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Abstract. Measures of brain activity through functional magnetic res-
onance imaging (fMRI) or Electroencephalography (EEG), two com-
plementary modalities, are ground solutions in the context of neuro-
feedback (NF) mechanisms for brain-rehabilitation protocols. Though
NF-EEG (real-time neurofeedback scores computed from EEG) have
been explored for a very long time, NF-fMRI (real-time neurofeedback
scores computed from fMRI) appeared more recently and provides more
robust results and more specific brain training. Using simultaneously
fMRI and EEG for multimodal neurofeedback sessions (NF-EEG-fMRI,
real-time neurofeedback scores computed from fMRI and EEG) is very
promising to devise brain rehabilitation protocols. However using fMRI
is costly, exhausting and time consuming, and cannot be repeated too
many times for the same subject. The original contribution of this paper
concerns the prediction of multimodal NF scores from EEG recordings
only, using a training phase where both EEG and fMRI synchronous
signals, and therefore neurofeedback scores, are available. We propose a
sparse regression model able to exploit EEG only to predict NF-fMRI
or NF-EEG-fMRI in motor imagery tasks. We compare different NF-
predictors steming from the proposed model. We show that one of the
proposed NF-predictors significanlty improves over what EEG can pro-
vide alone (without the learning phase), and correlates at 0.74 in median
with the ground-truth.
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1 Introduction

Neurofeedback approaches (NF) are non-invasive measurements of brain activity
(usually based on only one modality) [11,27] through online brain functional
feature extraction, to provide real-time feedback to a subject about its brain
activity and help him or her perform a given task. NF appears to be an interesting
approach for clinical purposes, for example in the context of rehabilitation and
psychiatric disorders [27,4,30]. Functional magnetic resonance imaging (fMRI)
and electro-encephalography (EEG) are the most used noninvasive functional
brain imaging modalities in neurofeedback.
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EEG measures the electrical activity of the brain through channels located
on the scalp. EEG has an excellent temporal resolution (milliseconds), but a
limited spatial resolution. Besides, EEG is not easy to control in neurofeedback
for the subject or patient, since it directly comes from mixtures of propagating
electric potential fluctuations, measured on the scalp, providing noisy data.

On the other hand, blood oxygenation level dependent (BOLD) fMRI, mea-
sures a delayed hemodynamic response to neural activity with a good spatial
resolution, and a temporal resolution of 1 or 2 seconds depending on the se-
quence used. In addition it is easier to control the hemodynamics of the brain
activity, which is more stable and less noisy than electrical activity, making the
fMRI an adequate modality for neurofeedback (NF-fMRI) [29]. However this is a
costly, exhausting for subjects and time consuming modality, and unfortunately,
NF-fMRI cannot be repeated too many times for the same subject.

During the past few years, the use of simultaneous EEG-fMRI recording has
been used to understand the links between EEG and fMRI in different states
of the brain activity and received recognition as a promising multi-modal mea-
surement of the brain activity [23,1]. Since this bi-modal acquisition is still not
comfortable for subjects or patients, it is costly and not portable, due to the
use of fMRI. Therefore, the methodology to extract information from fMRI with
EEG have been also intensively investigated (some methods involved in the pro-
cess are reviewed here [1]). Indeed, both modalities measure different neural
activities with different speeds. EEG provides in real time a direct measure of
the changes in electrical potential occurring in the brain, while fMRI indirectly
estimate brain activity by measuring changes in BOLD signal reflecting neuro-
vascular activity, which occurs in general few seconds after a neural event [7].
Few studies have investigated, and found some correlations between EEG signal
and BOLD activity, in specific and simple tasks. Some early studies reported
negative correlation between the BOLD signal in the occipital lobe and the
alpha rhythm (7-13Hz) in occipital electrodes during eyes open - eyes closed
tasks [17,8], showing first potential link between EEG and fMRI, yet in some
specific locations during specific simple tasks.

