
HAL Id: inserm-02099958
https://inserm.hal.science/inserm-02099958v1

Submitted on 15 Apr 2019 (v1), last revised 6 Jun 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unbiased longitudinal brain atlas creation using robust
linear registration and log-Euclidean framework for

diffeomorphisms
Antoine Legouhy, Olivier Commowick, François Rousseau, Christian Barillot

To cite this version:
Antoine Legouhy, Olivier Commowick, François Rousseau, Christian Barillot. Unbiased longitudinal
brain atlas creation using robust linear registration and log-Euclidean framework for diffeomorphisms.
ISBI 2019 - IEEE International Symposium on Biomedical Imaging, Apr 2019, Venise, Italy. pp.1038-
1041. �inserm-02099958v1�

https://inserm.hal.science/inserm-02099958v1
https://hal.archives-ouvertes.fr


UNBIASED LONGITUDINAL BRAIN ATLAS CREATION USING ROBUST LINEAR
REGISTRATION AND LOG-EUCLIDEAN FRAMEWORK FOR DIFFEOMORPHISMS

Antoine Legouhy∗? Olivier Commowick? François Rousseau† Christian Barillot?

? Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U-1228, F-35000, Rennes, France
† IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

ABSTRACT

We present a new method to create a diffeomorphic longi-
tudinal (4D) atlas composed of a set of 3D atlases each rep-
resenting an average model at a given age. This is achieved
by generalizing atlasing methods to produce atlases unbiased
with respect to the initial reference up to a rigid transforma-
tion and ensuring diffeomorphic deformations thanks to the
Baker-Campbell-Hausdorff formula and the log-Euclidean
framework for diffeomorphisms. Subjects are additionally
weighted using an asymmetric function to closely match
specified target ages. Creating a longitudinal atlas also im-
plies dealing with subjects with large brain differences that
can lead to registration errors. This is overcome by a robust
rigid registration based on polar decomposition. We illus-
trate these techniques for the creation of a 4D pediatric atlas,
showing their ability to create a temporally consistent atlas.

Index Terms— Longitudinal atlas, Brain development,
Diffeomorphism, Registration

1. INTRODUCTION

Brain atlases are a crucial tool in medical imaging. They con-
sist in an unbiased average model of the brain providing a
way to compute statistics on populations, understanding brain
variability but also to segment regions. Longitudinal (time de-
pendent) atlases allow in addition the comprehension of brain
development to highlight changes in growth, shape, structure
etc. Those 4-D models are based on a set of 3-D atlases each
for a desired timepoint using weight functions that modulate
the contributions of the subjects according to their age fit with
that timepoint. To produce an unbiased atlas, two different
approaches are commonly used. The first one chooses a ref-
erence to register all the subjects to and iteratively unbias the
atlas with respect to it [1]. The second common approach
performs a direct groupwise registration of all the subjects
simultaneously [2]. This family of methods however often
relies on a number of registrations in the order of the square
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of the number of subjects which can quickly be computation-
ally expensive. Atlasing methods such as [1] provide a good
average shape and intensity. However they define unbiased
atlases up to an affine transformation, thus losing informa-
tion on brain growth. On the other hand, [3] corrects well for
global size and shape (affine features) but ignores local defor-
mations and thus leads to blurry images. [4] presented a tech-
nique that takes into account both global and local changes
and uses a Gaussian kernel with adaptive width adjusted ac-
cording to the temporal distribution of the subjects. However,
the rigidity of the Gaussian kernel does not guarantee that the
age of the resulting atlas corresponds to the expected one.

We propose a longitudinal atlas creation method that is
unbiased up to a rigid transformation accounting both for
global and local transformations in the unbiasing step. Gen-
eralizing the procedure from [1] to longitudinal atlases, it
only requires a number of iterations in the order of the num-
ber of subjects times the number of iterations. Additionally
we extend this framework to handle diffeomorphisms using
the log-Euclidean framework [5] and the Baker-Campbell-
Hausdorff formula to quickly compose and average those
transformations. In addition, a quintic polynomial weight
function is introduced giving enough degrees of freedom
to reduce temporal error of the 3D atlases while ensuring
adaptivity to data distribution.

We finally introduce a robust registration method based on
polar decomposition to deal with disparities in terms of brain
sizes and shapes, especially in the early years (or months)
of life. All these contributions are put together to construct
a longitudinal atlas from a database of pediatric patients, il-
lustrating the ability of our framework to obtain well defined
temporal atlases in a robust manner.

