we chose the most common ones
found in bibliography. All steps are shown in Figure 1.

3. Methods

3.1. Detecting networks with Seed-Based Analysis

To obtain the mapping of invidivual functional networks, we rely on seed-
based analysis (SBA) (Van den Heuvel and Hulshoff Pol, 2010). The principle
of this method, the first to be proposed to define functional connectivity (Biswal
et al., 1995), is quite straightforward. Considering a similarity measure (usually
linear correlation, but many contenders exist (Zhou et al., 2009)), SBA builds
functional areas by gathering voxels which exhibit a matching signal, in the sense
of the chosen measure, to that of a ROI, called the seed in this context. Even if
SBA is a very polymorphic modeling method, we use its most common form in
our work. Hence we consider linear correlation as the similarity measure and use
a set of 20 single voxels as seeds. Seeds are spread in the expected location of
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(a) (b)

(c)

Resting-state ASL Resting-state ASL Anatomical T1 3D MNI 152

Realignement of the 
functional volumes

Indirect registration of the functional volumes into the MNI 152 

Gaussian smoothing Pass-band filtering Denoising with COMPCOR

Figure 1: Preprocessing steps of the rs-ASL images. Preprocessing starts with the realignment
of the functional data. All the functional volumes are registered with the first one. Second
step is the indirect normalization of the functional volumes. It starts with registration of the
functional on the anatomical T1 3D (a). Then comes the registration of the anatomical on
the MNI 152 template (b). Finally, transformations of (a) and (b) are composed to register
functional on MNI (c). We then used Gaussian smoothing with typical 6 mm kernel and
pass-band filtering with a range from 0.005 Hz to 0.1 Hz. Final denoising was made with
COMPCOR. (Behzadi et al., 2007)

six usual functional networks: DMN, Sensori-motor, Language, Salience, Visual
and Cerebellum. The exact positions of the seeds in the MNI152 space are
provided in the appendix section and were suggested by the CONN toolbox. To
build a functional map for each seed, we statistically test whether the signal
between the seed and a candidate voxel is positively correlated with a risk of
1% FWER-corrected. This is a tough conservative testing compared to most of
rs-ASL (even fMRI in general) studies, but we agree with the recommendation
of (Eklund et al., 2016) on false positive underestimation in fMRI.

3.2. Evaluation scores

In order to investigate a trend afterwards, the individual functional maps
must be compared to a reference. For that purpose, we rely on the Multi-
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Subjects Dictionary Learning atlas (MSDL) by (Varoquaux et al., 2011). MSDL
is an atlas of 17 resting-state functional networks containing our 6 networks of
interest, and from which our seeds are independent. The key idea is to have
functional maps close to what an expert would expects to observe when looking
for the typical functional areas investigated here. To study the quality of the
detected networks as a function of the acquisition duration, we evaluate the
overlap between the SBA estimated functional maps and the MSDL references
(simply called ”reference” hereafter) through two measures: the Jaccard’s index
and the area under curve (AUC).

Let E be a set, let (vi)i6k∈N be observations in E and (M1;M2) ∈ {0; 1}E×
{0; 1}E binary categorical variables. Let A,B,C,D be four sets with respective
cardinals a,b,c,d defined by:

A := {vi |M1(vi) = 1,M2(vi) = 1}
B := {vi |M1(vi) = 1,M2(vi) = 0}
C := {vi |M1(vi) = 0,M2(vi) = 1}
D := {vi |M1(vi) = 0,M2(vi) = 0}

(1)

Almost all common similarity measures (Sokal measure family, Sørensen-Dice,
correlation etc.) can be defined with a,b,c,d. If one of the binary categorical
variable can be considered as the truth, let’s say M2, therefore a becomes the
number of True Positives, b of False Positives, c of False Negatives and d of
True Negatives. We also trivially have the Sensitivity : a/ (a+ c), Specificity :
d/ (d+ b), and the Positive Predicted Value (PPV): a/ (a+ b). In fMRI, the vi
are the voxels and the variables M1,M2 are the functional maps to be compared
(binary here, but the definition can easily be extended to probability maps).

3.2.1. Jaccard’s index

When comparing two spatially distributed data, the most obvious measure
is the Jaccard’s index: the ratio between the size of their intersection and their
union. It is defined by J = a / (a + b + c) in our notation system. It provides
intuitive and visual information about the overlap between one tested correlation
map and one reference. It is also test-dependent: changing the risk or the
multiple comparisons correction at the detection step will also change the shape
and extent of the functional area, generally modifying Jaccard’s index. This may
be considered as a drawback but in fact, a statistical test is usually used at some
point when investigating functional data.