In the literature, the term EEG-informed fMRI can be found to describe
methods extracting relevant features from EEG signals in order to derive a pre-
dictor of the associated BOLD signal in the region of interest under study. A
recent review [1] gives a good overview of the principal EEG-informed fMRI
methods and their limitations. Different strategies have been investigated, de-
pending on the type of activity under study (epilepsy, resting state, open/closed
eyes, relaxation): either by selecting one channel on interest, either by using
multiple channels, before extracting features of interest. For example in [13,6],
authors used a temporal independent component analysis to select the channel
reflecting the best the epileptic seizures. In [26], authors used a spatial, spec-
tral and temporal decomposition of the EEG signals to map EEG on BOLD
signal changes in the thalamus. From a more symmetrical way, we proposed
in [19], a method for the estimation of brain source activation, improving its
spatio-temporal resolution, compared to EEG or BOLD fMRI only.
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However, in the context of neurofeedback, using simultaneous recording of
EEG-fMRI to estimate neurofeedback scores computed from features of both
modalities (NF-EEG-fMRI) is a recent application that have been first intro-
duced, and its feasibility demonstrated by [31,22,15]. The methodology to syn-
chronise both signals for real time neurofeedback is new [15], allowing the ac-
quisition of new NF-EEG-fMRI data, such as the one we will be using for this
study [22]. To export NF-fMRI scores outside the scanner, most of the methods
intend to predict the fMRI BOLD signal activity on a specific region of interest
by learning from EEG signal recorded simultaneous, inside the fMRI scanner.
For example the method proposed in [16], uses a ridge regression model with a
`2 regularisation, based on a time/frequency/delay representation of the EEG
signal from a single channel. Results show a good estimation of the BOLD signal
in the region of interest, but the use of the neurofeedback in this study is only
to serve the paradigm, making this work part of the EEG-informed methods.
The neurofeedback is not used to be learnt or improved as we are proposing here
here.

Besides it has been shown in [22], that the quality of neurofeedback session is
improved when using simultaneously both modalities, in NF-EEG-fMRI sessions.
Being able to reproduce in real time a NF-EEG-fMRI session when using EEG
only, would reduce the need of fMRI in neurofeedback, while increasing the
quality of NF sessions.

Our challenge here, is to learn activation patterns (see section 2.2) from simul-
taneous EEG-fMRI recording, performed during hybrid NF-EEG-fMRI sessions,
to improve the quality of neurofeedback scores when EEG is used alone. The
motivation of this is multiple: since we are considering a new kind of data, we
want to provide a simple method characterising NF-EEG-fMRI in EEG, leading
to understandable model to confirm existing relations between EEG and fMRI in
neurofeedback scores, or to discover new relationships. Neurofeedback features
in fMRI come from the BOLD activation in one or more region of interest. We
propose an original alternative to source reconstruction in the context of neuro-
feedback. Indeed we directly intent to predict NF scores, without dealing with
source reconstruction or spatial filtering to estimate BOLD-fMRI signal first on
a specific region of interest, as proposed in a previous method [19]. To our knowl-
edge, this problem of prediction of hybrid neurofeedback scores (without source
reconstruction) is new, and has not been explored yet in the literature. Also we
want the activation pattern to be applicable in real-time when using new EEG
data. The main objective of this paper is to design a method able to exploit EEG
only, and predict an NF score of quality comparable to the NF score that could
be achieved with a combination of EEG and fMRI. The approach is based on
a machine learning mechanism. During a training phase, both EEG and fMRI
are simultaneously acquired and used to compute and synchronise, in real time,
NF-EEG and NF-fMRI scores, both being combined into an hybrid NF-EEG-
fMRI score. EEG signals and NF scores are used to learn activation patterns.
During the testing phase, the learned activation pattern is applied to unseen
EEG data, providing simulated NF-EEG-fMRI scores in real time. Sparse re-
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gression is exploited to build a NF-predictor. The NF-predictor is composed by
a model and a design matrix, it takes as inputs EEG signals with a reference NF
scores and a test EEG signal. It provides as outputs a prediction of NF scores on
the test EEG signal. The design matrix is composed by EEG features estimated
from different frequency bands with different delay on each EEG channel. The
model uses an adapted prior for brain activation patterns, using a mixed norm
giving a structured sparsity, to spatially select electrodes and then select the
corresponding frequency bands.

In section 2 we present the proposed model and the methods used to solve
it. Then we will experiment our learning model on neurofeedback sessions with
motor imagery task, which unique data are presented in section 3. Section 4
presents results on a group of 17 subjects with 3 NF sessions of motor imagery
each, and compared the results to a widespread learning method, used in Brain
Computing Interface to discriminate two mental states, the Common spatial
pattern (CSP). Section 5 provides a discussion of the proposed framework.

2 Problem and method

The approach consists in considering that, during a training phase, we have
access to reference scores y(t) and a temporal representation (potentially non-
linear) of EEG signals X (called a design matrix, presented in section 2.1), and
wish to choose a parameter vector α such that y(t) ≈ q(X(t),α) for all t, where
q is some parametric function. α is a matrix matching the size of X(t), here we
consider

q(X(t),α) := 〈X(t),α〉 =

E∑
i=1

F∑
j=1

Xi,j(t)αi,j .

Regularisation is used to select an optimal parameter vector α̂ that fits the
training data, while avoiding over-fitting, as detailed in Section 2.2.

Only a few brain regions are expected to be activated by a given cognitive
task, therefore the electrodes configuration is said to be spatially sparse. However
frequency bands of each electrodes are not necessarily sparse, and might even
be smooth depending on the frequency band sampling.

