

Unbiased longitudinal atlas creation using robust linear registration and log-Euclidean framework for diffeomorphisms

Antoine Legouhy *a Olivier Commowick a François Rousseau b Christian Barillot a

^a Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U-1228, F-35000, Rennes, France ^b IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

* antoine.legouhy@irisa.fr

^{*} Founded by ANR MAIA project, grant ANR-15-CE23-0009 of the French National Research Agency and La Région Bretagne (FR).

Atlas

Atlas:

Average model of the brain in term of shape and intensity.

Useful tool to:

- compute statistics on populations
- understand brain variability
- segment regions
- ...

Atlas

Longitudinal atlas:

Average model of the brain in term of shape and intensity.

4D: Time dependent

Set of 3-D atlases each for a desired timepoint Weight functions modulate subjects contributions according to their age fit with that timepoint.

Useful tool to:

- compute statistics on populations
- understand brain variability
- segment regions
- understand brain development
- highlight changes in growth, shape, structure...

1. Registration: Register all the subjects onto a reference A.

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \overline{I}_r .
 - ii. Perform averaging and inverse mapping on output transformations→ unbiasing transformation.
 - iii. Apply this transformation to I_r to create a new reference image.

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \bar{I}_r .
 - ii. Perform averaging and inverse (mapping on output transformations→ unbiasing transformation.
 - iii. Apply this transformation to \bar{I}_r to create a new reference image.

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Method

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \overline{I}_r .
 - ii. Perform averaging and inverse mapping on output transformations
 → unbiasing transformation.
 - iii. Apply this transformation to to create a new reference image.

Prerequisites

Robust linear registration

Diffeomorphisms – Log-Euclidean framework

Baker-Campbell-Hausdorff formula

Weight function

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Method

- 1. Registration: Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - . Perform averaging on output images \bar{I}_r .
 - i. Perform averaging and inverse mapping on output transformations
 → unbiasing transformation.
 - ii. Apply this transformation to to create a new reference image.

CNTS₁₂

Direct rigid registration can be corrupted for brains of different sizes,

Strong similarities on the edges of the brain \rightarrow small one stuck on the edges of the big one:

- Shifted brain barycenters
- misaligned sagittal planes

CNTS 13

Direct rigid registration can be corrupted for brains of different sizes,

Strong similarities on the edges of the brain \rightarrow small one stuck on the edges of the big one:

Shifted brain barycenters

misaligned sagittal planes

Robust rigid registration:

Robust rigid registration:

1. Perform affine registration init: PCA on non-zero voxels

Robust rigid registration:

- 1. Perform affine registration init: PCA on non-zero voxels
- 2. Extract rigid part using polar decomposition

Robust rigid registration:

- 1. Perform affine registration init: PCA on non-zero voxels
- 2. Extract rigid part using polar decomposition

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Method

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \bar{I}_r .
 - ii. Perform averaging and inverse mapping on output transformations
 → unbiasing transformation.
 - iii. Apply this transformation to to create a new reference image.

Diffeomorphisms – Log-Euclidean framework

Diffeomorphisms:

Widely used for non linear registration.

Important properties:

- differentiability
- bijectivity
- differentiability of the inverse map

Diffeomorphisms – Log-Euclidean framework

Diffeomorphisms:

Widely used for non linear registration. Important properties:

- differentiability
- bijectivity
- differentiability of the inverse map

But:

Not a group structure for +

→ Computation of Euclidean operations on diffeomorphisms does not yield a diffeomorphism

Diffeomorphisms – Log-Euclidean framework

Diffeomorphisms:

Widely used for non linear registration. Important properties:

- differentiability
- bijectivity
- differentiability of the inverse map

But:

Not a group structure for +

→ Computation of Euclidean
operations on diffeomorphisms does
not yield a diffeomorphism

Log-Euclidean framework:

Diffeomorphisms parameterized by Stationary Velocity Fields (SVFs).

→ Euclidean operations on SVFs

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Method

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \bar{I}_r .
 - ii. Perform averaging and inverse mapping on output transformations
 → unbiasing transformation.
 - iii. Apply this transformation to to create a new reference image.

Baker-Campbell-Hausdorff formula

v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$?

Baker-Campbell-Hausdorff formula

v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$?

Log computation \rightarrow very costly

Baker-Campbell-Hausdorff formula

v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$?

Log computation → very costly

Baker-Campbell-Hausdorff formula:

In a BCH-Lie group, for v and w small enough :

$$\log(\exp(v) \circ \exp(w)) \approx v + w + \frac{1}{2}[v, w] + \frac{1}{12}([v, [v, w]] + [[v, w], w]) + \dots$$

Where:

$$[v, w](x) = \operatorname{Jac}(v)(x).w(x) - \operatorname{Jac}(w)(x).v(x)$$

Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images. Bossa et al., 2007

Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI. Commowick et al., 2012

Longitudinal atlas creation method

Requirements

Longitudinal atlas that is:

- Diffeomorphic
- Unbiased up to a rigid transformation
 - Takes into account global growth
 - Takes into account local displacements
- Temporaly accurate
- Robust
 - Sub-atlases are correctly aligned

Method

- 1. Registration: Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averagings on output images \overline{I}_r .
 - ii. Perform averagings and inverse map on output transformations → unbiasing transformation.
 - iii. Apply this transformation to create a new reference image.

