N

N

bT b2 11:@BM7Q K2/ 7J A KQ/2H 7Q" ?
11:@7J_A M2m Q722/# +F T 2/B+iBQ]
*H B 2*mv-SB2 '2J m 2H- 0KB : B#QMp H- *?°

hQ +Bi2 i?Bb p2 ' bBQM,

*H B2 *m’v- SB2 '2 J m 2H- _0KB :"B#QMp H- *?°BbiB M " "BHHQIiX
KQ/2H 7Q° ?2v#'B/ 11:@7J_A M2m Q722/# +F T'2/B+iBQMX 6 QMiB:
RyXjjBNf7TMBMbXKkyRNXYyR98R X BMb2 ' K@ykyNyedepj

> G A/, BMb2 K@ykyNyede
?2iiTb,ffBMb2 KX? HXb+B2M+2fBMb2 K@ykyNye
am#KBii2/ QM R C M kyky

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://inserm.hal.science/inserm-02090676v3
https://hal.archives-ouvertes.fr

A sparse EEG-informed fMRI model for hybrid
EEG-fMRI neurofeedback prediction

Claire Cury %% | Pierre Maurel 1, Rémi Gribonval 2 and Christian Barillot 1

lUniv Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn team ERL

U 1228, F-35000 Rennes, France.

2 Univ Rennes, CNRS, Inria, IRISA UMR 6074, PANAMA team, F-35000 Rennes,
France.

Correspondence*:
Claire Cury
claire.cury.pro@gmail.com

ABSTRACT

Measures of brain activity through functional magnetic resonance imaging (fMRI) or
Electroencephalography (EEG), two complementary modalities, are ground solutions in the
context of neuro-feedback (NF) mechanisms for brain rehabilitation protocols. While NF-
EEG (real-time neurofeedback scores computed from EEG signals) have been explored for
a very long time, NF-fMRI (real-time neurofeedback scores computed from fMRI signals)
appeared more recently and provides more robust results and more specic brain training.
Using simultaneously fMRI and EEG for bi-modal neurofeedback sessions (NF-EEG-fMRI,
real-time neurofeedback scores computed from fMRI and EEG) is very promising to devise
brain rehabilitation protocols. However, fMRI is cumbersome and more exhausting for patients.
The original contribution of this paper concerns the prediction of bi-modal NF scores from
EEG recordings only, using a training phase where EEG signals as well as the NF-EEG and
NF-fMRI scores are available. We propose a sparse regression model able to exploit EEG
only to predict NF-fMRI or NF-EEG-fMRI in motor imagery tasks. We compared different NF-
predictors steaming from the proposed model. We showed that predicting NF-fMRI scores from
EEG signals adds information to NF-EEG scores and signi cantly improve the correlation with
bi-modal NF sessions, compared to classical NF-EEG scores.

Keywords: Optimisation, EEG, sparsity, machine learning, Neurofeedback,EEG-fMRI, sparsity

1 INTRODUCTION

Neurofeedback approaches (NF) provide real-time feedback to a subject about its brain activity and help
him or her perform a given task (Hammond, 2011; Sulzer gt al.,|2013). The estimation of neurofeedback
information, is done through online brain functional feature extraction, to provide this real-time feedback
to the subject. NF appears to be an interesting approach for clinical purposes, for example in the context
of rehabilitation and psychiatric disorders (Sulzer et [al., 2013; Birbaumer|eét al.| 2009; Wang et al.,
2017). Functional magnetic resonance imaging (fMRI) and electro-encephalography (EEG) are the most
used noninvasive functional brain imaging modalities in neurofeedback. EEG measures the electrical
activity of the brain through electrodes located on the scalp. EEG has an excellent temporal resolution
(milliseconds), but a limited spatial resolution (centimeters) implying a lack of speci city. Furthermore,
source localisation in EEG is a well-known ill-posed inverse probjem (Grech et al., 2008).

Onthe other hand, blood oxygenation level dependent (BOLD) fMRI, measures a delayed hemodynamic
response to neural activity with a good spatial resolution, and a temporal resolution of 1 or 2 seconds
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depending on the sequence used. Therefore fMRI is more speci c than EEG, making the fMRI an
adequate modality for neurofeedback (NF-fMRI) (Thibault €t/al., 2018). However the use of the MRI
scanner is costly, exhausting for patients since staying perfectly still when suffering is challenging and
time consuming, hence NF-fMRI sessions cannot be repeated too many times for the same subject o
patient.