6



3.2.2. Receiver operating characteristic analysis

In this section, we assume that the binary categorical variables are param-
eterized by at least one parameter. For example, in our case, it could be the
risk for the statistical test of correlation α or a threshold on correlation r. Let r
be our parameter, ar, br, cr, and dr the previously defined cardinals in (1) now
parametrized by r, and let define a set {

(
x (r) , y (r)

)
, r ∈ [−1, 1]} ⊂ [0, 1]2 by:{

x(r) = 1− dr
dr+br

y(r) = ar
ar+cr

(2)

The implicitly defined function f : x 7→ y is called the Receiver operating
characteristic curve (ROC-curve) and its integral

∫ 1

0
f(x)dx is simply called the

Area Under Curve (AUC). In the case where M2 is considered to be the truth, f is
just informally f : 1−Specificity 7→ Sensitivity . The AUC is not test-dependent
as it covers all possible values of the threshold parameter (i.e. risk/correlation).
It illustrates how a functional map can be close to the reference by considering
all values of the considered parameter, while the Jaccard’s index reflects how it
is close to the reference by considering one value of the given parameter. Hence
AUC is a better way to assess the trend of interest from a theoretical point of
view. However, it is further away from the practical proximity of the Jaccard’s
index modeling offers, so we will eventually consider both scores.

3.3. Modeling trend with respect to the duration

Both Jaccard’s index and AUC are computed for each subject, each seed, each
duration and each functional network reference from MSDL. The next step is to
model the trend of these two scores evolution according to the acquisition dura-
tion for all subjects and for each combination between one seed and one reference.
Assuming rs-ASL sequence lasts long enough to cover all usage, extrapolation
for a duration longer than 24 min 30 s seems superfluous. There is no theoretical
model, even in BOLD, on the dependence between acquisition duration and qual-
ity of functional networks detection: we are not seeking for an explicit formula.
Moreover, even processed independently, neighboring within-subject time-points
have a strong dependency as they come from the same acquisition. Under these
conditions, a local non-parametric regression is very well-suited. We chose to use
the Loess method. Loess can be understood as a local polynomial regression on
a subset of the whole dataset, defined by a weighted K-nearest neighbors algo-
rithm. For a more comprehensive description, see (Cleveland and Devlin, 1988).
We used second degree polynomial functions with a 0.8 span.
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3.4. Data and code availability

In accordance with the consent form signed by the subjects, authors are not
allowed to share MRI acquisitions. For the preprocessing steps we used Matlab
CONN toolbox (www.nitrc.org/projects/conn, RRID:SCR 009550) (Whitfield-
Gabrieli and Nieto-Castanon, 2012). The rest of the code used for evaluation
scores and Loess is available upon request from the corresponding author.

4. Results

4.1. Optimal acquisition duration for the Default Mode Network

In this section, we present an in-depth analysis of the DMN. In the set of
20 seeds we used, many should not be inspected when used in combination
with MSDL DMN. The main reason is that most of the combinations has no
objective basis for detecting the DMN. Otherwise, the seed may have failed to
detect precisely the networks it was meant to detect, which is expected with
very short acquisition duration. A good way to get an idea of the quality of the
overlap between the functional maps associated with a seed and a reference for
all durations is to check the boxplots of the Jaccard’s index as in Figure 2.

Boxplots give an overview of the results for rs-ASL: for the DMN reference,
Jaccard’s indices have higher values for the seeds placed in order to detect it.
Prefrontal and posterior seeds seem to work well while lateral DMN seeds provide
lower scores but still higher than any other seeds.

Figure 3 shows the evolution of the estimated DMN with the prefrontal seed.
Three stages can be identified. First, at 2 min, the maps show only false positive
noise detection. Next step, between 4 min and 10 min, this false positive has
disappeared while the frontal component of the DMN starts growing. However,
the lateral and posterior components are barely detected. Last step, after 10 min,
the lateral and posterior components starts being detected. The functional maps
look stabilized and well detected after 14 min. Figure 4 shows the Jaccard’s
index, AUC, Sensitivity and Predicted Positive Value (PPV), for each subject
and at each acquisition duration. Loess on Jaccard’s index, as well as on AUC,
models quite well what can be observed by looking directly at the functional
map. Jaccard’s index seems to stabilize after 12-13 min and AUC at an earlier
acquisition duration around 9-10 min. We could have expected sensitivity and
PPV to follow the same trend. Actually, sensitivity just grows over time, but more
slowly for longer durations. Interestingly, PPV reaches a peak in the second stage
mentioned above. The seven subjects show different level of response but good
correlations (except for the subject 2 with AUC), i.e. the trend is the same
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0.4