From here, we will use the following notations. ye(t) ∈ R,∀t ∈ {1, ..., T}
are the T neurofeedback scores estimated from EEG signals (noted SEEG ∈
RE×TEEG), measured from E electrodes during TEEG samples of time. yf(t) ∈
R,∀t ∈ {1, ..., T} are the T neurofeedback scores extracted from Blood Oxygen
Level Dependent imaging (BOLD) signal of functional-MRI acquisitions SfMRI ∈
RV×TfMRI , with V the number of voxels and TfMRI the number of acquired
volumes. y(t) ∈ R,∀t ∈ {1, ..., T} is a set of neurofeedback scores that can be ye,
yf or yc = ye + yf a combination of both (more details are provided in section 3).
First, relevant information from EEG data need to be extracted and organised
to form what we call a design matrix.
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2.1 Structured design matrices from EEG signal

The design matrix X0 ∈ RT×E×B , where E is the number of electrodes and B
the number of frequency bands, contains relevant information extracted from the
EEG signal. Each temporal matrix of X0, X0(t) ∈ RE×B ∀t ∈ {1; . . . ;T} is a
frequency decomposition corresponding to the past 2 seconds of SEEG. We used
a Hamming time window of 2 seconds, to estimate the average power of each
frequency band b ∈ {1; . . . ;B} (defined below) on each channel ∈ {1; . . . ;E}.
Each time window of EEG signal is overlapped by 1.75 seconds (0.25 seconds
shift), to match with the 4Hz sample of the y values. The B frequency bands
have an overlap of 1 Hz with the next band, and are defined between a minimum
frequency bmin Hz and a maximum frequency bmax Hz (see section 3). We chose
to use several relatively narrow frequency bands to let the model select the
relevant bands for each electrodes. Furthermore it has been suggested [18,25] to
use different frequency bands when working with coupling EEG-fMRI data.

The model also has to be able to predict yf scores, derived from BOLD
signal (see section 3). There is no linear relationship between BOLD signal and
average power on frequency bands from EEG signal. Therefore, to better match
yf scores, we decided to apply a non-linear function to X0, used in fMRI to
model BOLD signals [21,14], the canonical Hemodynamic Response function
(HRF). We convolved X0 on its temporal dimension with the HRF, formed by
2 gamma functions, for a given delay of the first gamma function to compensate
the response time of BOLD signal, as suggested in [16]. The HRF will temporally
smooth and give a BOLD-like shape to the design matrix and increase a potential
linear relationship between yf and design matrix. Since HRF is known to vary
considerably across brain regions and subjects [12], it is therefore recommended
to consider different delays, but also to chose a range of values corresponding
to the task asked. For the type of task addressed in the experimental part, the
observed delay is around 4 seconds, therefore we convolved X0 with 3 differents
HRF leading to 3 new design matrices X3,X4,X5 with respectively a delay of
3, 4 and 5 seconds for the canonical HRF.

Those design matrices are concatenated in their 2nd dimension to form the
Xc ∈ RT×M×B matrix, with M = 4 ∗ E. Therefore, for each time t, Xc(t) =
[X0(t);X3(t);X4(t);X5(t)]. We also denote Xd(t) = [X3(t);X4(t);X5(t)] the
design matrix of the different delays.

2.2 Optimisation

EEG data are now represented into a structured design matrixXc, we can search
for a weight matrix α̂ ∈ RM×B , such that

∑
m,h α̂(m,h)Xc(t,m, h) estimates

as well as possible the NF score y(t),∀t ∈ {1; . . . ;T}. Note: the methodology is
presented for the design matrix Xc, but can be used for X0 or Xd.

To identify the α̂, called activation pattern, we propose the following strategy,
which consists in learning, for a given subject and a NF session, the optimal α̂
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by solving the following problem:

α̂ = argmin
α

T∑
t=1

1

2

(
y(t)− q(Xc(t),α)

)2
+ φλ(α) (1)

with φλ a regularisation term, λ a weighting parameter for the regularisation
term. This α̂ is then applied to a design matrix Xtest

c from a new session, to
predict its NF scores

ỹα̂(t) = q(Xc
test(t), α̂) ∀t ∈ {1; . . . ;T}.

Equation (1) is of the form argmin(g1(α) + g2(α)) and its resolution can be
done using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [3],
which is a two-step approach of the Forward-Backward algorithm [5] making it
faster. FISTA requires the same conditions as the Forward-Backward algorithm,
meaning a convex differentiable with Lipschitz gradient term g1 and a convex
term g2 that is not necessarily differentiable but smooth enough to make its
proximal map computable.

