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Abstract 

Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately 

detecting heterogeneity for the development of biomarkers and the detection of the clones 

resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the 

natural history of cancer. The present review gives an overview on the origin of tumor 

heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor 

cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. 

The most recent methods for characterizing CTCs are summarized and we discuss the power of 

CTC profiling for analyzing tumor heterogeneity in early and advanced diseases. 
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Introduction 

 

 Anyone who has observed a tumor section under a microscope is familiar with the 

significant heterogeneity of the tumor mass. Within a single tumor mass, several foci with 

various, specific histological features can cohabit (Figure 1). In addition to their diverse 

morphology, cancer cells exhibit considerable heterogeneity in terms of genetic profile, gene 

expression, metabolic property, motility, proliferation and metastatic potential [1]. As proposed 

by S. Paget with the “seed and soil” theory, a symbiosis is established between cancer cells and 

their local micro-environment, defining the notion of tumor niche favorable for tumor growth 

[2]. Cancer cells regulate their environment by direct cellular contacts [3] or by secreting soluble 

extracellular vesicles [4]. In return, the micro-environment impacts the differentiation, 

proliferation and death of cancer cells, as well as contributing to a selection process leading to 

drug resistance, cell dormancy [5] and to an immune-tolerant environment [6]. Cancer cells are 

then functionally entangled with numerous other cell types (e.g. stromal cells, endothelial cells, 

immune infiltrate) that enrich the heterogeneous character of tumor tissues. Consequently, tumor 

heterogeneity is not a fixed state but should be considered as a dynamic ecosystem that evolves 

as the tumor progresses and is strongly modulated under therapeutic pressure. Tumor 

heterogeneity is subject to major spatial and temporal modulations that can impair sustained 

therapeutic response and drug sensitivity.  

 

The evolution in good clinical practices (e.g. needle biopsies) has recently led to a significant 

decrease in the amount of biological material available for molecular investigations. A biopsy 

cannot reflect and illustrate spatial tumor heterogeneity and should be considered as a partial 

photograph of the tumor mass at a given time. The follow-up of the dynamic process requires 

repeated sampling carried out using low invasive methods and should be as representative as 

possible of the tumor mass. Repeated biopsies are ethically non-acceptable and sometimes 

unrealistic for high-risk localizations of metastatic foci (e.g. the spine). The establishment of 

metastatic disease is directly related to the migration of cancer cells called circulating tumor cells 

(CTCs) into the blood and/or lymphatic circulation, plus their ability to reach distant organs [7]. 

However, although CTCs are theoretically easily accessible, their low number makes it 

challenging to isolate and characterize them. The last decade has seen a surge in the new devices 
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available for isolating CTCs, and specific downstream analysis workflows have been proposed in 

order to evaluate their biological value (e.g. therapeutic response, drug resistance, reflection of 

the tumor heterogeneity). The present review will give a brief overview of tumor heterogeneity: 

its origin, biological and clinical impacts and the methods for assessing it. We will put specific 

focus on the recent methods developed for isolating single cells and how these single cells can 

help to decipher this heterogeneity. We will also discuss how better characterization of single 

cells may orient future clinical decisions.  

 

Tumor heterogeneity: origins and enrichment 

Origin of cancer cell heterogeneity: from monoclonal to polyclonal disease 

Cancer is characterized by the development and growth of abnormal cell populations (e.g. 

mutations, altered proliferation and/or differentiation). As DNA is the only cell component that 

can accumulate and transmit changes throughout life, it has been accepted that the carcinogenesis 

process requires the progressive accumulation of multiple DNA modifications [8]. The current, 

generally-accepted model for carcinogenesis is the somatic mutation or clonal evolution theory 

(Box1) [9, 10]. Although it is the prevailing model for carcinogenesis, it has been challenged by 

several lines of evidence [1, 11,12]. The main alternative model focuses on the concept of 

asymmetric division initially observed in healthy tissue renewal [13]. This process is defined as a 

biological process in which a single cell generates two daughter cells with two distinct destinies: 

one undifferentiated cell – a stem cell – expressing stemness markers (e.g. Oct4, nano, sox2) and 

in charge of the self-tissue renewal, and one committed to a specific form of differentiation [14]. 

A similar process has been proposed in cancer leading to the maintenance of cancer-like “stem-

cells” harboring the mutated driven gene and participating in the dynamic enrichment of the 

spatial and temporal heterogeneity of cancer cells [1,5,15,16]. Regardless of the carcinogenesis 

model, mutations in the tumor driven gene expressed by cells from pre-neoplastic lesions (e.g. 

TP53, Rb) lead to the formation of neoplastic foci characterized at the early stage by monoclonal 

expansions of mutated cells. This type of mutation results in genomic instabilities characterized 

by a high sensitivity to chromosome breakages and consequently a new series of mutations, 

deletions, and amplifications [17] (Figure 2A). Random chromosome breakages and secondary 

genetic events clearly contribute to the development of cancer cells with a new genotype and 

phenotype, and then to the polyclonal expansion stage of the disease. Epigenetic modifications 
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complete the framework of heterogeneity mapping. As revealed by genetically homogeneous cell 

lines, intercellular epigenetic alterations (e.g. DNA methylation, miRNA expression, etc) 

strengthen tumor heterogeneity and the drug response [5,18,19]. Genetically- and epigenetically-

modified cells are prone to migrate from their primary site. In the natural history of cancer, the 

diffusion of cancer cells from a primary tumor to a secondary distant organ is frequently 

observed. Interestingly, several authors have demonstrated the migration of prostate cancer cells 

from metastastic foci to seed new, distant locations or pre-existing lesions, and consequently 

permanently enrich the heterogeneity of the tumor [20, 21]. Thus, the bidirectional seeding 

between different tumor sites plays a part in enriching tumor heterogeneity.  