Weight function: gives more importance to subjects closer in age to τ .

: window width

• α : window start

Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Serag et al., 2011

temporal error

Weight function: gives more importance to subjects closer in age to τ .

Too few degrees of freedom → temporal error

Temporal error:
$$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$

weight function

- : window width
- α : window start

temporal error

Weight function: gives more importance to subjects closer in age to τ .

Too few degrees of freedom → temporal error

Temporal error:
$$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$

→ quintic polynomial weight function

• δ : window width

• α : window start

weight function

temporal error

Weight function: gives more importance to subjects closer in age to τ .

Too few degrees of freedom → temporal error

Temporal error:
$$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$

→ quintic polynomial weight function

• δ : window width

 α : window start

- Find α that minimizes the temporal error
- Modulate window δ such to have the desired number of subjects

Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Serag et al., 2011

Longitudinal atlas creation method

Classical version overview

Registration

Creation of the new reference image

1. Registration: Register all the subjects onto a reference A.

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \overline{I}_r .
 - ii. Perform averaging and inverse mapping on output transformations→ unbiasing transformation.
 - iii. Apply this transformation to I_r to create a new reference image.

- **1. Registration:** Register all the subjects onto a reference A.
- 2. Creation of the new reference:
 - i. Perform averaging on output images \bar{I}_r .
 - ii. Perform averaging and inverse (mapping on output transformations→ unbiasing transformation.
 - iii. Apply this transformation to \bar{I}_r to create a new reference image.

Registration

2-step registrations using block-matching algorithms:

Registration

2-step registrations using block-matching algorithms:

affine

Block-matching strategies for rigid registration of multimodal medical images. Commowick et al., 2012
Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI. Commowick et al., 2012

- 2-step registrations using block-matching algorithms:
 - affine
 - → decomposed into a rigid and a stretching part

- 2-step registrations using block-matching algorithms:
 - affine
 - → decomposed into a rigid and a stretching part
 - Diffeomorphic (made such as it ouputs SVF)

- 2-step registrations using block-matching algorithms:
 - affine
 - → decomposed into a rigid and a stretching part
 - Diffeomorphic (made such as it ouputs SVF)

2-step registrations using block-matching algorithms:

- affine
 - → decomposed into a rigid and a stretching part
- Diffeomorphic (made such as it ouputs SVF)

Create SVF from s_i :

- Compute $\log(s_i)$ (matrix)
- Apply $\log(s_i)$ to each spatial point $\rightarrow \log(s_i)$ (SVF)

2-step registrations using block-matching algorithms:

- affine
 - → decomposed into a rigid and a stretching part
- Diffeomorphic (made such as it ouputs SVF)

Create SVF from s_i :

- Compute $\log(s_i)$ (matrix)
- Apply $\log(s_i)$ to each spatial point $\rightarrow \log(s_i)$ (SVF)

$$\log(\theta_i) = \text{BCH}(\log(s_i), \log(d_i))$$

Creation of the unbiasing transformation:
 Inverse of transformation average (through weight function):

$$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right)$$

Creation of the unbiasing transformation:
 Inverse of transformation average (through weight function):

$$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^n w_i \log(\theta_i)\right) \frac{\text{Log-Euclidean operations}}{\text{weight from weight function}}$$

Creation of the unbiasing transformation:
 Inverse of transformation average (through weight function):

$$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right) \leftarrow \frac{\text{Log-Euclidean operations}}{1 + (1 - \sum_{i=1}^{n} w_i \log(\theta_i))}$$

Transform and average the initial images:

weight from weight function

$$A = \sum_{i=1}^{n} w_i I_i \circ R_i \circ \theta_i \circ \overline{\theta}^{-1}$$

Creation of the unbiasing transformation:
 Inverse of transformation average (through weight function):

$$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right) \leftarrow \frac{\text{Log-Euclidean operations}}{}$$

Transform and average the initial images:

weight from weight function

Constructed atlas

Results

197 healthy subjects from C-MIND database T1 weighted images 1mm iso about 25 subjects per sub-atlas

C-MIND database: https://research.cchmc.org/c-mind

Code provision

Anima: Open source software for medical image processing from the Empenn team

https://github.com/Inria-Visages/Anima-Public

Registration, transformation composition...

 Anima-Scripts: Open source processing scripts using Anima tools https://github.com/Inria-Visages/Anima-Scripts-Public

Atlasing script

Thank you for your attention! Question?

Contact: antoine.legouhy@irisa.fr