Here g1(α) =
∑T
t

1
2 (y(t)−q(Xc(t),α))2 is a sum of convex and differentiable

functions with

5g1(α) =
∑
t

−Xc(t)(y(t)− q(Xc(t),α))

since ∀i ∈ {1; . . . ;M}, j ∈ {1; . . . ;B}, [∂q(Xc(t),α)
∂α(i,j) ]i,j = Xc(t, i, j). By represent-

ing Xc(t) and α as vectors of size M ∗B, we can easily note that ∂g1
∂α is a sum

of Lipschitz functions. Therefore, the Lipschitz constant of ∂g1
∂α is L = ‖Xᵀ

VXV ‖
with XV ∈ RT∗M∗B the vectorised version of Xc.

The NF-predictor uses structured design matrix to have a better control on
the interpretation of results and to better optimise the weights α̂. Therefore
we have to adopt an optimisation strategy coherent with this structure. The
activation pattern of the NF-predictor:

1. has to be spatially sparse since the cognitive task is reflected by brain activity
from a limited set of electrodes,

2. has to be smooth across different overlapped frequency bands,
3. has to allow non-relevant frequency bands to be null.

The term g2 is the prior term. Here, for g2(α) = φλ(α), we chose to use a
`21 mixed norm [20] followed by a `1-norm (noted `21+1-norm in [10]) to fit all
structure conditions mentioned above.

φλ(α) = λ‖α‖21 + ρ‖α‖1

with ρ ∈ R+ and λ ∈ R+. We chose not to estimate the parameter ρ, to keep
computation time reasonable. Indeed, ρ weights the induced spatial sparsity
over EEG channels, and we chose to fix this parameter for all subjects, as we
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hypothesis that there is no reason, for the number of electrodes involved in
the activation pattern, to significantly change between subjects. However the
estimation of λ parameter is needed (since we do not have hypothesis on its
behaviour) and presented in the next section. The `21 mixed norm that writes

‖α‖21 =
∑
m

√∑
b α

2
m,b satisfies conditions 1) and 2). The `1 norm defined

as ‖α‖1 =
∑
m,b |αm,b| satisfies condition 3) since `p norms with p ≤ 1

are known to promote sparsity. The last key point of FISTA algorithm is the
proximal map associated to the `21+1 norm Prox`21+1 : RM×B −→ RM×B ,β 7→
argminα(φλ(α) + 1/2‖β −α‖2), defined as

(Prox`21+1(Y ))m,b =
Ym,b
|Ym,b|

(|Ym,b| − ρ)+(1− λ√∑
b(|Ym,b| − ρ)+2

)+

with operator (.)+ = max(., 0). One can note that by cancelling either the λ
parameter or the ρ parameter, we retrieve the proximal map associated to the
`21 (when ρ = 0) and to the `1 norm (when λ = 0), which demonstrations
can be found in the appendix of [9]. For the stopping criterion of FISTA, a large
enough number of iteration has been used, allowing the model to converge before
reaching the last iteration. All elements and conditions are gathered to run the
FISTA algorithm.

2.3 λ parameter selection

The parameter λ is important in the optimisation problem and we decided to
estimate it automatically. The following process chooses the best λ among a
list of Λ = {λ1; ...;λl} sorted in increasing order. First of all, the data must
be split into 2 sets, a learning set and a testing set. For each value λi of Λ,
the learning set, formed by L neurofeedback scores with their associated design
matrices, is divided K = 50 times into a training set of size Rk = 90%L and a
cross-validation set of size CVk = 10%L composed by the remaining 10% of the
learning set. A model α̂(k,i) is estimated on the training dataset k composed by
Rk neurofeedback scores y(j) and the associated design matrices Xc(j) with λi,
i.e.:

α̂(k,i) = arg min
∑
j

‖ y(j)− q(Xc(j), α̂
(k,i))‖2 + λi‖α(k,i)‖21 + ρ‖α(k,i)‖1

with j ∈ Rk and Xc(j) ∈ RM×B . For the current λi evaluation, we stop the

process when
∑
k |α̂

(k,i)|0/K < 2. There is no need to investigate the next λi,
the current one is sparse enough, and the next one might lead to null models.

We then apply the model α̂(k,i) to the corresponding cross-validation set of
CVk NF scores, to obtain estimated values of y(s), ỹ(s) = q(Xc(s), α̂

(k,i)), with
s ∈ CVk. For each one of the 50 partitioning into training and cross-validation
sets, we computed the normalised mean squared error NMSE for a given set of
data {y,Xc}, for the training sets and the cross-validation sets.