During the past few years, the use of simultaneous EEG-fMRI recording has been used to understanc
the links between EEG and fMRI in different states of the brain activity and received recognition as a
promising multi-modal measurement of the brain activity (Perronnet|et al.,| 2018; Abreu /et al., 2018).
However this bi-modal acquisition is cumbersome for subjects or patients, due to the use of the fMRI
scanner. The methodology to extract information from fMRI with EEG have been also intensively
investigated (some methods involved in the process are reviewed here (Abreu et al., 2018)). Indeed, bott
modalities are sensitive to different aspect of brain activity, with different speeds. EEG provides in real
time a direct measure of the changes in electrical potential occurring in the brain, while fMRI indirectly
estimates brain activity by measuring changes in BOLD signal re ecting neuro-vascular activity, which
occurs in general few seconds after a neural event (Friston et all,[1994; Logothetis et al., 2001). Severa
studies have investigated correlations between EEG signal and BOLD activity, in speci ¢ and simple
tasks ((de Munck et al., 200/7; Goncalves €t|al., 2008; Engell/et al.] 2012; Magii|et al.| 2012; Scheeringa
etall; 2011), and found different relationships between certain frequency bands on the EEG signal with the
BOLD signal. All those studies reveal the existence of a link between EEG and fMRI, but this relationship
highly varies with the task, the location in the brain and the considered frequency bands.

In the literature, the term EEG-informed fMRI refers to methods extracting features from EEG signals
in order to derive a predictor of the associated BOLD signal in the region of interest under study. A
recent review|(Abreu et al., 2018) gives a good overview of the principal EEG-informed fMRI methods
and their limitations. Different strategies have been investigated, depending on the type of activity under
study (epilepsy, resting state, open/closed eyes, relaxation): either by selecting one channel on interes
either by using multiple channels, before extracting features of interest. For example in (Leite et al.,
2013; Formaggio et al., 2011), authors used a temporal independent component analysis to select the be
channel re ecting the epileptic seizures. |[n (Schwab et al., 2015), authors used a spatial, spectral anc
temporal decomposition of the EEG signals to map EEG on BOLD signal changes in the thalamus. From
a more symmetrical way, in (Noorzadeh et @al., 2017) it has been proposed a method for the estimation
of brain source activation, improving its spatio-temporal resolution, compared to EEG or BOLD fMRI
only. However, in the context of neurofeedback, using simultaneous recording of EEG-fMRI to estimate
neurofeedback scores computed in real time from features of both modalities (NF-EEG-fMRI) is a
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Figure 1. Objective : From bi-modal neurofeedback sessions (NF-EEG-fMRI) (see (Perronnet et al.,
2017) or section]3 for more details), we propose a method to learn a NF-predictor. The nal goal of this
method is to propose NF sessions using EEG only, with the quality of bi-modal NF sessions. Therefore
reducing the use of fMRI.

recent application that have been rst introduced, and its feasibility demonstrated by (ZotevV et al., 2014;
Perronnet et all, 2017; Mano et|al., 2017). The recent methodology synchronising both signals for real
time neurofeedback (Mano etlal., 2017), allows the setup of a new kind of data named NF-EEG-fMRI
data, such as the dataset presented by (Perronnet et all, 2017), which we used for the present stud
Furthermore, it has been shown n (Perronnet et al., |2017), that the quality of neurofeedback session is
improved when using simultaneously both modalities, in NF-EEG-fMRI sessions. Thus, being able to
reproduce in real time a NF-EEG-fMRI session when using EEG only, would reduce the use of fMRI
in neurofeedback, while increasing the quality of NF-EEG sessions. To export fMRI information outside
the scanner, most of the methods intend to predict the fMRI BOLD signal activity on a speci ¢ region
of interest by learning from EEG signal recorded simultaneously, inside the fMRI scanner. Indeed, the
method proposed in (Meir-Hasson et al., 2014), uses a ridge regression model witbgallarisation,

based on a time/frequency/delay representation of the EEG signal from a single channel. Results show &
good estimation of the BOLD signal in the region of interest, but the use of the fMRI neurofeedback in
this study is only to serve the paradigm. The method aims at better targeting the amygdala in NF-EEG

sessions.