 

Similarly to embryonic cells, cancer cells are not blocked in a defined state and adapt 

permanently their phenotype under the microenvironment and therapeutic pressure. Indeed, 

phenotypic and functional plasticity is a common mechanism observed during embryonic 

development [22]. Blastocyst cells are composed of various cell types including stem cells, 

lineage-committed progenitors and differentiated cells linked by hierarchical relationships that 

make possible the formation of all the organs of the future embryo/fetus and also the extra-

embryonic annex from the pre-implantation step to the final gestation. All of these cells can 

switch between different cell states thanks to a high degree of plasticity. Similarly, cancer cells 

exhibit marked plasticity as illustrated by the epithelial-mesenchymal transition (EMT) in which 

cancer cells progressively acquire a mesenchymal phenotype and lose their epithelial properties, 

thus leading to the metastatic process. In the opposite direction, at the metastatic location, cancer 

cells undergo mesenchymal-epithelial transition (MET) and re-acquire their epithelial 

characteristics [23]. Inoculation into immunocompetent mice of pure EpCAM+ or EpCAM- 

breast cancer cells, sorted by flow cytometry, led to the detection of mixed EpCAM+/EpCAM- 

cells in the blood stream after a couple of days. This simple experiment perfectly illustrates the 

extreme plasticity of cancer cells [24] (Figure 2B). The notion of plasticity should be extended to 

any subtle equilibrium making possible the functional orchestration of various cell populations. 

Recently, Franzetti et al. studied the impact of EWSR1/FLi1 expression on the functional 

behavior of Ewing sarcoma cells [25]. They observed that cancer cells fluctuated over time from 

low to high EWSR1/FLi1 expression in a reversible process, and the low expression phenotype 

was correlated with a metastatic profile (e.g. high propensity to migrate and invade). Both cell 
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populations can co-exist in patient samples and EWSR1/FLi1Low contribute to the maintenance 

of tumor growth based on ESWR1/FL1 re-expression. Their manuscript illustrates a new model 

of phenotypic plasticity and gives evidence of the functional impact of this dynamic phenotypic 

fluctuation associated with a dominant oncogene.  

 

However, the therapeutic pressure plays a significant role in the selective amplification of tumor 

heterogeneity and contributes to emergence of specific dominant clones driving the tumor 

heterogeneity [26]. A tumor mass is composed of a panel of cancer cells with sensitivity or 

innate resistance to a specific drug or specific therapeutic intervention [29] (Figure 2). Drug 

resistant clones are then preferentially chosen and in turn selectively modify the tissue 

heterogeneity. Therapeutic selective pressure is also responsible for acquired resistance 

mechanisms resulting in the dynamic emergence of new cancer cell clones leading to dynamic 

heterogeneity. The notion of drug resistance is also related to persister cells observed in cancer 

and in micro-organisms [5]. Persisters are low proliferating cells with a stem-like profile and 

immune tolerant activities. Overall, the literature demonstrates that tumor heterogeneity becomes 

an obstacle to determining the appropriate therapeutics in oncology because of the temporal 

instability of tumor tissue organization. The dynamic evolution of dominant clones and persister 

cells fuel the tumor heterogeneity which is enrich by a heterogeneous local micro-environment. 

 

Heterogeneity of the tumor micro-environment: the functional relationship of tumor 

heterogeneity  

As described above, from a clonal disease, the successive mutations in tumor cells play a part in 

temporal heterogeneity and the establishment of a very complex polyclonal oncogenic disease. In 

addition to the heterogeneous populations of neoplastic cells, tumor bulk is composed of non-

neoplastic resident cells, the extracellular matrix [28], fibroblasts (called cancer-associated 

fibroblast) [29, 30], blood vessels [31] and immune cells [32-35] that together form the tumor 

micro-environment (TME) (Figure 3). MALDI imaging mass spectrometry makes it possible to 

visualize tumor heterogeneity at the protein level [36]. Extracellular matrix is a key factor related 

to metastasis efficiency, controlling collective cell invasiveness [28]. This observation is related 

to the diversity of cancer-associated fibroblasts (CAF) [29]. Indeed, Costa et al. identified four 

subsets of CAF in breast cancer with specific distinct functional properties. In triple negative 
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breast cancers, one of them, called CAF-S1, promotes an immune tolerant environment and 

stimulates T lymphocytes toward an immunosuppressive phenotype (CD25high FOXP3high). The 

second, called CAF-S4, increases the T cells’ regulatory property to inhibit T effector 

proliferation. Consequently, the local accumulation of CAF-S1 then contributes to tumor 

heterogeneity and to local immunosuppression observed in triple negative breast cancers. Such 

immunoregulation is tightly controlled by the production of local immunocytokinic signals 

leading to a balance between inflammatory and immunosuppressive effectors [30]. The 

functional impact of CAF on local tumor immunity is directly linked to the spatial and temporal 

heterogeneity of T lymphocytes and macrophages observed in numerous types of cancer [31-33]. 

Interestingly, resident lymphocytes seem pre-adapted to specific tissues and can adapt to 

wherever they migrate [34]. As a consequence of local immune regulation, endothelial cells 

exhibit several phenotypic features and lead to the formation of specific tumor vasculature [35].  

Interestingly, Hamilton et al. revealed that CTCs are competent to modulate tumor associated 

macrophages in order to increase invasiveness of cancer cells, angiogenesis and 

immunosuppression [36]. The quality (e.g. topographic localisation) and quantity of the immune 

infltrates into tumor tissues have strong impacts on patients' clinical outcomes. New technologies 

such as multispectral imaging will allow to obtain a precise analysis of these infiltrates and may 

lead to a better patient stratification [37]. All components of the tumor microenvironment then 

play a part in generating more tumor variability, as well as being highly heterogeneous and 

crucial for determining the development of cancer [39-45]. After the tumor excision and the 

initiation of the therapy, the key challenging question remains the follow up of the tumor 

heterogeneity in absence of tumor tissue access? Do CTCs reflect the tumor heterogeneity?  