2. PREREQUISITES

2.1. Robust linear registration methods

A linear transformation is a composition of a linear map M
and a translation t operating on coordinates: y = Mx + t.
The transformation type depends upon the constraints on M .

Linear registration consists in finding an optimal linear
transformation that matches a moving image onto a reference



image usually by maximizing a similarity criterion. Among
those approaches, block matching strategies [6] have gained
in popularity for their robustness and simple implementa-
tion. After an initialization phase, two steps are iterated: 1-
matching: for a set of blocks in the reference image, ho-
mologous blocks best satisfying a similarity criterion are
searched in the moving image, providing a set of paired
points x = {x1, . . . , xk} and y = {y1, . . . , yk} ; 2- aggrega-
tion: an optimization allows to find the global transformation
minimizing the distance between the two sets.

The first step is performed in the same way for any linear
transformation. The second step is dependant over the type
of linear transformation leading to an adapted optimization in
each case. However, for any linear transformation, the least
squares optimization is still split into two successive parts [7]:
1- the optimal translation is a function of the optimal linear
map M̂ and of the two sets barycenters x̄ and ȳ: t̂ = ȳ− M̂x̄
; 2-M is optimized depending on its constraints (e.g. rotation
matrix for a rigid transformation).

Direct rigid registration can be corrupted by strong simi-
larities on the edges of the brain. Estimating directly a rigid
transformation between the images may then lead to shifted
brain barycenters and misaligned mid-sagittal planes. To cor-
rect this, we propose to first estimate an affine transforma-
tion T̂A and then extract the rigid part from it through po-
lar decomposition (PD). PD allows the factorization of a ma-
trix M into M = UH , where U is a unitary matrix and
H is a positive-semidefinite Hermitian matrix. By taking
R = Det(U).U and S = Det(U).H , we can separate M into
a stretching part S that encapsulates scaling along a set of or-
thogonal directions and a rotation partR excluding reflection.
Using PD on M̂ (M̂ = R̂Ŝ), a robust rigid transformation T̂R
can be extracted by using: R̂ for the rotation map and ȳ− R̂x̄
for the translation part. The remaining affine transformation
T̂S (so that T̂A = T̂RT̂S), is then obtained as T̂S = T̂−1R T̂A.

2.2. Log-Euclidean framework on diffeomorphisms and
the Baker-Campbell-Hausdorff formula

Diffeomorphisms have been chosen for non linear registration
due to their interesting properties: differentiability, bijectivity
and differentiability of the inverse map. However, computa-
tion of Euclidean operations on them does not generally yield
a diffeomophism nor an invertible transformation at all. This
is however a crucial part in atlas creation where the inverse
of an average of diffeomorphisms is needed. To cope with
this, Arsigny et al. [5] introduced a framework to deal with
diffeomorphisms parameterized by Stationary Velocity Fields
(SVF) based on their embedding into a pseudo-Lie group.
This log-Euclidean framework allows fast computation of av-
erage transformations (Euclidean operations on SVFs) while
ensuring them to remain diffeomorphisms.

The computation of the SVF resulting from the compo-
sition of two diffeomorphisms, i.e. log(exp(v) ◦ exp(w))

with v and w SVFs, is however very long as it requires the
estimation of the principal logarithm. The BCH formula
states that in a BCH-Lie group, for v and w small enough,
log(exp(v) ◦ exp(w)) can be approximated as a series of Lie

brackets: log(exp(v) ◦ exp(w)) ≈ v + w +
1

2
[v, w] + . . .

Where [v, w](x) = Jac(v)(x).w(x) − Jac(w)(x).v(x). It
has been shown in [8, 9] that the use of the BCH formula is
well suited for diffeomorphisms. In particular, knowing only
the SVFs of two diffeomorphisms, the SVF of their composi-
tion can be approximated without any logarithm computation.

2.3. Quintic polynomial weight function

Given a sample of N subjects of ages {τ1, . . . , τN}, to create
an atlas representative of an age τ , it seems natural to give
more importance to subjects closer in age to τ . This can be
done by associating to each subject i a weight wi based on its
temporal difference to τ . The weights are then used in the av-
eraging process (see section 3). The most common approach
is to use a Gaussian kernel centered in τ with standard devia-
tion σ. An adaptative σ can be used to harmonize the number
of subjects of non-negligible weight in case of non-uniformly
distributed sample ages [4]. Still, the rigidity of the Gaussian
kernel implies that if the τi are not distributed symmetrically
around τ , the temporal error E = |τ −