NMSE({y,Xc}, α̂(k,i)) =

∑
s(y(s)− q(Xc(s), α̂

(k,i)))2∑
s(y(s)− ȳ)2

(2)
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with ȳ = 1/n
∑n
s y(s). The optimal λ̂ parameter is defined as the one minimising

the error during training and validation. Considering only the errors from the
training set NMSE({y(Rk),Xc(Rk)}, α̂(k,i)) would introduce bias, and consider-

ing only the error of the cross-validation set NMSE({y(CVk),Xc(CVk)}, α̂(k,i)),

would introduce variance. Then the optimal λ̂ is the λi that minimises :

K∑
k=1

[NMSE({y(Rk),Xc(Rk)}, α̂(k,i)) + NMSE({y(CVk),Xc(CVk)}, α̂(k,i))]

λ̂ parameter is the optimal parameter used for the model estimation. If there
are several candidates, to favor sparsity, the larger of these candidate is chosen.

3 Data acquisition and pre-processing

We used a group of 17 subjects that were scanned using a hybrid Neurofeedback
platform coupling EEG and fMRI signal [15]. A 64-channel MR-compatible EEG
solution from Brain Products (Brain Products GmbH, Gilching, Germany) has
been used, the signal was sampled at 5kHz, FCz is the reference electrode and
AFz the ground electrode. For the fMRI scanner, we used a 3T Verio Siemens
scanner with a 12 channels head coil (repetition time (TR) / echo time (TE)
= 2000/23ms, FOV = 210 × 210mm2, voxel size = 2 × 2 × 4mm3, matrix size
=105× 105 with 16 slices, flip angle = 90◦). All subjects are healthy volunteers,
right-handed and had never done any neurofeedback experiment before. They
all gave written informed consent in accordance with the Declaration of Helsinki
as specified in the study presenting the data used here [22]. They all had 3
NF motor imagery sessions of 320 seconds each, after a session dedicated to
the calibration. One session consists in 8 blocks alternating between 20 seconds
of rest, eyes open, and 20 seconds of motor imagery of their right hand. The
neurofeedback display was uni-dimensional (1D) for 9 subjects (Figure 1 left),
and bi-dimensional (2D) for 8 subjects (Figure 1 middle). For both, the goal was
to bring the ball into the dark blue area [23].

NF scores ye and yf being from different modalities, were standardised be-
fore summing to form yc. In this study NF scores refer to standardised scores,
except when they are predicted. For this study, ye have been computed from
the commonly used, in neurofeedback, the Laplacian operator, centred around
the region of interest, channel C3 here. For each time interval It the spatial
filtering is noted Lap(C3, It). The temporal segments It are spaced by 250ms,
and a length of 2 seconds (therefore an overlapping of 1,75 seconds), as for the
design matrix construction. The power of the frequency band [8Hz - 30Hz] is
then extracted via the function f :

ye(t) = −f[8−30](Lap(C3,It))

One may note the presence of the minus operator, used here for the sake of
coherence with yf (Figure 1 right).
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Fig. 1. Bi-modal neurofeedback strategies (1D on the left, 2D on the middle), displayed
during sessions [23]. 1D: the ball’s position represents the average score between ye and
yf. 2D: the left axis represents the ye and the right axis represents the yf scores. The
2 plots on the right show NF scores from EEG and from fMRI, green areas are task,
white areas are rest. The goal is to bring the ball in the dark blue area.

The neurofeedback scores yf have been computed from the maximal intensity
of BOLD signal covering the right-hand motor area and the supplementary motor
area, one score is computed per volume acquired (i.e 1 per second). Then scores
yf are re-sampled and smoothed (using a Savitzky-Golay filter, known to avoid
signal distortion) to fit the 4Hz ye scores (T = 1280).

Here we introduce an other neurofeedback score, ŷCSP(t) ∈ R,∀t ∈ {1, ..., T},
to be compared to our method, scores estimated from the Common Spatial Pat-
tern (CSP) algorithm known to be efficient despite its sensitivity to noise [24].
The CSP is a widely used filter in braincomputer interface to discriminate two
mental states using EEG signals, and sometime used in the context of neuro-
feedback [15,22]. Here, EEG signal are being recorded simultaneously with fMRI,
the two mental states are the 20 seconds resting blocks and the 20 seconds task
blocks, modulated by the neurofeedback scores ye and yf received by the subject.
The CSP filter is used to spatially filter the EEG signal, as for the Laplacian
and with the same time intervals It, the power of the frequency band 8-30 Hz is
estimated on the filtered signal to obtain the ŷCSP values.

An active set have been selected on design matrices to avoid potentially
correlated noise, due to head movement during resting blocks, obstructing signal
from channels of interest. Indeed in coupling EEG-fMRI acquisitions, subjects
are lying into the MRI scanner, therefore outer electrodes can be in contact with
the bed or holds. We excluded outer electrodes and kept 28 electrodes, the 3
central lines have 7 electrodes (FCz is the reference), 3 frontal electrodes and 3
posterior electrodes.