 

The characterization of circulating tumor cells for predicting tumor heterogeneity 

Tumor heterogeneity has challenged the potential benefits of precision medicine. Current 

methods used to analyze tumor masses and further therapeutic design are based on a global 

overview of the characteristics of cancer tissues, corresponding to an average picture of all the 

tumor clones and their micro-environment without considering their diversity [46]. This 

variability limits the prognosis and predictive power of a biomarker. Moreover, differences in the 

evolution of tumor cells and micro-environments at the metastatic sites question the utility of the 

biomarkers previously identified in the primary tumor for treating metastatic disease [47,48]. 
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Monitoring changes in cell populations during disease progression and treatment will improve 

both cancer diagnosis and therapeutic design. Current protocols to check the consistency of the 

biomarkers, establish diagnoses and define treatment are based on very small biopsies (e.g. 

needle biopsies) of the primary tumor and metastatic sites. The main limitation is that most 

metastases are difficult to access, and biopsies are invasive, inconvenient, costly and do not 

make possible longitudinal follow-up of tumor heterogeneity. To overcome these problems, 

detecting and characterizing heterogeneity in CTCs could be a good alternative and opportunity.  

 

CTC characteristics as a snapshot of tumor heterogeneity 

In the last decade, numerous clinical studies revealed the link between CTC numbers and 

metastatic prognosis [49, 50]. Similarly, the phenotypic properties of CTCs can be related to 

overall patient survival [51]. In the most recent meta-analyses published, the authors found a 

correlation between CTC count and clinical progression. Recently, by combining more than 20 

published studies, CTC count was shown to be an independent and quantitative prognostic factor 

in patients suffering from early breast cancer [52]. At the protein level, there are some 

discrepancies depending on the series analyzed. In breast cancer for instance, HER2 expression 

between initial tumor tissues and corresponding CTCs are contradictory, with a concordance of 

around 90% for some of them [52,53], inconsistency for others [54] or fluctuating variations in 

the course of the disease [55]. Similar to EpCAM, the high plasticity of cancer cells results in 

variations in HER2 expression and reflects a snapshot of tumor heterogeneity at a specific time 

point. However, several studies support the idea that cellular heterogeneity in CTCs reflects the 

spectrum of mutations in the primary tumor and metastatic lesions. Mohamed Suhaimi et al. 

detected a high concordant mutation list in CTCs and tissues (e.g. KRAS and BRAF markers), 

predicting the outcome of anti-EGFR therapy in colorectal cancer patients [56]. Bingham et al. 

showed that CTCs were representative of the entire spectrum of mutations present in the primary 

tumor and distal metastases for patients with breast cancer. Their findings suggested the utility of 

CTCs for identifying targetable mutations and for being used as a biomarker to reveal cell 

populations sensitive to current or previous therapies [57].  

 

Despite these promising results, the existence of heterogeneity in the CTC compartment has been 

demonstrated, as shown by Pestrin et al., who observed variability in the mutational status of the 
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PIK3CA gene in breast cancer patients. The PIK3CA mutation profile has prognostic 

significance and is potentially predictive for the response to agents targeting the PI3K pathway 8 

Similarly, Pailler et al. observed considerable heterogeneity in ROS1-gene abnormalities in 

CTCs from non-small cell lung cancer (NSCLC), which could explain the mechanism by which 

tumor cells can escape sensitivity to ROS1-inhibitor therapy [59]. Furthermore, it has also been 

demonstrated that CTC profiles evolve as the disease progresses, illustrating the temporal 

heterogeneity of cancer diseases. Tsao et al. then mapped the phenotypic evolution of melanoma 

CTCs and detected the presence of drug-resistant clones harboring different molecular signatures 

of potential clinical value [60]. The discordance observed between CTCs and tumor 

heterogeneity may be explained by the dynamic heterogeneity of the CTCs [61, 62]. Primary 

tumors as well as metastatic foci are permanently reorganized, resulting dynamically in the 

differentiation and release of new cancer cell clones into the bloodstream, explaining the partial 

genomic overlap of CTCs and tumor foci at a specific time point. Consequently, even CTCs 

cannot fully reflect tumor heterogeneity: they are the mirror and snapshot of the disease’s 

progression as well as the clonal evolution of the tumor foci. Overall, the data currently available 

has pointed out the major advantages of CTC investigation at the single cell level, possibly 

representing the most accurate strategy for determining the temporal heterogeneity of the 

disease. 

 

Single CTC analysis could effectively reveal the high heterogeneity, stochastic changes, and 

driver mutations in cancer cell populations in order to detect drug resistance, and develop new 

personalized therapeutic strategies as well as their use as prediction markers. De Luca et al. 

validated a protocol to assess the clonal evolution of metastatic breast cancer, based on single 

CTC analysis by next generation sequencing (NGS), suitable for the development of new 

therapeutic strategies in precision medicine [63]. Miyamoto et al. analyzed single-cell RNA-

sequencing (RNA-Seq) profiles in prostate cancer and concluded that there was CTC 

heterogeneity in signaling pathways that could contribute to treatment failure [64]. Pailler et al. 

investigated ALK-copy number gains (CNG) in individual CTCs by filter-adapted fluorescent in 

situ hybridization (FA-FISH) and reported a significant association between the dynamic 

evolution of the numbers of ALK-CNG and progression-free survival (PFS) in NSCLC patients 

treated with crizotinib, an ALK/ROS1 inhibitor [65]. Paolillo et al. found ESR1 mutations in 
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single CTCs from metastatic breast cancer patients associated with endocrine therapy resistance 

[66]. As mentioned above, the tumor cell component is not the only source of heterogeneity. 

TME elements present high variability that can be assessed by single-cell analysis. Tirosh et al. 

presented an extensive study of the heterogeneity associated with the components that shape the 

melanoma micro-environment, assessed by single-cell RNA-seq. The authors discovered 

different micro-environments associated with distinct malignant cell profiles that could be used 

as prognostic markers [67].  