∑
i wiτi| between τ

and the computed age will be large leading to a temporally
shifted atlas. We thus propose instead to use a more flexible
weight function, namely a quintic polynomial P , supported
on a window [α, α+ δ] with the following constraints:

P (α) = 0 〈1〉
P (α+ δ) = 0 〈2〉

P ′(α) = 0 〈3〉
P ′(α+ δ) = 0 〈4〉

P ′(τ) = 0 〈5〉∫ α+δ
α

P (x)dx = 1 〈6〉

(1)

Constraints 〈1〉 and 〈2〉 implie: P (x) = (x − α)(x − (α +
δ))(ax3 + bx2 + cx + d). In turn, this leads to a system of
4 equations (remaining constraints) and 4 unknowns which
has an analytic solution. In addition, it is also necessary that
P (x) ≥ 0, ∀x ∈]α, α + δ[ and τ ∈ [α, α + δ]. This condi-
tion is fulfilled for α ∈ [τ − 3δ/5, τ − 2δ/5]. The flexibility
of this weight function allows to optimize over α in its bounds
to minimize E for a given τ . The width of the kernel δ allows
to adapt to data disparities to guarantee a number of subjects
used to compute the atlas. This is done using an iterative
procedure similar to [4]. The age range is subsampled into a
collection of potential ages and an ideal number of subjects n
per atlas is chosen. Then, for each tentative age, if the number
of subjects inside the window is less than n, δ is increased,
otherwise it is reduced. Finally, smoothing is applied for a
smooth transition between consecutive potential ages.
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Fig. 1. Two steps registration process of Ii on Al: affine reg-
istration decomposed in a rigid part ri and a stretching part si
followed by a diffeomorphic registration (transformation di).

3. LONGITUDINAL ATLAS CREATION METHOD

We define a longitudinal (4D) atlas as a succession of 3D
atlases each representing an average model at a given age.
Those atlases are created using a generalized version of the
method proposed by Guimond et al. [1] to provide an unbi-
ased 3D atlas up to a rigid transformation and with variable
weights. For each desired age, an initial reference is chosen
among the subjects and the following steps are then iterated:

1. Registration: all the subjects are registered on the cur-
rent reference image Al.

2. Creation of the new reference Al+1: i- computation of
θ̄ the weighted average of output transformations, ii-
computation of Ī the weighted average of registered
images, iii- application of θ̄−1 to Ī to obtain Al+1.

This creates a succession of reference images that are less and
less biased by the choice of the first reference image and con-
verges to an unbiased average model of the subjects naming
an atlas. To be representative of a given time τ , it is necessary
to give more importance to subjects with an age closer to τ .
This is handled in the averaging processes described below.
Registration. At a given iteration l, each subject i is regis-
tered onto Al in two steps using our block matching regis-
tration implemented in the Anima open source software1 (see
Fig. 1). First, an affine registration is performed using [6].
The algorithm is initialized by a transformation determined
using principal component analysis on the non-zero voxels
of the two images. This makes the barycenters of the two
images coincide and align and stretch their principal direc-
tions according to the corresponding eigenvalues. The output
transformation is decomposed, using the method depicted in
Section 2.1, into a robust rigid part ri and a stretching part
si. The second step is a diffeomorphic registration [10] that
outputs a SVF log(di). We therefore end up with a series of
transformations separated into two parts: ri and θi = si ◦ di.
To further simplify θi and average them in a simple manner,
we compute the SVF associated to si by taking its matrix log-
arithm and applying it to each spatial point of the image, thus
obtaining a SVF log(si) [11]. The logarithm of the composi-

1Anima: https://goo.gl/HDC5Jf

tion of si and di is then approximated through the 2nd order
BCH formula (see Section 2.2).
Creation of the new reference image. After the registra-
tion stage, we then compute the new average reference for
the temporal point of interest from a set of SVFs {log(θi)}
and a set of registered images {Ii,d}. The inverse of the
log-Euclidean average of the transformations (Section 2.2)
θ̄−1 = exp (−

∑
i wi log(θi)) is then applied to the average

of registered images: Ī =
∑
i wiIi,d to create Al+1. Doing

so over several iterations ensures, similarly to Guimond et al.,
to obtain an unbiased atlas this time with respect to a rigid
transformation. To compute the 3D atlas for a given age, the
weights wi are chosen using the weight function depicted in
Section 2.3 and normalized such that they sum up to 1.