For frequency bands of the design matrix X0 construction (cf section 2)
and therefore for the other design matrices, we chose bmin = 8, bmax = 30 to
cover alpha and beta frequency bands involved in motor tasks. There is B = 10
frequency bands, leading to bands of 3 Hz wide (with an overlap of 1Hz).
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4 Experiments and Results

As said in the previous section, we have 3 neurofeedback sessions per subjects.
For each subjects, we will consider 1 session as learning set, and the 2 oth-
ers as testing sets. Leading to 3 different learning sets, and 6 different testing
sets per subjects. Potential outliers in the design matrices (i.e. observations >
mean±3std) were thresholded in the learning set, and bad observations from
annotations on the EEG signal were removed as their corresponding NF scores.

4.1 Experiments and validation

We tested different NF-predictors (input: an EEG signal, a reference NF scores
and a testing EEG signal, and output: the predicted NF scores for the testing
EEG signal) for the prediction of different NF scores, ∀t ∈ {1; . . . ;T}:
• NF-predictor 1: ỹα̂c

(t) = q(Xtest
c (t), α̂c) with α̂c (eq. 1), learned from Xc

and yc

• NF-predictor 2: ỹα̂e
(t) = q(Xtest

0 (t), α̂e) with α̂e (eq. 1), learned from X0

and ye

• NF-predictor 3: ỹα̂f
(t) = q(Xtest

d (t), α̂f ) with Xd = [X3;X4;X5], and α̂f
(eq. 1), learned from Xd and yf

• NF-predictor 4 :ỹα̂e
(t) + ỹα̂f

(t) using NF-predictor 2 and NF-predictor 3

• NF-predictor 5: ye(t) + ỹα̂f
(t) using NF-predictor 3 only

The NF-predictors 4 and 5 permit the use of the 2D score visualisation (Figure 1)
to display NF scores. NF-predictor 4 is to compare to NF-predictor 1, since
one directly learn the yc, and the other cut the problem into 2 problems, NF
predictors 2 and 3. NF-predictor 5 is an other alternative, in which only the
NF-fMRI scores are learned from EEG signal. We run the following experiments
to test our different NF-predictors:

– Model validation: we used the learning set to assess if the NF-predictors could
model accurately the NF scores. For each subject and each NF-predictor, we
estimated correlations with the reference NF score to quantify the quality
of prediction. For the validation, we compared to the correlation of ye to yc
which is part of the yc score, to have a correlation reference, and to know if,
in the validation process, the model can do better than ye.

– Model prediction: we apply the learned activation patterns to a new testing
set. For each subject and each pair of session (6 learning/testing pair per
subject), we compared correlations between each NF-predictor. We also com-
pared the different predictions to the prediction given by the widely used, in
brain computing interface, CSP filter [24], introduced in section 3.

– To observe the captured structure in the activation pattern α̂c learned with
NF-predictor 1, we split the averaged, over subjects and sessions, activation
pattern into matrices corresponding to the design matrices composing Xc,
and displayed results of the first dimension (electrodes) and of the second
dimension (frequency bands).
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Fig. 2. Model validation compared to the NF scores (ye and yf), as reference. Box-
plots (median and quartiles) of Pearson’s correlation coefficients over all subjects and
sessions, between NF-predictors and yc.

4.2 Results

The validation of the NF-predictors (i.e. the learned activation patterns α̂ are
applied to the learning set) results are shown at Figure 2. Pearson’s correlation
coefficients between the prediction and the ground truth are computed for each
of the 3 learning sessions and for all subjects. The estimated ỹα̂c

(in dark blue,
median r = 0.83, mean r = 0.82), on the learning set, show stronger correlation
with yc than the reference scores ye (mean r = 0.71. paired t-test, p≤ 1e-3) yf
(mean r = 0.75. paired t-test, p≤ 1e-3) and ỹα̂e

(t) + ỹα̂f
(t) (in yellow, median r

= 0.8, mean r = 0.79. paired t-test, p≤ 1e-3). Furthermore, correlations are very
high (≥ 0.8) for ỹα̂c

and ỹα̂e
+ỹα̂f

, letting think that the model is adapted to the
NF prediction problem. In addition, the model could fit NF-fMRI scores using
only EEG signals information (median r = 0.80 for ỹα̂f

vs yf). This is promising
for the proposed NF-predictor 5 which only requires the prediction of NF-fMRI
scores and EEG signals only.

During the testing phase (Figure 3), the learned activation patterns are ap-
plied to the testing sets, i.e. the 2 other unseen NF sessions for each one of the 3
NF sessions. During the learning session, if a subject focused more on NF-fMRI
(which is the easiest one to control) than on NF-EEG, the EEG-signals might
lose coherence with respect to the NF-fMRI scores. Even though, the EEG sig-
nals could predict NF-fMRI scores with a correlation of 0.32 in median and mean
0.3, which is a fair correlation between such different modalities. Examples of
NF prediction are given at Figure 5, the bottom plot shows the prediction ỹα̂f

of yf on a testing set.