 

CTC cluster enrich CTC heterogeneity and have increased metastatic potential  

In addition to single CTCs detectable into the bloodstream, CTCs can be observed in clusters 

composed by cancer cells and/or in association with non-malignant cells. Recent findings 

suggest that CTC clusters may have a greater contribution to the metastatic process for 

mechanical and immune features. Indeed, Au et al. demonstrated that cluster CTCs are able to 

reorganize into single-file chain-like geometries in a rapid and reversible manner with reduced 

hydrodynamic resistance. Consequently, the progression of cluster CTCs through capillaries is 

slowed down and cancer cell clusters can traverse easily thin constrictions for extravasation and 

migration into distant organs [68]. CTC clusters are rare compared to single CTCs, do not come 

from intravascular aggregations and arise from oligoclonal cancer cell groupings (called 

homotypic CTC clusters) reinforcing the CTC heterogeneity [69]. Heterotypic CTC clusters have 

been also observed in patient samples. In that cases, CTC clusters are not only composed by 

tumor cell clones but are associated with tissue-derived macrophages [70], fibroblasts [71] or 

neutrophils [72]. Non-malignant cells escorting CTCs may strengthen the biomechanical 

properties of CTC clusters and may improve their survival. Very recently, Szczerba et al. 

demonstrated that the association between neutrophils and CTCs drove cell cycle progression 

within blood and increased the metastatic potential of CTCs in breast cancer patients [72].  

 However, heterotypic CTC clusters have never been associated with circulating 

lymphocytes. What could be the relationship between T lymphocytes and CTCs? A close 

relationship between immune cells and cancer cells has been described through the immune 

checkpoints [73, 74].  Cancer cells can express programmed death-ligand (PDL-1) which binds 

to PD-1 and/or B7/1 expressed at the cell surface of T lymphocytes. This binding results in the 

inhibition of downstream signaling and in the decrease of T cell proliferation and an increase of 
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their apoptosis. Recently, Mishra et al. compared the dialog between immune cells and CTCs 

isolated from non-metastatic and metastatic cell lines inoculated in syngeneic immune-competent 

mice [75]. In this model, the metastatic cell line exhibited a significant highrer expression of 

PDL-1 compared to the non-metastatic cell line and inoculation of activated immune cells had no 

impact on CTCs established from metastatic cell line in contrast to CTCs produced from non-

metastatic cell line. PDL-1 was found to correlate with histological tumor grading and is 

frequently expressed by CTCs [76]. Since PDL-1 is a molecular regulator of regulatory T 

lymphocytes, a CTC immune escape mediated by PDL-1 can be hypothesized [77]. In such 

context, T lymphocytes may indirectly contribute to the tumor CTC heterogeneity by selecting 

specific dominant cancer cell clones that escape to the immune surveillance and lead to the 

release of specific CTCs into the bloodstream. To illustrate this purpose, Sun et al. studied a 

series of non-small cell lung cancer patients [77]. They observed that the number of CTCs were 

positively associated with the metastatic process and negatively associated with the level of 

circulating T lymphocytes. CTC cluster thanks the interactions between cancer cells and non-

malignant cells contribute to the CTC survival, proliferation, immune escape and drug-resistance  

[78,79].   

 

Brief overview of the most significant breakthrough technologies for deciphering single-cell 

characteristics  

CTCs are rare cell events in blood with a frequency of around one tumor cell for 106-108 normal 

blood cells. Consequently, before single CTC analysis can take place, the first step is to enrich 

and isolate CTCs. Multiple technologies have been described to do this in individual CTCs, 

based on the different properties that distinguish them from surrounding normal hematopoietic 

cells, including biological properties (cell surface protein expression, viability, invasive capacity) 

and physical properties (size, density, electric charges, deformability) reviewed previously 

[80,81] (Figure 4A). Once single cells have been isolated, downstream analyses can be 

performed depending on the molecular components assessed: DNA, RNA or protein (Figure 4B). 

Single-cell DNA analysis 

Studying genetic variability in single cells has stimulated the development of several high 

throughput sensitive methods for detecting large patterns of mutations including target-specific 

amplification using PCR, as a means of querying specific loci of interest [82], and the next 
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generation of sequencing approaches: whole exome sequencing (WES), [70] and whole genome 

sequencing (WGS) [83,84] to obtain information regarding the complete exome and genome 

respectively. As the amount of DNA that can be extracted from a single CTC is limited, an initial 

step involving whole genome amplification (WGA) is required. Depending on the downstream 

application, the WGA method selected can differ. Interestingly, recent studies compared 

different WGA methods and revealed that that multiple displacement amplification (MDA) 

methods are better suited for single nucleotide polymorphism (SNP) detection, while PCR-based 

methods are the better option for copy number variant (CNV) detection [85-87]. The authors 

suggested that AMPLI1 or MALBAC should be used in favor of the REPLi-G or PicoPlex kits 

when high target coverage is required [86]. They also found higher sensitivity of DOPlify and 

Picoseq for detecting 100% of CNVs than Ampli-1 and REPLI-g [87]. After genome 

amplification, the type of genomic investigation must be defined according to the objective of 

the study. For instance, Polzer et al. used a qPCR assay to analyze the variability of HER2 and 

PIK3CA in breast cancer single CTCs. Their findings demonstrated that assessing the 

heterogeneity for these two markers may uncover tumor evolution mechanisms useful for 

personalized therapy decisions [88]. In another study, Janiszewska et al. assessed single-

nucleotide PIK3CA mutations and HER2 copy number alterations in single cells in formalin-

fixed paraffin-embedded breast tumor samples using the STAR-FISH (specific-to-allele PCR–

FISH) methodology. This analysis proved to be useful for predicting clinical outcomes in breast 

cancer patients subjected to neo-adjuvant chemotherapy followed by adjuvant therapy with 

trastuzumab [89].  

 

In the last few years, there has been a significant increase in the number of studies that use next 

generation sequence approaches for unraveling single cell heterogeneity. The study performed by 

Li et al. identified 4 new driver mutations in renal cell carcinoma stem cells using WES that 

constitute important prognostic factors and therapeutic targets [90]. Liu et al. combined multi-

region WES and single-cell WGS to examine the intra-tumor heterogeneity of rectal tumors. 