Our challenge here, is to learn EEG activation patterns (see séction 2.2) from hybrid (or bi-modal)
NF-EEG-fMRI sessions (Perronnet et| al., 2017), and improve the correlation with NF-EEG-fMRI of
NF scores using EEG signal only. The motivation of this is multiple: since we are considering a new
kind of data, we want to provide a simple method characterising NF-EEG-fMRI in EEG, leading to
understandable model to con rm existing relations between EEG and fMRI in neurofeedback scores, or
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to discover new relationships. Neurofeedback features in fMRI come from the BOLD activation in one
or more region of interest. We propose an original alternative to source reconstruction in the context of
neurofeedback by taking advantage of the recent and unique dataset of NF-EEG-fMRI we have acces:
to. Indeed we directly intent to predict NF scores, without dealing with source reconstruction or spatial
Itering to estimate BOLD-fMRI signal rst on a speci ¢ region of interest, as proposed by a previous
approach/ (Noorzadeh et/al., 2017). To our knowledge, this problem of prediction of hybrid neurofeedback
scores (without source reconstruction) is new, and has not yet been explored in the literature. Also we
want the activation pattern to be applicable in real-time when using new EEG data. The main objective
of this paper (Figuré€]1) is to design a method able to exploit EEG only, and predict an NF score of
guality comparable to the NF score that could be achieved with a simultaneous NF-EEG-fMRI session.
The approach is based on a machine learning mechanism. During a training phase, both EEG and fMR
are simultaneously acquired and used to compute and synchronise, in real time, NF-EEG and NF-fMRI
scores, both being combined into an hybrid NF-EEG-fMRI score (Mano|et al.; 2017). EEG signals and
NF scores are used to learn activation patterns. During the testing phase, the learned NF-predictor (als
called activation pattern) is applied to unseen EEG data, providing simulated NF-EEG-fMRI scores in
real time. Sparse regularisation is exploited to build a model called NF-predictor. The model used for the
NF-predictor uses an adapted prior for brain activation patterns, using a mixed norm giving a structured
sparsity, to spatially select electrodes and then select the most relevant frequency bands.

In sectior] 2 we present the proposed model and the methods used to solve it. Then we will experiment
our learning model on neurofeedback sessions with motor imagery task, which unique data are presente
in sectior] B. Sectiop|4 presents results on a dataset of 17 healthy subjects with 3 NF sessions of moto
imagery each, one is used to learn the model, and the two others are used to test the model[.]Section
provides a discussion of the proposed framework.

2 PROBLEM AND METHOD

Considering that, during a learning phase, we have access to reference Wtprasd a temporal
representation (potentially non-linear) of EEG signél¢called a design matrix, presented in secfiionf 2.1);
the approach consists in choosing a vector of parametstech thay(t) g(X (t); ) for all t, whereq

is some parametric function. is a matrix matching the size of (t), here we consider

X
(X (t); )= hX(t); i= X (1) i (1)
i=1 j=1
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To determine this parameter, a regularisation is used to select an optimal paramleténat ts the
training data (see Figufe 2 and secfior] 2.3), while avoiding over- tting, as detailed in Seciion 2.2.

Only a few brain regions are expected to be activated by a given cognitive task, therefore the electrodes
con guration is said to be spatially sparse. However frequency bands of each electrodes are not necessaril
sparse, and might even be smooth depending on the frequency band sampling.

From here, we will use the following notations :

Ye(t) 2 R; 8t 2 f 1, ::;; Tg are theT neurofeedback scores estimated from EEG signals (r&gl2
RE Tees) measured fronk electrodes durindeeg samples of time.

yi(t) 2 R;8t 2 f1;:::;Tg are theT neurofeedback scores extracted from Blood Oxygen Level
Dependent imaging (BOLD) signal of functional-MRI acquisitidigr 2 RY TR with V the
number of voxels andisyr, the number of acquired volumes.

Ye(t) = yu(t) + y5(t) 2 R; 8t 2 f 1;::;; Tga combination of both NF scores (more details are provided
in sectior] B).
y(t) 2 R; 8t 2 f 1;::;; Tgis a set of neurofeedback scores that cagbg: ory..