4. MATERIAL AND RESULTS

Our method has been tested on T1 images (size: 200× 200×
200, voxel resolution: 1 × 1 × 1 mm3) from the C-MIND
database, a data repository created for the study of normal
brain development conducted by Cincinnati Childrens Hos-
pital Medical Center and UCLA and supported by the Na-
tional Institute of Child Health and Human Development2.
197 healthy subjects with ages ranging from less than a month
to almost 19 years old have been selected after quality check.
Temporal error evaluation. We have chosen the following
parameters for the weight functions algorithm: desired num-
ber of subjects per 3D atlas: n = 25, ages subsampling: from
0 to 19 years with a step 0.01, smoothing using LOESS with
window 50. The main advantage of our weight function is
the possibility of obtaining an asymmetric function to reduce
temporal error through optimization over α. We thus first
compared our method (a) with a similar one (b) with a fixed
α = T−δ/2 leading to symmetric weight functions around τ .
To avoid side effects, calculations have been performed on the
interval [τmin, τmax] = [0.76, 16.5] such that 95% of subjects
ages are greater than τmin and 95% less than τmax. The tem-
poral errors for each method are shown in Table 1. Method
(a) proves its ability to correct the temporal error allowing to
construct well-timed atlases up to a day for almost half of the
age range while it happens only for 2% using method (b).

Method Median error Error<day (%) Error<week (%)
a 0.0002 48.5684 56.5748
b 0.0686 2.0148 14.263

Table 1. Comparison of the median of the temporal errors (in
years), percentage of timepoints where the error is less than 1
day and 1 week respectively for methods (a) and (b).

Pediatric atlas construction. We then conducted the creation
of a pediatric atlas from the C-MIND database. The parame-
ters were set as: number of iterations: 8, atlas timepoints com-

2C-MIND: https://research.cchmc.org/c-mind
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Fig. 2. Longitudinal atlas (top) and associated weight functions (bottom) for ages: 1, 1.5, 2, 3, 4.85, 9 and 16 years. Vertical
lines represent ages of C-MIND subjects.

puted: 1, 1.5, 2, 3, 4.85, 9 and 16 years old (ages for which
the temporal error was less than a day). Our method provides
atlases for each age that correspond to the subjects growth
apart from a rigid transformation. We have therefore used the
oldest subject with a non-zero weight for each atlas timepoint
as the first reference. For visualization purposes, we have
additionally registered robustly with a nearest rigid transfor-
mation (see Section 2.1) each of these initial references on an
external atlas so that all temporal atlases are rigidly aligned.
We present the computed atlases in Fig. 2 together with the
subjects ages used for their construction.

Visual checkup on this longitudinal atlas explicits quick
general brain growth in the early stages of life until a sta-
bilization around 5 years old except for the antero-posterior
direction that continues until the older ages. Thanks to our
robust rigid registration, all temporal atlases are well centered
on their barycenters and their sagittal planes are well aligned.

5. CONCLUSION

We presented a longitudinal atlas creation method using a
generalized version of the algorithm from [1]. It takes advan-
tages of the log-Euclidean framework and the BCH formula to
produce individual age atlases unbiased up to a rigid transfor-
mation giving the opportunity to highlight global changes and
local deformations in the atlas. To be representative of a given
age, we introduced a quintic polynomial weight function to
modulate the influence of each subject. Through its flexibilty
(potential asymmetry), it ensures a large choice of ages on
which the associated atlas is not temporally erroneous. Fi-
nally, by denoting N the number of subjects and L the num-
ber of iterations in the main loop of the algorithm, our method
necessitates only a number of registrations in O(MN) (M
being in practice much smaller than N ) while numerous atlas
creation methods require this number to be in O(N2).
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“Block-matching strategies for rigid registration of mul-
timodal medical images,” in ISBI, 2012, pp. 700–703.

[7] Berthold K. P. Horn, “Closed-form solution of absolute
orientation using unit quaternions,” Journal of the Opti-
cal Society of America A, vol. 4, no. 4, pp. 629, 1987.

[8] Matias Bossa, Monica Hernandez, and Salvador Olmos,
“Contributions to 3D Diffeomorphic Atlas Estimation:
Application to Brain Images,” in MICCAI, 2007, vol.
4791 of LNCS, pp. 667–74.

[9] T. Vercauteren et al., “Symmetric Log-Domain Diffeo-
morphic Registration: A Demons-Based Approach,” in
MICCAI, 2008, vol. 5241 of LNCS, pp. 754–761.

[10] O. Commowick, N. Wiest-Daesslé, and S. Prima, “Au-
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