Their results suggest a specific architecture for each tumor related to different diagnoses, 

prognoses and drug responses [91]. Sequencing single CTC genomes and exomes provides 

considerable amounts of information, but also faces several technical challenges, in addition to 

difficulties with CTC capture [38]. The key limitations of single-cell sequencing using WGA are 
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low coverage of the human genome and the consistency of the coverage between single cells 

[92]. This issue could be solved by third-generation sequencing technologies, such as the Pacific 

Bioscience system [93] and Nanopore sequencing [94]. The second challenge is data analysis, as 

currently the bioinformatics tools used for single-cell sequencing were initially developed and 

adapted for bulk cell sequencing. New computational and statistical methods have been 

developed to meet the requirements of single-cell analysis to reduce these biases and address 

biological and clinical questions more accurately [95,96]. 

 

Single-cell epigenetic analysis 

Robust technologies have been developed for mapping epigenetic marks in single cells. Bisulfite 

conversion followed by sequencing (BS-seq) is considered the gold-standard method for single 

base resolution and absolute quantification of DNA methylation levels [97-99]. Farlik et al. 

described a whole-genome bisulfite sequencing (WGBS) assay that makes it possible to analyze 

heterogeneous DNA methylation patterns in single cells (scWGBS) and compared it with the 

other two methods: single-cell reduced representation bisulfite sequencing (scRRBS) and single-

cell post-bisulfite adaptor tagging (scPBAT) [100]. The authors concluded that scWGBS is the 

method of choice for analyzing large numbers of single cells at low sequencing coverage, 

scRRBS is useful for comparing CpG islands across single cells, and scPBAT is best suited for 

deep sequencing of single cells with maximum coverage [100]. For mapping histone marks at the 

single cell level, chromatin immunoprecipitation followed by sequencing (ChIP-seq) has recently 

been implemented. Rotem et al. used this methodology to investigate the cell-to-cell variability 

of different types of regulatory elements and they confirmed its suitability for revealing aspects 

of epigenetic heterogeneity not captured by transcriptional analysis alone [101]. To assess the 

spatial organization of chromosomes, Kind et al. successfully modified the DamID method 

[102]. The heterogeneity of chromatin structure in single cells can be monitored by assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) [103] and DNase I 

hypersensitive site sequencing (DNase-seq) [104]. Nowadays, it is also possible to assess 

variability in the 3D structure of chromosomes at the single cell level using a HiC-based method 

[105]. Other methodologies that have been developed to analyze epigenetic changes in bulk 

samples can potentially be adapted to single cell analysis [106]. Despite the fact that analyzing 

epigenetic state in CTCs is still in its infancy, various studies have already been published in the 
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field. Pixberg et al. analyzed the epigenetic status of the genes associated with epithelial 

mesenchymal transition (EMT) in individual breast cancer CTCs, and explored potential intra- 

and inter-patient heterogeneity using the agarose-embedded bisulfite sequencing (AEBS) 

protocol. They found heterogeneous methylation patterns in CTCs with clear infrequent 

hypermethylation at key promoters of the inhibitor genes of the EMT, suggesting that both 

epithelial and mesenchymal CTCs can contribute equally to the metastatic process [107]. 

 

Single-cell RNA analysis 

Single-cell RNA sequencing (scRNAs) is the method selected if the aim of the study is to 

explore transcriptome heterogeneity [108]. Interestingly, Ziegenhain et al. performed a 

comparative analysis of the most prominent scRNA-seq methods and identified Drop-seq as the 

best method for analyzing the transcriptome of large numbers of cells with low sequencing 

depth, SCRB-seq and MARS-seq are preferable for the transcriptome of fewer cells, and Smart-

seq2 would be the appropriate method of choice when annotating the transcriptome of very small 

quantities of cells [109]. All the data generated after scRNAs should be processed to avoid false-

positives due to nonlinear amplification, false-negative allelic drop-out due to amplification bias, 

non-uniform coverage, and noise that arises during single-cell transcript amplification. Specific 

computational models have been specifically developed to address these issues [110]. 

 

 Numerous studies show extensive use of scRNAs for unraveling CTC heterogeneity. 

Patel et al. reported the heterogeneity of single glioblastoma CTCs and the existence of high 

variability in signaling molecules relevant to the targeted therapy, a wide spectrum of stemness 

and differentiation states, variable proliferative capacity and expression of quiescence markers, 

all of which were related to the success or failure of therapeutic strategies [111]. Chung et al. 

used scRNA to characterize heterogeneity in tumor cells and TME components (mainly immune 

cells) in breast cancer. The authors identified various signatures in both compartments related to 

tumor development and the response to cancer therapy [112]. Despite the multiple advantages 

conferred by single-cell RNAseq, it also presents certain limitations that need to be resolved. The 

main ones are that RNA losses have to be kept to a minimum during cDNA conversion, and that 

the amplification should provide enough DNA for sequencing without too much quantitative bias 

or altering of the original picture of the cells’ transcriptomic profile. Moreover, scRNA-seq 
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methods use an oligo-dT primer that specifically captures only polyadenylated RNA, avoiding 

the unwanted amplification of tRNA and rRNA. However, it represents a problem for the non-

polyadenylated RNAs such as long non-coding RNA and microRNAs that have been shown to 

play important roles in cancer [113, 114]. Some commercial kits have been developed to 

overcome the poli(A) tail restriction [115]. Another challenge is the low signal-to-noise ratio of 

single-cell RNA-seq technologies. It is thus important that cell isolation, library preparation, and 

other automated workflows be as standardized as possible to minimize any bias introduced by 

human error [116]. In this regard, Suzuki et al. proposed the use of standard cell lines in future 

quality controls [117]. Finally, many scRNA-seq analyses are still performed using methods 

originally developed for bulk RNA-seq even if their adaptability to single-cell transcriptomics is 

unclear [118]. As the reliability of the bioinformatic method directly determines the accuracy of 

the experimental results, it is important to develop bioinformatics tools specific to the analysis of 

single-cell RNA-seq data, such as the two very recent methods developed by Wu et al. [119] and 

Miao et al. [120]. 