First, to build our predictor, relevant information from EEG data need to be extracted and organised to
form what we call a design matrix.

2.1 Structured design matrices from EEG signal

The design matrixX o 2 RT E B

, WhereE is the number of electrodes argl the number of
frequency bands, contains relevant information extracted from the EEG signal. Each temporal matrix of
X o0, X o(t) 2 RE B8t 2f1;:::;Tgis a frequency decomposition corresponding to the past 2 seconds

of Seee. We used a Hamming time window of 2 seconds, to estimate the aveoagaof each frequency

is overlapped by 1.75 seconds (0.25 seconds shift), to match with the 4Hz sampleyofaines. The

B frequency bands have an overlap of 1 Hz with the next band, and are de ned between a minimum
frequencybmin Hz and a maximum frequend@hax Hz (See sectioh|3). We chose to use several relatively
narrow frequency bands to let the model select the relevant bands for each electrodes. Furthermore it ha
been suggested (de Munck et al., 2009; Rosalet al.| 2010) to use different frequency bands when working
with coupling EEG-fMRI data.

The model also has to be able to predicscores, derived from BOLD signal (see secfion 3). There
is no linear relationship between BOLD signal and average power on frequency bands from EEG signal.
Therefore, to better matcyy scores, we decided to apply a non-linear functiorXtg, used in fMRI
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to model BOLD signals| (Pedregosa et al., 2013; Lindquist ef al.,|2009), the canonical Hemodynamic
Response function (HRF). We convolvedg on its temporal dimension with the HRF, formed by 2
gamma functions, for a given delay of the rst gamma function to compensate the response time of BOLD
signal, as suggested in (Meir-Hasson et|al., 2014; Moosmann ét al/, 2008). The HRF will temporally
smooth and give a BOLD-like shape to the design matrix and increase a potential linear relationship
betweeny; and design matrix. Since HRF is known to vary considerably across brain regions and
subjects|(Handwerker et lal., 2004), it is therefore recommended to consider different delays, but also to
chose a range of values corresponding to the task asked. For the type of task addressed in the experiment
part, the observed delay is around 4 seconds, therefore we convolved X0 with 3 different HRFs leading
to 3 new design matrices 3; X 4; X 5 with respectively peak locations of 3, 4 and 5 seconds. We started
from the canonical HRF and changed the peak parameter (respectively using 3 4 and 5) to induce the :
different HRF used to induce time delay to the initial design mafrix By doing so, we keep the total of
design matrices of a reasonable size

R'" M B matrix,

Those design matrices are concatenated in their 2nd dimension to for¥ ¢t
with M =4 E. Therefore, for each timg X ¢(t) = [ X o(t); X 3(t); X 4(t); X s(t)]. We also denote

X gq(t) =X 3(t); X 4(t); X 5(1)] the design matrix of the different delays.
2.2 Optimisation

EEG data are now represented into a structured design mag,ixve can search for a weight matrix
P
A2 RM B suchthat ., ~(m;h)X c(t;m;h) estimates as well as possible the NF sogtg; 8t 2
f1;:::;Tg. Note: the methodology is presented for the design matrixbut can be used fo g or X 4.

To identify the”, called activation pattern, we propose the following strategy, which consists in learning,
for a given subject and a NF session, the optithdly solving the following problem:
X )
b=argmin 2 y(t) aXct); ) + () 2)
t=1
with  aregularisation term, a weighting parameter for the regularisation term. This then applied
to a design matrix ©! from a new session, to predict its NF scores

Yo (t) = a(X c®'(t); b) 8t 21 1;:::; Ty 3)

Equation|(2) is of the formrgmin(gi( )+ gz( )) and its resolution can be done using the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) (Beck and Tebdulle, 2009), which is a two-step approach of
the Forward-Backward algorithr (Combettes and Wajs, 2005) making it faster. FISTA requires the same
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conditions as the Forward-Backward algorithm, meaning a convex differentiable with Lipschitz gradient
termg; and a convex terrgp that is not necessarily differentiable but smooth enough to make its proximal
map computable.
P
t

Heregi( )= %(y(t) a(X ¢(t); ))?is a sum of convex and differentiable functions with

X
S5ai( )= Xe(M)(y(t) dXc(t); )) 4)
t

since8i 2 f1;:::;Mg;j 2f1;:::;Bg; [%]m = X (t;i;) ). By representin ¢(t) and as
vectors of sizél B, we can easily note th%ﬁg is a sum of Lipschitz functions. Therefore, the Lipschitz
constant o% isL = kX\l,Xkaith Xy 2 RT M B the vectorised version of ..