Seeds (left to right)

DMN Prefrontal

DMN Left

DMN Right

DMN Posterior

Motor Left

Motor Right

Motor Superior

Visual Primary

Visual Ventral

Visual Dorsal Left

Visual Dorsal Right
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Language Frontal Gyrus Right

Language Temporal Gyrus Left

Language Temporal Gyrus Right

Cerebellum Anterior

Cerebellum Posterior

Jaccard's Index distribution with MSDL DMN as reference 

Figure 2: Each boxplot corresponds to one seed and shows the distribution of Jaccard’s index
between the estimated functional area corresponding to the considered seed on the one hand,
and the MSDL DMN reference on the other hand, for all subjects and all durations. The seeds
are grouped by color, each corresponding to one of the six functional areas considered. As
expected, the seeds located in the expected DMN location (in pink) give the best results.

among subjects, rather than an average effect induced by the Loess. Moreover
results observed for the DMN, can be generalized for almost every combination
of seeds and references as we will see.

4.2. Optimal acquisition duration for all functional networks

Although visual inspection of acquisition and the estimated functional net-
works estimation is always a good practice (Power, 2017), there are more than
6000 functional maps generated (20 seeds, 7 subjects, 46 acquisition durations),
we cannot check all of them. As seen for DMN, many combinations between
seeds and reference should not be investigated since they will yield to very low
overlapping scores. For Jaccard’s index, we selected combinations for which at
least 50% of observations have J > 0.1. For AUC, the median is also considered,
with a threshold of 0.7. These thresholds on the median values may seem rather
low, but let us remember that all the acquisition durations are taken into account,
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2min 4min 6min 8min 10min 12min

0.060 0.119 0.179 0.206 0.251 0.256

0.556 0.645 0.740 0.798 0.861 0.855

MSDL DMN Reference Subject DMN Estimation

14min 16min 18min 20min 22min 24min

0.306 0.295 0.297 0.290 0.295 0.295

0.873 0.866 0.870 0.871 0.874 0.877

Duration

Jaccard’s Index

AUC

Duration

Jaccard’s Index

AUC

Figure 3: Subject 4 DMN detection (in blue) with prefrontal seed and MDSL DMN reference
(in red) over a 2 min to 24 min duration with 2 min steps. Maps are shown in MNI152 space.

even the shortest ones. Figure 5 shows the median values for all the combinations
between seeds and references. The two thresholds lead to an almost identical
choice for the selection of combinations. All seeds have their best scores with
the expected reference, and each of the six functional networks are considered to
be sufficiently well detected with SBA for Jaccard’s index in accordance with our
selection rules. The AUC suggests as good enough one more seed for cerebellum
but consider that salience is not detected well enough with our set of seeds.

Figure 6 shows the range of durations where scores are not significantly dif-
ferent from their maximum values (5% risk) for each selected reference/seed
combination. Colors on heatmap are scaled between minimum and maximum
values of the corresponding score and match with the stages already described
for DMN in the previous section. Indeed, for every combination between seeds
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(A) Loess on all subjects for Jaccard's index
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(C) Loess on all subjects for PPV
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Figure 4: Jaccard’s indices (A), AUC (B), Positive Predicted Value (C) and Sensibility (D)
evolution with time with their associated Loess for the seed associated with prefrontal DMN.
On all subjects, Jaccard’s index increases with duration before 10-12 min, then stabilizes. The
AUC shows the same trend with an earlier stabilization, around 8-10 min. PPV grows rapidly,
reaches a peak at 8 min, then decreases slowly. Finally, Sensitivity increases with time, but more
slowly for longer durations. Subjects show different level of response but good correlations.

and references, both scores rapidly increase, and start to stabilize after a certain
duration. However, for both measures, the 95% confidence interval around the
maximum suggests a later start in the stabilization than suggested directly by
the Loess curve values. While some combinations scores look already stabilized
at 12 min, almost all of them are close to their maximum value at 16 m. Fig-
ure 7 shows a collection of functional areas obtained at a duration of 14 min.
While language seed struggles to detect spatial components far from the seeds,
all the other ones provide good detection of expected functional networks. The
two bottom rows show the same subjects and the same reference with different
seeds.
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Seeds References Jaccard's Index References AUC
Expected area Location DMN Motor Visual Salience Language Cereb. DMN Motor Visual Salience Language Cereb.