 

Single-cell proteomic analysis 

Recent progress in microfluidic technologies and mass spectrometric approaches have led to new 

single-cell proteomics studies that could be performed with greater sensitivity and specificity. 

The micro-engraving technique, single-cell barcode chips (SCBCs) and single-cell Western 

blotting (scWB) are the microfluidic platforms providing the most advanced capabilities [121]. 

The latest version of microfluidic image cytometry (MIC) makes it possible to analyze the 

heterogeneous expression of up to 90 proteins in each single cell [122]. Another technology is 

CyTOF, a mass cytometry platform that has been developed to assess phenotypic heterogeneity 

at the single cell level. It can simultaneously image the localization and modifications of 34 

proteins (and potentially up to 100) in each cell at subcellular resolution [123]. Sinkala et al. 

validated the clinical utility of proteomics in single cells by using scWB, and analyzed variability 

in metastatic breast cancer cells. They observed high heterogeneity in the expression of 8 key 

proteins related to breast cancer progression [124].  
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Conclusions and perspectives 

Repeatable, minimally-invasive and cost-effective approaches for real time assessment of 

relevant biomarkers and monitoring cancer therapies in the bloodstream have been developed to 

overcome the intrinsic limitations of primary tumor and metastasis biopsies. This field of 

investigation has been termed “liquid biopsy” and includes circulating tumor cells (CTCs), 

exosomes, circulating cell-free DNA (cfDNA), miRNAs and proteins. CTC characteristics can 

be considered to be a snapshot of overall tumor bulk (primary tumor and metastases). Compared 

to other liquid biopsies, CTCs are a little bit more laborious to obtain but can be analyzed at the 

DNA, RNA, and protein level, as well as with regard to their functional cellular characteristics as 

a means of providing information that relates to the whole cell [124, 125].  

 

Pooling the cells might provide different results and could mask clinically relevant rare 

mutations [63]. A major question emerges regarding the number of CTCs that need to be 

analyzed in order to capture the overall profile of the dominant disease driving the (sub)clones in 

a patient suffering from widespread metastatic disease. Gao et al. conducted a study on this 

subject and concluded that around 20-40 single cells are required to detect the main subclones 

with 95% power [126]. Despite promising results, showing a high concordance between paired 

CTCs and primary tumors or metastatic sites [57, 127], many other studies found discordant 

results between the mutational status of CTCs and those of the corresponding primary tissue or 

metastasis [128-130]. Like tumor tissues, CTCs are in fact heterogeneous in all the cancer types 

analyzed [57,60, 131-143] (Table 1). Very recently, Sun et al. demonstrated the existence of 

specific CTC territories, marking the spatial heterogeneity of CTCs. These authors compared the 

EMT status of CTCs isolated from various vascular territories and observed surprisingly high 

heterogeneity depending on their location [138] and hypothesized that spatial CTC heterogeneity 

could impact both the recurrence of the disease and the metastatic process. This could be 

explained by the fact that CTCs reflect the dynamic evolution of the advanced stages of cancer 

more closely than the primary tumor (temporal heterogeneity) [110].  

 
EMT biomarkers (e.g. TWIST1, SNAI1/2, N-cadherin, vimentin) are differentially 

expressed in CTCs [144-146]. EMT was shown to enhance metastatic properties of tumor cells. 

Markiewicz et al. analyzed the link between the detection of breast cancer CTCs with a 
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mesenchymal phenotype and EMT status of primary tumors [147].  In their series, mesenchymal 

phenotype of CTCs was more frequent in primary tumors with E-cadherin loss compared to 

those with normal E-cadherin expression. However, EMT status of matched samples at different 

stages of dissemination was frequently discordant, especially for pairs associating CTCs. In more 

of 500 breast cancer patients, CTCs were detected in only 19% of blood samples [148]. These 

authors identified a subset of primary breast cancer patients with EMT (29%) and stem cell 

(14%) phenotype and they did find any correlation between these markers and other prognostic 

clinical markers. Similarly, it has been shown that around 30% of metastatic prostate cancer 

patients had no detectable EpCAM+ CTCs [149]. More recently, Lowes et al. studied the EMT 

process and CTC release in pre-clinical models of prostate cancer [150]. They confirmed that 

that the method used for isolating CTCs is crucial and that CellSearch®-based assay used in their 

study failed to detect around 40-50% of CTCs with mesenchymal phenotype. Overall, these 

studies confirmed the high plasticity of cancer cells and demonstrated that the current methods 

used for detecting/isolating all subtypes of CTCs which undergo EMT are not efficient enough. 

Novel technological approaches are required to better follow the metastatic disease. 

 
 Nowadays, most of the studies published focus on revealing cell-to-cell differences at the 

DNA and RNA level. For overall understanding of single-cell heterogeneity, future studies 

should focus on the combination of different multi-omic assays on the same cell, such as the 

study performed by Hou et al. in which the authors used a single-cell triple omics sequencing 

technique called scTrio-seq which links the complex contribution of genomic and epigenomic 

heterogeneities to transcriptomic heterogeneity within a population of cells [151]. After 

conquering the barrier of multi-omics analysis for single cells, the final challenge will be 

temporal and spatial measurement of the molecular profile in a single cell. New technologies 

should not only solve the problem of the existing analysis methods which characterize only a 

snapshot profile of CTCs, but also provide real-time dynamics to measure patient status and then 

to follow the heterogeneity of the disease. The primary aspect of this new technology is in vivo 

monitoring and analysis of single CTCs, as has been shown in different studies [152, 153], but 

the high cost and lack of sensitivity prevent it from serving as a routine clinical test. In addition, 

future studies should also consider the importance of micro-environment and immunological 

elements in the heterogeneity state of cancer cells, as numerous emergent studies have 
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demonstrated their consequences in tumor evolution and therapeutic response [42, 44, 45, 154]. 