The NF-predictor uses structured design matrix to have a better control on the interpretation of results
and to better optimise the weights Therefore we have to adopt an optimisation strategy coherent with
this structure. The activation pattern of the NF-predictor:

1. hasto be spatially sparse to regulate the model as EEG signals are noisy and to select the most relevat
electrodes on each frequency bands,

2. has to be smooth across different overlapped frequency bands,

3. has to allow non-relevant frequency bands to be null.

The termgy is the prior term. Here, fogz( ) = (), we chose to use @; mixed norm (Ou et al.,
2009) followed by a 1-norm (noted 21+1-norm in (Gramfort et al/, 2011)) to t all structure conditions
mentioned above.

()= k kaa+ k kg )

with 2 R" and 2 R™.We chose not to estimate the parameteéo keep computation time reasonable.
Indeed, weights the induced spatial sparsity over EEG channels, and we chose to x this parameter
for all subjects, as we hypothesis that there is no reason, for the number of electrodes involved in the
activation pattern, to signi cantly change between subjects. However the estimatioparfameter is
needed (since we do not haveglypathesis on its behaviour) and presented in the next sectien. The

mixed norm that write& ko1 = 2 p, Satis es conditions 1) and 2). Theg norm de ned as

m b m;
k ky = m:b] m:p Satis es condition 3) sincg, norms withp 1 are known to promote sparsity. The
:RM B

last key point of FISTA algorithm is the proximal map associated toihg norm Prox,, ,,
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Figure 2. Machine learning scheme.For each subject, a bimodal neurofeedback session (NF-EEG-
fMRI session 1 here) is used for the learning step, then the learned activation patseapply to the
other sessions (2 and 3) for the testing step. The learning data ar€ gpties into a training seB0%of

the learning set) and a cross-validation (CV) 4€%of the learning set). The optimalparameter is the
one minimising the variance and the bias in the learning step.

RM B: 7rargmin ( ( )+1=2k k?), de ned as

Ym' : : + +
D (iYmpi )T PR ) (6)

(Prox .., (Y)mb = - P .
2 mib 1Ym:bl i b Ym:bl )*?

with operator(:)* = max(:; 0). One can note that by cancelling either thearameter or the parameter,

we retrieve the proximal map associated to the(when = 0) and to the 1 norm (when = 0), which
demonstrations can be found in the appendix of (Gramfort et al.,| 2012). For the stopping criterion of
FISTA, a large enough number of iteration has been used, allowing the model to converge before reachinc
the last iteration. All elements and conditions are gathered to run the FISTA algorithm.

2.3 parameter selection

The parameter is important in the optimisation problem and we decided to estimate it automatically.
The following process chooses the bestmong a listof = f 1;:::; jgsorted inincreasing order. First
of all, the data must be split into 2 sets. In our case subjects have 3 NF-EEG-fMRI sessions : one sessiot

This is a provisional le, not the nal typeset article 8
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is used as the learning set, and another NF-EEG-fMRI session is used as the testing set (seé Figure 2.
For each value; of , the learning set, formed bl neurofeedback scores with their associated design
matrices, is divided = 50 times into a training set of indicd®y, representin@0%of the T data, and

a cross-validation sefV, composed by composed by the remainir@igb of the learning set. A model

~ (ki) is estimated on the training dataketomposed byry neurofeedback scorg§ ) and the associated

design matriceX ¢(j) with j,i.e.:

: X . . _
AD argmin T ky()  aX () AR+ ik Kigy+ ko KDk (7)
j
with j 2 Re and X ¢(j) 2 RM B. For the current ; evaluation, we stop the process when

Kl "(k;i)jo:K < 2. There is no need to investigate the nextthe current one is sparse enough, and the

next one might lead to null models.

We then apply the modet &) to the corresponding cross-validation set®f, NF scores, to obtain
estimated values of(s), ¥(s) = q(X <(S); "(k;i)), with s 2 CV. For each one of the 50 partitioning into
training and cross-validation sets, we computed the normalised mean squared error NMSE for a given se

of dataf y; X g, for the training sets and the cross-validation sets.