The purple box plot at figure 3, shows that NF-predictor 5 (median corre-
lation = 0.74) is the best at predicting yc, its prediction is better than ye only
(mean correlation ye + ỹα̂f

vs yc = 0.70, mean correlation ye vs yc = 0.67). A
one sided paired t-test (which alternative hypothesis is ye has a lower correlation
to yc than ye + ỹα̂f

), gives a p-value p = 0.01, meaning that the prediction ỹα̂f
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Fig. 3. Model testing; For each subject, application of learned pattern to an unknown
session. Boxplots (median and quartiles) of Pearson’s correlation coefficients over all
subjects and sessions, between NF-predictors and yc. The comparison of ye vs yc =
ye + yf (yellow, middle) is here only as a reference, since ye is on both sides. The light
blue box (right) shows correlation of yc with the learned CSP filter (see section 3).

significantly adds information to ye. An example of ye + ỹα̂f
vs yc is given at

Figure 4, right top.

Figure 3 also shows (in light blue on right side) that the predicted ŷCSP

have a lower correlation with the reference scores yc. The correlation ŷCSP vs yc
is significantly lower than the correlation of any of the proposed NF-predictor
with yc. One sided paired t-tests (alternative hypothesis being ŷCSP has a lower
correlation to yc than the considered NF-predictor) give the following p-values:
for NF-predictor 1 (dark blue box on Figure 3) we found a value p = 3e-6, for
NF-predictor 4 (red box on Figure 3) p = 2e-7, and for NF-predictor 5 (purple
box on Figure 3) p = 1e-27. The fact that the CSP, which discriminates 2 mental
states, cannot correctly predict the scores of a subject on a test session, confirms
that considered signals are too noisy here. Subjects can sometimes be more
receptive to the EEG and sometimes to the BOLD signal, and those changes are
only captured by the different neurofeedback scores obtained during the learning
phase.

Figure 4 shows that, even if the correlations of ỹα̂c
(and ỹα̂e

+ ỹα̂f
too) are

lower than ye + ỹα̂f
(cf box plots at Figure 3), ỹα̂c

can predict correctly the
reference score yc. We do not show the prediction of ỹα̂e

+ ỹα̂f
, but it has the

same aspect as ỹα̂c
on Figure 4. The correlations (of NF-predictors 1 and 4) are

lower than ye, because ye is part of the reference score (as is ye in ye + ỹα̂f
),

and also the regularisation of the model is smoothing the prediction of the NF-
predictors. The box plot for ye vs yc(= ye + yf) (yellow, Figure 3) is only here
to have a point of comparison when learning phase is not done and the fMRI is
not considered. The high correlation of ye with yc illustrates the high frequency
changes of ye scores, which are not necessarily information. However, it can be
observed that interestingly, both NF-predictors (1 and 4) equally predict yc. This
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Fig. 4. Examples of prediction of NF scores. Vertical bands indicate the rest and the
task blocks. The correlation coefficient r indicates the correlation between each pair
of time-series NF scores. The ground truth (yc) is in green, the x-axis is the temporal
axis in milliseconds. Top: NF-predictor 5 in purple. Bottom: NF-predictor 1 in blue.

might not be expected since λ parameters are estimated independently for each
model.

To observe the distribution, over sessions and subjects, of the learned nonze-
ros coefficients, we first denote ζ̂c =

∑17
j

∑3
s1,s2
|α̂(j,s1,s2)
c | ∈ RM×B the absolute

activation pattern, and γ̂c =
∑
j

∑3
s1,s2

α̂(j,s1,s2)
c ∈ RM×B the average activa-

tion pattern. By construction of the design matrix Xc, α̂c can be split into
4 activation patterns, and therefore, we can display heat maps for the 4 abso-
lute activation patterns ∈ {1; . . . ;E} (Figure 6, top line)

∑
b∈B ζ̂0,

∑
b ζ̂3,

∑
b ζ̂4

and
∑
b ζ̂5; and color maps of the 4 average patterns

∑
b γ̂0,

∑
b γ̂3,

∑
b γ̂4 and∑

b γ̂5 showing the sign of the strongest and stable coefficients across subjects

and sessions. Interestingly, the most intense heat map,
∑
b ζ̂0 with a maximum

value of 45, concentrates its non-zero values on C3 channel (above the right-hand
motor area) and corresponds to the design matrix X0, directly extracted from
EEG signal without temporal delay. The next heat map in intensity order is∑
b ζ̂5 with two peaks above the visual cortex (Pz and P4 channels). All maps

are sparse and present different distributions of the non-zero values. It is also
interesting to observe that the main activation peaks (C3, Pz and P4) have op-
posite signs, suggesting a negative correlation with a delay of 5 seconds between
C3 and the posterior Pz, P4. This is not an absurd finding since NF scores are
visual, subjects are focused on the visualisation of NF scores during task, and
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Fig. 5. Examples of prediction of NF scores. The x-axis is the temporal axis in millisec-
onds. Vertical bands indicate the rest and the task blocks. The correlation coefficient
r indicates the correlation between each pair of time-series NF scores. Top: the ground
truth ye is in yellow and its estimate in blue. Bottom: the ground truth yf is in orange
and its estimate in blue.