DMN

Prefrontal -

Left

Right

Posterior - -

MOTOR

Left

Right

Superior - -

VISUAL

Primary - -

Ventral

Dorsal Left

Dorsal Right

SALIENCE

Cingulate Anterior

Prefrontal Left

Prefrontal Right -

LANGUAGE

Frontal Gyrus Left

Frontal Gyrus Right

Temporal Gyrus Left - -

Temporal Gyrus Right

CEREBELLUM
Anterior - -

Posterior

Means Jaccard’s Index distribution has median above 0.1 Means AUC distribution has median above 0.7

0 0.05 0.10 0.15 0.20 0.5 0.6 0.7 0.8 0.9

Figure 5: Median values of Jaccard’s indices and AUC for all combinations of seeds/references.
Green circles show where seeds/reference combinations are selected with respect to our thresh-
olding rules (0.1 for the Jaccard median and 0.7 for the AUC median).

5. Discussion

5.1. On methods

In order to estimate functional networks, the two most common methods are
SBA and Independent Component Analysis (ICA). We did not work with ICA
because the association between independent components, obtained with ICA,
and functional areas of the brain is intrinsically tedious (McKeown et al., 2003)
(Cole et al., 2010), especially when it comes to comparison between subjects.
Moreover, in order to investigate the relationship between quality and duration
for all subjects, we must estimate the functional areas in the same way for each
subject. Indeed, keeping the same seeds and the same test for SBA is trivial,
while keeping the same number of independent components is equivocal, since
it should be decided by a goodness of fit criterion.

We chose to report the positive predicted value rather than specificity for
two main reasons. On the one hand, true negatives can have multiple definitions
in fMRI, since it depends on the voxels considered: the whole volume, only the
brain or any smaller ROI like grey matter. Although it is logical to consider
only brain voxels for functional activity, this implies an extremely high number
of true negatives, since the volume of a functional network is ten to a hundred
times smaller than the one of the whole brain. Therefore, the specificity reaches
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Figure 6: Color maps of Jaccard’s Index and AUC Loess value with respect to the acquisition
duration for all selected reference/seed combination. Every combination has a fast increasing
score followed by a stabilization stage. The PPV peak shows on all combinations around
9 min and appears always just before score start stabilizing. Maximum and its 95% confidence
interval may be unstable since score variations are often low after PPV peak.

values too high to provide relevant information on similarity between functional
areas. On the other hand, like specificity, PPV plays a similar role with respect
to sensitivity: specificity gives a complementary information to sensitivity in the
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SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

1 CEREB. ANTERIOR 0.393 0.942 0.639 0.505

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

6 LANGUAGE TEMP. GYR. LEFT 0.393 0.942 0.639 0.505

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

3 MOTOR SUPERIOR 0.417 0.913 0.594 0.583

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

5 VISUAL VENTRAL 0.282 0.865 0.441 0.439

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

7 VISUAL DORSAL LEFT 0.405 0.946 0.745 0.470

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

7 VISUAL DORSAL RIGHT 0.438 0.960 0.783 0.498

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

1 DMN PREFRONTAL 0.222 0.807 0.438 0.310

SUBJECT REFERENCE SEED JACCARD AUC SENSI PPV

1 DMN POSTERIOR 0.272 0.862 0.432 0.422

Figure 7: Collection of functional areas at 14 min with the corresponding scores: Jaccard’s
Index, Area Under the Curve, Sensitivity and PPV. The two bottom rows show the same
subjects and the same reference but with different seeds. The third row shows the estimated
(blue) and reference (red) visual network for the same subject (subject 7) but different seeds
(”dorsal left” seed on the left and ”dorsal right” seed on the right). Similarly, the bottom row
shows the same subject (subject 1) with different seeds (”Prefrontal” and ”Posterior”)

totality of voxels whereas PPV gives a complementary information in the union
of the reference and the estimated functional area.