In this regard, efforts must be made to clarify the complex interplay among cells within the 

tumor ecosystem and between functional states in space and time before its translational 

application [67] (Box 2). Understanding tumor heterogeneity is of the utmost importance, as this 

phenomenon is associated with a decrease in diagnostic precision and is an obstacle for 

designing appropriate therapeutic strategies. Enumeration and molecular profiling of CTCs may 

be useful for a better patient stratification. High content analysis of CTCs can give a snapshot of 

the tumor heterogeneity at a given time and could allow to adapt therapeutic approach all along 

the treatment. Indeed, CTCs like all cancer cells are highly plastic and can modify their 

phenotype according the micro-environmental and therapeutic pressure. EGFR-mutated non-

small lung cancer is a good illustration of cancer cell plasticity related to drug resistance [155]. 

EGFR-mutated NSCLC is a genetically heterogeneous disease with more than 200 distinct 

mutations. The identification of the most common L858R mutations-predict sensitivity to EGFR 

tyrosine kinase inhibitors. However, some patients become progressively resistant to the first line 

of tyrosine kinase inhibitor by developing new sets of mutations of EGFR illustrating again the 

plasticity of cancer cells.  CTCs collection is weakly invasive and would allow the follow up of 

EGFR mutation status in order to adapt the therapy “in real time”. Genetic/epigenetic/molecular 

profiling of CTCs open new era of personalized medicine. Unfortunately, the implementation of 

single CTCs in clinical practice is still limited because technologies are expensive, time-

consuming and require standardization processes. Current protocols should be replaced by new 

ones that make it possible to obtain results in a short time and thus avoid any delay in treating the 

disease for cancer patients. 
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Figure legends 

 

Figure 1: Typical microscopic observation of tumor heterogeneity. Osteosarcoma is a rare 

form of bone cancer mainly affecting adolescents and young adults. Osteosarcoma is a perfect 

illustration of highly heterogeneous tumors with multiple, diverse histological areas in a same 

tumor mass including osteoid, hypervascularized, proliferative and necrotic foci. In addition, 

associated lung metastases exhibit a histological morphology different from the primary tumor 

highlighting the contribution and effect played by the pressure of the local micro-environment on 

tumor heterogeneity. 

 

Figure 2: Tumor models and tissue heterogeneity. A. From a pre-neoplastic lesion to the 

development of metastases, the tumor tissue will undergo a marked cellular evolution leading to 

polyclonal disease. Tumor driven genes appearing in determined normal cells will be responsible 

for chromosomal instability with numerous chromosome breakages (fusions, deletions, etc) 

concomitant to secondary genetic and epigenetic events. From the detection of the first 

oncogenic event, new clones will be formed and will enrich the heterogeneity of the tumor. The 

pressure of the local micro-environment and/or the therapeutic pressure will enrich the tumor 

mass in dominant/resistant clones, which will leave the primary tumors to spread to distant 

organs. Tumor heterogeneity is a property of cancers sustained and amplified by the reseeding of 

cancer cells from one site to distant foci. B. Several models of tumor development have been 

proposed and may coexist simultaneously in a single tumor mass. Three main models can be 

described: i) clonal evolution of an initial cancer cell in which subsequent genomic abnormalities 

occur will lead progressively (in a linear manner) to the emergence of new clones; ii) the various 

oncogenic events can also lead to the establishment of multiple subclones with common 

ancestors; this type of model is called the “branched model”; iii) more recently, both models 

have been completed by the “plasticity model” directly related to the plasticity property of cancer 

cells. One cancer cell can evolve between two phenotypic states, A/B, linked to various 

functional states explaining the co-existence and equilibrium of a mixed population expressing a 

large panel of fusion genes or/and cluster of differentiation and contributing to the polyclonal 

expansion and heterogeneity of the tumors. This type of mechanism increases the chance of 
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survival for a cancer cell by upmodulating its adaptability to the micro-environment in a 

permanent manner.  

 

Figure 3: Spatial immunological heterogeneity of tumor tissue. Illustration of the 

heterogeneity of immune infiltrates associated with human osteosarcoma (cohort previously 

published in [137]). Numerous immune cell subtypes invade osteosarcoma tissues during tumor 

development. Interestingly, their spatial distribution shows a high heterogeneity across the tumor 

tissue, with CD3+ T lymphocytes organized in a diffuse infiltrate as well as small clusters. The 

localization of CD8+ T cells is diffuse with one area without any infiltrated cells. Macrophages 

exhibit similar distribution to CD3 and the number of CD20+ B lymphocytes is relatively low but 

B cells are sometimes organized in pseudo-nodules. CD117+ mastocytes are also observed as 

diffuse infiltrate in a specific area.  

 

Figure 4: Recent technological approaches used for isolating and characterising circulating 

tumor cells. A. Isolation of single CTCs is based on a two steps method including a pre-

enrichment step followed by an isolation approach. All of these methods are related to the 

physicochemical or biological properties of CTCs. B. Single CTCs can be characterized by omic 

methods at the DNA, RNA and protein levels. 
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Box 1. Models of carcinogenesis. 

• The somatic mutation or clonal evolution theory is based on DNA changes in oncogenes 

and tumor-suppressor genes that lead to alterations in cell proliferation and/or cell-cycle 

arrest and/or cell differentiation and/or inhibition cell death. 

• The stem cell division theory for cancer suggests that Tumor-Initiating Cells (TICs) are 

the origin of cancer development. TICs are characterized by their capacity for self-

renewal and play a part in the development of the heterogeneous lineages of cancer cells 

by accumulating successive asymmetric cell divisions. Similar to stem cells, TICs carry 

individual DNA from zygote to death and therefore hold the DNA long enough to 

accumulate the alterations required for carcinogenesis. 

 

Box 2. Precision of medicine: the future  

• Losing a significant amount of CTCs can be associated with subsequent 

misinterpretations of heterogeneity, and thus bad clinical decisions.   