P .
SV(s),  a(X (s); AKy)2

NMSE(fy; X cg; ~*) = .
’ s(Y(s)  ¥)?

(8)

with 'y = 1:nP2y(s). The optimal * parameter is dened as the one minimising the
error during training and cross-validation. Considering only the errors from the training set
NMSE(f y(Rk); X ¢(Rk)g; ) would introduce bias, and considering only the error of the cross-
validation set NMSE y(CVk); X ¢(CVk)g; » 1), would introduce variance. Then the optimais the

i that minimises :

X . .
[NMSE(f y(Ri); X ¢(Rk)g; * ) + NMSE(f y(CW); X o(CW)g; )] 9)

k=1
" parameter is the optimal parameter used for the model estimation. If there are several candidates, tc
favor sparsity, the larger of these candidate is chosen.
3 DATA ACQUISITION AND PRE-PROCESSING

We used an existing dataset presented in (Perronnet et all, 2018), composed of 17 healthy subjects the
were scanned using the hybrid Neurofeedback platform from Neurinfo (Rennes, France) coupling EEG
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Figure 3. Bi-modal neurofeedback metaphors (1D on the left, 2D on the middle), displayed during
sessions| (Perronnet et|al., 2018). 1D: the ball's position represents the syamd y;. 2D: the left

axis represents thg, and the right axis represents tjescores. The 2 plots on the right show NF scores
from EEG and from fMRI, green areas are task, white areas are rest. The goal is to bring the ball in the
dark blue area.

and fMRI signal (Mano et al!, 2017). Data are now available online in BIDs format on openneuro

. |https://openneuro.org/datasets/ds002338 (Lioi et all, [2019). A 64-channel MR-
compatible EEG solution from Brain Products (Brain Products GmbH, Gilching, Germany) has been
used, the signal was sampled at 5kHz, FCz is the reference electrode and AFz the ground electrode. Fc
the fMRI scanner, we used a 3T Verio Siemens scanner with a 12 channels head coil (repetition time (TR)
/ echo time (TE) = 2000/23ms, FOV210 210mn?, voxelsize =2 2 4mm?, matrix size 405 105

with 16 slices, ip angle = 90). All subjects are healthy volunteers, right-handed and had never done
any neurofeedback experiment before. They all gave written informed consent in accordance with the
Declaration of Helsinki, as speci ed in the study presenting the data (Perronnet|et al., 2017). They all
had 3 NF motor imagery sessions of 320 seconds each, after a session dedicated to the calibration. Or
session consists in 8 blocks alternating between 20 seconds of rest, eyes open, and 20 seconds of mot
imagery of their right hand. The neurofeedback display was uni-dimensional (1D) for 9 subjects [(Figure 3
left), and bi-dimensional (2D) for 8 subjects (Figlife 3 middle). For both, the goal was to bring the ball
into the dark blue area (Perronnet et/al., 2018).

NF scoreg/, andy; being from different modalities, were standardised before summing toyarin
this study NF scores refer to standardised scores, except when they are predicted. For thys lsavey,
been computed from the commonly used, in neurofeedback, the Laplacian operator, centred around th
region of interest, channel C3 here. For each time intdgvidie spatial Itering is noted Lap(C3;). The
temporal segments are spaced by 250ms, and a length of 2 seconds (therefore an overlapping of 1,75
seconds), as for the design matrix construction. The power of the frequency band [8Hz - 30HZ] is then
extracted via the Power Spectral Density functib8D:

Ye(t) = P SDpg 30(Lap(C3I+))

This is a provisional le, not the nal typeset article 10
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One may note the presence of the minus operator used here, for the sake of coherepcérigtine[3
right).

The neurofeedback scorgshave been computed from the maximal intensity of BOLD signal covering
the right-hand motor area and the supplementary motor area, one score is computed per volume acquire
(i.e 1 per second). Then scorgsare re-sampled and smoothed (using a Savitzky-Golay Iter, known to
avoid signal distortion) to tthe 4Hy, scores T = 1280).

