Unbiased longitudinal atlas creation using robust linear registration and log-Euclidean framework for diffeomorphisms Antoine Legouhy *a Olivier Commowick a François Rousseau b Christian Barillot a ^a Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U-1228, F-35000, Rennes, France ^b IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France * antoine.legouhy@irisa.fr ^{*} Founded by ANR MAIA project, grant ANR-15-CE23-0009 of the French National Research Agency and La Région Bretagne (FR). ## Atlas #### **Atlas:** Average model of the brain in term of shape and intensity. #### Useful tool to: - compute statistics on populations - understand brain variability - segment regions - ... ## Atlas ## Longitudinal atlas: Average model of the brain in term of shape and intensity. 4D: Time dependent Set of 3-D atlases each for a desired timepoint Weight functions modulate subjects contributions according to their age fit with that timepoint. #### Useful tool to: - compute statistics on populations - understand brain variability - segment regions - understand brain development - highlight changes in growth, shape, structure... **1. Registration:** Register all the subjects onto a reference A. - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \overline{I}_r . - ii. Perform averaging and inverse mapping on output transformations→ unbiasing transformation. - iii. Apply this transformation to I_r to create a new reference image. - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \bar{I}_r . - ii. Perform averaging and inverse (mapping on output transformations→ unbiasing transformation. - iii. Apply this transformation to \bar{I}_r to create a new reference image. # Longitudinal atlas creation method ## Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned # Longitudinal atlas creation method #### Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned #### **Method** - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \overline{I}_r . - ii. Perform averaging and inverse mapping on output transformations → unbiasing transformation. - iii. Apply this transformation to to create a new reference image. ## Prerequisites Robust linear registration Diffeomorphisms – Log-Euclidean framework Baker-Campbell-Hausdorff formula Weight function # Longitudinal atlas creation method ## Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned #### **Method** - 1. Registration: Register all the subjects onto a reference A. - 2. Creation of the new reference: - . Perform averaging on output images \bar{I}_r . - i. Perform averaging and inverse mapping on output transformations → unbiasing transformation. - ii. Apply this transformation to to create a new reference image. CNTS₁₂ Direct rigid registration can be corrupted for brains of different sizes, Strong similarities on the edges of the brain \rightarrow small one stuck on the edges of the big one: - Shifted brain barycenters - misaligned sagittal planes CNTS 13 Direct rigid registration can be corrupted for brains of different sizes, Strong similarities on the edges of the brain \rightarrow small one stuck on the edges of the big one: Shifted brain barycenters misaligned sagittal planes Robust rigid registration: Robust rigid registration: 1. Perform affine registration init: PCA on non-zero voxels Robust rigid registration: - 1. Perform affine registration init: PCA on non-zero voxels - 2. Extract rigid part using polar decomposition Robust rigid registration: - 1. Perform affine registration init: PCA on non-zero voxels - 2. Extract rigid part using polar decomposition # Longitudinal atlas creation method ## Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned #### **Method** - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \bar{I}_r . - ii. Perform averaging and inverse mapping on output transformations → unbiasing transformation. - iii. Apply this transformation to to create a new reference image. # Diffeomorphisms – Log-Euclidean framework #### **Diffeomorphisms:** Widely used for non linear registration. Important properties: - differentiability - bijectivity - differentiability of the inverse map # Diffeomorphisms – Log-Euclidean framework #### **Diffeomorphisms:** Widely used for non linear registration. Important properties: - differentiability - bijectivity - differentiability of the inverse map #### But: Not a group structure for + → Computation of Euclidean operations on diffeomorphisms does not yield a diffeomorphism # Diffeomorphisms – Log-Euclidean framework #### **Diffeomorphisms:** Widely used for non linear registration. Important properties: - differentiability - bijectivity - differentiability of the inverse map #### **But:** Not a group structure for + → Computation of Euclidean operations on diffeomorphisms does not yield a diffeomorphism #### **Log-Euclidean framework:** Diffeomorphisms parameterized by Stationary Velocity Fields (SVFs). → Euclidean operations on SVFs # Longitudinal atlas creation method ## Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned #### **Method** - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \bar{I}_r . - ii. Perform averaging and inverse mapping on output transformations → unbiasing transformation. - iii. Apply this transformation to to create a new reference image. # Baker-Campbell-Hausdorff formula v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$? # Baker-Campbell-Hausdorff formula v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$? Log computation \rightarrow very costly # Baker-Campbell-Hausdorff formula v and w SVFs, how to compute $\log(\exp(v) \circ \exp(w))$? Log computation → very costly #### **Baker-Campbell-Hausdorff formula:** In a BCH-Lie group, for v and w small enough : $$\log(\exp(v) \circ \exp(w)) \approx v + w + \frac{1}{2}[v, w] + \frac{1}{12}([v, [v, w]] + [[v, w], w]) + \dots$$ Where: $$[v, w](x) = \operatorname{Jac}(v)(x).w(x) - \operatorname{Jac}(w)(x).v(x)$$ Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images. Bossa et al., 2007 Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI. Commowick et al., 2012 # Longitudinal atlas creation method ## Requirements #### Longitudinal atlas that is: - Diffeomorphic - Unbiased up to a rigid transformation - Takes into account global growth - Takes into account local displacements - Temporaly accurate - Robust - Sub-atlases are correctly aligned #### **Method** - 1. Registration: Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averagings on output images \overline{I}_r . - ii. Perform averagings and inverse map on output transformations → unbiasing transformation. - iii. Apply this transformation to create a new reference image. Weight function: gives more importance to subjects closer in age to τ . : window width • α : window start Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Serag et al., 2011 #### temporal error Weight function: gives more importance to subjects closer in age to τ . Too few degrees of freedom → temporal error Temporal error: $$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$ weight function - : window width - α : window start #### temporal error Weight function: gives more importance to subjects closer in age to τ . Too few degrees of freedom → temporal error Temporal error: $$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$ → quintic polynomial weight function • δ : window width • α : window start #### weight function #### temporal error Weight function: gives more importance to subjects closer in age to τ . Too few degrees of freedom → temporal error Temporal error: $$B = \left| \tau - \sum_{i=1}^{n} w_i \tau_i \right|$$ → quintic polynomial weight function • δ : window width α : window start - Find α that minimizes the temporal error - Modulate window δ such to have the desired number of subjects Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Serag et al., 2011 # Longitudinal atlas creation method Classical version overview Registration Creation of the new reference image **1. Registration:** Register all the subjects onto a reference A. - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \overline{I}_r . - ii. Perform averaging and inverse mapping on output transformations→ unbiasing transformation. - iii. Apply this transformation to I_r to create a new reference image. - **1. Registration:** Register all the subjects onto a reference A. - 2. Creation of the new reference: - i. Perform averaging on output images \bar{I}_r . - ii. Perform averaging and inverse (mapping on output transformations→ unbiasing transformation. - iii. Apply this transformation to \bar{I}_r to create a new reference image. ## Registration 2-step registrations using block-matching algorithms: ## Registration 2-step registrations using block-matching algorithms: affine Block-matching strategies for rigid registration of multimodal medical images. Commowick et al., 2012 Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI. Commowick et al., 2012 - 2-step registrations using block-matching algorithms: - affine - → decomposed into a rigid and a stretching part - 2-step registrations using block-matching algorithms: - affine - → decomposed into a rigid and a stretching part - Diffeomorphic (made such as it ouputs SVF) - 2-step registrations using block-matching algorithms: - affine - → decomposed into a rigid and a stretching part - Diffeomorphic (made such as it ouputs SVF) ## 2-step registrations using block-matching algorithms: - affine - → decomposed into a rigid and a stretching part - Diffeomorphic (made such as it ouputs SVF) #### Create SVF from s_i : - Compute $\log(s_i)$ (matrix) - Apply $\log(s_i)$ to each spatial point $\rightarrow \log(s_i)$ (SVF) ## 2-step registrations using block-matching algorithms: - affine - → decomposed into a rigid and a stretching part - Diffeomorphic (made such as it ouputs SVF) ### Create SVF from s_i : - Compute $\log(s_i)$ (matrix) - Apply $\log(s_i)$ to each spatial point $\rightarrow \log(s_i)$ (SVF) $$\log(\theta_i) = \text{BCH}(\log(s_i), \log(d_i))$$ Creation of the unbiasing transformation: Inverse of transformation average (through weight function): $$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right)$$ Creation of the unbiasing transformation: Inverse of transformation average (through weight function): $$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^n w_i \log(\theta_i)\right) \frac{\text{Log-Euclidean operations}}{\text{weight from weight function}}$$ Creation of the unbiasing transformation: Inverse of transformation average (through weight function): $$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right) \leftarrow \frac{\text{Log-Euclidean operations}}{1 + (1 - \sum_{i=1}^{n} w_i \log(\theta_i))}$$ Transform and average the initial images: weight from weight function $$A = \sum_{i=1}^{n} w_i I_i \circ R_i \circ \theta_i \circ \overline{\theta}^{-1}$$ Creation of the unbiasing transformation: Inverse of transformation average (through weight function): $$\bar{\theta}^{-1} = \exp\left(-\sum_{i=1}^{n} w_i \log(\theta_i)\right) \leftarrow \frac{\text{Log-Euclidean operations}}{}$$ Transform and average the initial images: weight from weight function # Constructed atlas ## Results 197 healthy subjects from C-MIND database T1 weighted images 1mm iso about 25 subjects per sub-atlas C-MIND database: https://research.cchmc.org/c-mind # Code provision Anima: Open source software for medical image processing from the Empenn team https://github.com/Inria-Visages/Anima-Public Registration, transformation composition... Anima-Scripts: Open source processing scripts using Anima tools https://github.com/Inria-Visages/Anima-Scripts-Public Atlasing script # Thank you for your attention! Question? Contact: antoine.legouhy@irisa.fr