• Future studies should focus on the combination of different multi-omics assays on the 

same cell to obtain a heterogeneity profile at different molecular levels. 

• Efforts should be made to implement in clinical practice real-time heterogeneity single 

CTC analysis to measure patient status at any time in the course of the disease.  

• Many studies have shown that TME plays an important role in tumor heterogeneity. 

Upcoming research studies assessing tumor heterogeneity thus need to include the 

analysis of different components in the TME.  

• It is mandatory to run clinical trials to clarify the clinical utility of CTC data. 
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• The implementation of single cell heterogeneity analysis in clinical practice is a priority 

for improving precision medicine. Scientific and clinical communities should concentrate 

their efforts on solving the problem of high cost and time-consuming technologies. 

• A social debate is open for the near future regarding the difficulties many patients have 

with affording the high cost of getting diagnosed by precision medicine technologies. 

 

 

Glossary 

• Circulating tumor cells (CTCs): originate from the primary tumor or metastatic foci and 

at least some of them are able to invade the surrounding tissue, enter either the 

lymphatics or the bloodstream, survive in circulation, extravasate into a tissue and finally 

grow at the new site. 

• Tumor micro-environment (TME): is the cellular environment in which the tumor 

exists, including surrounding blood vessels, immune cells, fibroblasts, bone marrow-

derived inflammatory cells, lymphocytes, signaling molecules and the extracellular 

matrix. TME and tumors are closely-related and interact constantly. Cells in the micro-

environment can affect the growth and evolution of tumor cells, while cancer cells can 

induce changes in the micro-environment by releasing extracellular signals, promoting 

tumor angiogenesis and inducing peripheral immune tolerance. 

• Liquid biopsy: non-invasive test performed on blood samples for the capture and 

analysis of molecules originating from tumors such as CTCs, exosomes, miRNAs, 

proteins and circulating cell-free DNA. The main potential applications of this technique 

are: the screening and early detection of cancer; relapse-risk estimation; identification of 

therapeutic targets for precision medicine; and real-time monitoring of response to 

therapy and anticipation of emergent therapy resistance. 

• Precision medicine: refers to the adjustment of medical treatment to the individual 

characteristics of each patient. It does not literally mean the creation of drugs or medical 

devices that are unique to a patient, but the ability to classify individuals into 

subpopulations that differ in their susceptibility to a particular disease, in the biology or 
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prognosis of those diseases they may develop, or in their response to a specific treatment. 

Preventive or therapeutic interventions can then be concentrated on those who will 

benefit, sparing expense and side effects for those who will not.  

 

 

 

 



Table 1. Recent studies analyzing the heterogeneity of circulating tumor cells (CTCs) at the single cell level. 

Analytical methods Isolation methods  
 

Number 
of 

patients 

Clinical relevance Reference 

Allele-specific PCR 
 

Size-based microsieve technology 44 Analysis of KRAS and BRAF heterogeneity analyzed 
in CTCs can predict outcomes of anti‐EGFR therapy in 

colorectal cancer patients.  

[54] 

Foundation One™ CellSearch followed by single-cell 
isolation by DEPArray 

Markers used : EpCAM+/-, CD45-, 
DAPI 

32 CTC analysis can be used to identify targetable 
mutations, and as a biomarker to reveal the sensitivity 
to therapy of different breast cancer cell populations  

[55] 

PI3KCA Sanger 
sequencing  

CellSearch followed by single-cell 
isolation by DEPArray 

Markers used : EpCAM+/-, CD45-, 
DAPI 

39 Detection of variability in PIK3CA gene mutational 
status in single CTCs isolated from breast cancer 

patients. PIK3CA mutations have prognostic 
significance and are potentially predictive for response 

to agents targeting the PI3K pathway 

[56] 

Filter-adapted-fluorescence 
in situ hybridization (FA-
FISH) 

Filtration, Isolation by size of 
epithelial tumor cells (ISET) 

8 Heterogeneity of ROS1-gene abnormalities in CTCs 
from non-small cell lung carcinoma could explain the 

tumor cells’ resistance to ROS1-inhibitor therapy 

[57] 

Antibody-conjugated and 
surface-enhanced Raman 
spectroscopy (SERS) 

No CTC isolation, detection of 
CTCs in blood samples 

10 Detection of cell heterogeneity in CTC drug-resistant 
clones with potential clinical value for treatment 

decisions (melanoma)                                                                  

[58] 

Next Generation 
Sequencing (NGS) 

CellSearch followed by single-cell 
isolation by DEPArray 

Markers used : EpCAM+/-, CD45-, 
DAPI 

4 High intra-tumor heterogeneity in breast single CTCs 
in genes related to therapeutic response. This can be 

used to assess the clonal evolution of metastatic breast 
cancer and further therapeutic intervention based on 

the mutational status. 

[61] 

Single-cell RNA-
sequencing (RNA-Seq) 

CTC-iChip 
Markers used : EpCAM+/-, 

CDH11+/-, CD45-  

22  Complex inter-tumor and intra-tumor heterogeneity in 
drug resistance mechanisms of analyzed prostate 

single CTCs relates to anti-androgen therapy failure. 

[62] 

FA-FISH Enrichment by ISET, enumeration 
by CellSearch  

18 Inter-tumor heterogeneity in CTC numbers with ALK-
copy number gains has significant association with 

[63] 



Marker used: EpCAM+/-, CD45-  crizotinib efficacy and progression-free survival (PFS) 
in non-small cell lung carcinoma. 

Sanger sequencing CellSearch  
Marker used: EpCAM+/-, CD45- 

30 Clonal heterogeneity analysis in single CTCs from 
metastatic breast cancer patients revealed early ESR1 

mutations associated with endocrine therapy 
resistance. This can be used to predict which patients 

will benefit from a given therapy. 

[64] 

RNA-Seq Flow cytometry: CD45- 19 Detection of intra- and inter-individual heterogeneity 
in melanoma cells and tumor micro-environment 

components linked to resistance to targeted therapies.  

[65] 
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