5.2. On results

Our two objectives were to confirm the feasibility of resting state ASL and to
evaluate the influence of the acquisition duration on the estimation of functional
areas. Figure 3 and Figure 7 with corresponding scores in Figure 5 and in Figure 6
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confirm that, even with the basic preprocessing and straightforward methodology
we used, ASL is fully viable as a resting-state method. Regarding the optimal
duration, we show the stabilization of the functional areas representation after
a certain duration for both measures, Jaccard’s index and AUC, with a strong
inter-subjects correlation (i.e. not a mean-effect induced by the Loess modeling).
Since the acquisition should have the shortest duration possible for clinical im-
plementation, the recommended duration eventually corresponds to the start of
the stabilization stage. Strict definitions of the stabilization stage, lead to longer
duration since they would rely heavily on the Loess maximum by considering
as stable just a narrow interval around of the maximum. However, since after
12 min to 14 min the score variations are low, a slight change in preprocessing
or in the population could also lead to unstable maximum, without changing the
trend. Relaxed definitions would keep optimal duration stability, but they may
consider a functional area as good enough when an human investigator would
not. Actually, early stages of acquisition are associated with poor representation
of functional areas disconnected from the seed.

Based on our different results, 14 min seems to be an interesting compromise
regarding the optimal acquisition time. Note that the DMN, the sensori-motor
cortex and the cerebellum have an almost consensual spatial definition among
the authors, unlike language, visual and salience, which show a greater spatial
variability (see for example http://neurosynth.org/). As we provide an evaluation
only with one set of references (from the MSDL), one could have expected this
to be a major limitation of our work. However the spatial variability of the areas
of interest in atlases is low enough to not critically change the trend observed in
this paper. Preprocessing influence should also be considered as positive: since
we use typical and basic preprocessing, more advanced techniques should provide
the same or a shorter optimal duration. Not to mention the resting state, ASL is
very sensitive to changes in its parameters. Since we are studying the influence
of acquisition duration for a given set of parameters, the optimal duration of
14 min could be strongly influenced by the sequence parameters. Although the
influence of each of them is to be kept in mind, most of them should not disturb
the investigators, as most of them have a specific bibliography that goes well
beyond the issue of the optimal acquisition duration. However, two of them
may have a deep impact on our results: post-labeling delay and repetition time
(TR). As mentioned in section 2.2, we already have some clues on how the PLD
can influence functional networks representation. The critical parameter in our
opinion is repetition time. It defines the sample frequency of the resting-state
signal and turning our 14 min suggestion into a 240 volumes since we only work
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numerically on the signal. Its variation may widely shift the stabilization step
toward a higher/lower number of volumes and hence a longest/shortest duration,
without changing the stabilization of the functional networks representation after
a certain number of volume (i.e. same signal but different sampling frequency).
Moreover in rs-ASL, TR values are typically between 3 s and 5 s, which is too wide
to assume the locally linear dependence between TR and optimal duration. As a
preliminary work on optimal duration in rs-ASL, we focus more on the modeling
rather than investigating the influence of the TR. However, a specific study
on the relationship between repetition time, number of volumes and quality of
acquisition would be, in our opinion, highly beneficial to better define the optimal
duration and also would be useful when an investigator set up a sequence.

6. Conclusion

We model and process data in order to get results as close as an investigator
would do. All the considered functional areas were well detected by rs-ASL. Our
results show a quality stabilization after a certain duration for both scores in all
but one combination between seeds and references: very long sequences should
not hence be considered. As discussed, we would eventually recommend a 14 min
duration for TR = 3500ms / 240 volumes: it seems to be a good balance between
strict and relaxed definitions of where the stabilization starts. The exploration of
the influence of sequence parameters, especially the TR, on the optimal duration
was beyond the scope of this article but would be highly beneficial for sequence
implementation. Variations induced by a change in references could be a future
work, but rather in the context of a study on atlases than specifically on the issue
of acquisition duration.
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Appendix - Seed location in MNI152

Expected networks Seed Location in MNI152
DMN Prefrontal (1,55,-3)
DMN Left (-39,-77,33)
DMN Right (47,-67,29)
DMN Posterior (1,-61,38)
Motor Left (-55,-12,29)
Motor Right (56,-10,29)
Motor Superior (0,-31,67)
Visual Primary (2,-79,12)
Visual Ventral (0,-93,-4)
Visual Dorsal Left (-37,-79,10)
Visual Dorsal Right (38,-72,13)
Salience Cingulate Anterior (0,22,35)
Salience Prefrontal Left (-32,45,27)
Salience Prefrontal Right (32,46,27)
Language Frontal Gyrus Left (-51,26,2)
Language Frontal Gyrus Right (54,28,1)
Language Temporal Gyrus Left (-57,-47,15)
Language Temporal Gyrus Right (59,-42,13)
Cerebellum Anterior (0,-63,-30)
Cerebellum Posterior (0,-79,-32)
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