rest during resting blocks (eyes open). This let think that posterior electrodes
could be removed from the active set of the design matrix Xc.

At last, it is also possible to display the frequency profile of each average
activation patterns. The 4 frequency profiles are

∑
e∈{1,...,E} γ̂0,

∑
e γ̂3,

∑
e γ̂4

and
∑
e γ̂5, e ∈ {1, ..., E}, summing weights over electrodes. Figure 7 shows that

the most used frequency bands over all subjects and sessions are alpha band
([8-12] Hz) and lower beta band ([13-17] Hz), the last 4 frequency bands are not
displayed since they only have null coefficients. We can observe the effect of `2
regularisation which allows continuity in the frequency bands, and the effect of
the subsequent `1 regularisation which removed the smaller coefficients located
in the high frequencies. When considering all activation patterns (Figure 7 right
side), there is a change of sign between alpha and lower beta. Each activation
pattern shows a different frequency profile, which, with Figure 6, demonstrates
that all patterns have complementary information.

5 Discussion and conclusion

The validation step supports that the optimisation strategy is adapted to the
model, as is the choice of the different design matrices. This is when applying
the learned activation patterns to a new session (Figure 3), that predicting only
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Fig. 6. Activation patterns averaged over sessions and subjects. f ∈ {1, ..., B}. Top
line: Heat map representing the distribution of non-zero coefficients. Maximum value
is indicated for each map with a red M. Bottom line: Average activation patterns,
representing the sign of the main non-zero values across subject and sessions. Minimum
and maximum values are indicated for each map with m and M.

NF-fMRI scores while applying a Laplacian on EEG signal appears to be the
best solution. Indeed, the variability between EEG signals induces decreasing
correlation for ỹα̂c

and for ỹα̂e
+ ỹα̂f

. Predicting NF-EEG scores from EEG is
not really relevant (except from a methodological point of view) since these
scores are always computed from the EEG signal, which is constantly available.
It is interesting to note that the 2 different strategies (ỹα̂c

and ỹα̂e
+ ỹα̂f

) have
similar results, and when decomposing the activation pattern of ỹα̂c

, the weights
corresponding to X0 are mainly located above C3, which is the centre of the
Laplacian for the computation of the NF-EEG scores. Figure 6 and 7 show that
only specific electrodes and frequency band (between 7 Hz and 20 Hz, higher
frequencies are not captured by the model) are required, over all subjects, letting
think that there is a common underlying model for the population, even if models
are subject specific. To increase the prediction of NF scores, we could use more
NF sessions as learning session, since as observed, EEG signals bring variability
in the prediction. Each new neurofeedback session could be added to the subject-
specific model.

Presently, the proposed model finds an individual model for each subject
that can be seen as a personalised model for neurofeedback sessions. However,
for a future work, we are investigating an adaptation of the methodology for the
extraction of a common model, taking into account the differences between sub-
jects, allowing the prediction of NF-EEG-fMRI scores on new subjects who did
not participated to the model construction. This would give access to neurofeed-
back sessions of quality using EEG only, for subjects with MRI contraindications,
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Fig. 7. Frequency profiles, across subjects and sessions, of each average activation pat-
terns, to represent the implication of each frequency bands in the activation patterns.
e ∈ {1, ..., E}. For each average activation pattern, the y-axis indicates the sum of
weights over electrodes, for each frequency bands f ∈ {1, ..., B} on the horizontal axis.

and/or drive a subject-specific model estimation, respecting the strategy used
by the subject to progress in its neurofeedback task.

Other ways to improve the method proposed here would be to investigate
the use of dynamic functional connectivity, a relatively recent field in BOLD
fMRI which needs further investigations to be used along with EEG data [28].
Dynamic functional connectivity study the temporal fluctuations of the BOLD
signal across the brain, and appears to be a promising approach in the EEG-
fMRI research field [2].

To conclude, the 5th NF-predictor proposed here is able to provide prediction
of the NF-fMRI scores good enough to replace the NF-fMRI scores and allows
to significantly increase the quality of the estimation of NF-EEG-fMRI scores
when using EEG only.
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