An active set have been selected on design matrices to avoid potentially correlated noise, due to heac
movement during resting blocks, obstructing signal from channels of interest. Indeed in coupling EEG-
fMRI acquisitions, subjects are lying into the MRI scanner, therefore outer electrodes can be in contact
with the bed or holds. We excluded outer electrodes and kept 28 electrodes, the 3 central lines have 7
electrodes (FCz is the reference), 3 frontal electrodes and 3 posterior electrodes.

Potential outliers in the design matrices (i.e. observatlomeean 3std) were thresholded in the NF-
EEG-fMRI session used as learning set, and bad observations from annotations on the EEG signal were
removed as their corresponding NF scores. For frequency dimension of the designdmatorstruction
(cf sectior 2), and therefore for the other design matrices, we dhgse= 8, bmax = 30 to cover alpha
and beta frequency bands involved in motor tasks. We considredl0 frequency bands, leading to
bands of 3 Hz wide with an overlap of 1Hz.

As mentioned in the previous section, for the regularisation of the NF-predictor, we used 15 values of
i from 100 to 3000 and xed the parameter 1500.

4 EXPERIMENTS AND RESULTS

As said in the previous section, we have 3 neurofeedback sessions per subjects. For each subjects, we wi
consider 1 session as learning set, and the 2 others as testing sets. Leading to 3 different learning sets, ar
6 different testing sets per subjects.

4.1 Experiments and validation

L ¥y (1) = a(X £5(t); “ ) with "¢ (eq[2), learned frorX ¢ andy,
2. ¥, (1) = (X §(t); M) with X g = [X 3;X 4; X 5], and "¢ (eq.@), learned fronX g andy;

3. Ye(t) + ¥p, (t) using NF-predictor 2
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The advantage of the last NF-predictor is the possibility of using the 2D score visualisation (Figure 3)
to display NF scores. Also in this case, only NF-fMRI scores has to be learned. We run the following

experiments to test our different NF-predictors:

- Model validation: we used the learning set to assess if the different NF-predictors could model
accurately the NF scores. For each subject and each NF-predictor, we estimated correlations witt
the reference NF score to quantify the quality of prediction. As a reference, we compared to the
correlation ofy, to y., which is part of they. score, to assess if, in the validation process, the model
can better predigt, scores thay,.

- Model prediction: we apply the learned activation patterns to a new NF-EEG-fMRI recorded session
(testing set, Figurg|2). For each subject and each pair of session (6 learning/testing pair per subject)
we compared correlations between NF-predicigrsandy, + ¥, to reference scorg,, and between

the prediction ofyy, to y;.

- To observe the captured structure in the activation patterand ¢ respectively learned to predict
Y. andy;, we re-shaped the averaged activation patterns of a subject over sessions, into the matrices
corresponding to the design matrices de niXg respectivelyX 4 (see section 2|1), and displayed
results of the rst dimension (electrodes) and of the second dimension (frequency bands).

4.2 Results
4.2.1 Model and prediction

The model validation of the NF-predictors (i.e. the learned activation patterase applied to the
learning set) results are shown at Figiife 4 left side. Pearson's correlation coef cients between the
prediction and the ground truth are computed for each of the 3 learning sessions and for all subjects.
Correlations are very high>( 0:8) for the 2 NF-predictors of, scores, letting think that the model is
adapted to the problem of NF prediction. Indeed, the model could t NF-fMRI scores using only EEG

signals information with a median correlation of r = 0.81 wjth

For the evaluation of the model prediction, the learned activation patterns are applied to the testing sets
i.e. the 2 other unseen NF sessions, for each one of the 3 NF sessions. The signi cance of the difference
between the correlations to the reference NF scores is assessed by applying a Fisher transformation t
the correlation coef cients. The p-values obtained with Student's t-test, after this transformation, indicate
the signi cance of the differences between the correlation coef cients distributions. [Table 1, shows that
Yet ¥b,,» Whose median correlation is r = 0.74, better predygtshany, only, despite the fact thaf,
is part ofy.. The paired t-test, gives a p-valpe= 6:6e-4 ¢ = 3:52), meaning that the prediction of
NF-fMRI scores byy,, signi cantly adds information tg/.. Predictingy, scores withy,+ ¥, is also
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Figure 4. Model validation and prediction. Boxplots (median and quartiles) of Pearson's correlation
coef cients over all subjects and sessions, between NF-predictorg.amdy;. The right part of the plot
indicates the correlation of the reference NF scggemndy; versus the corresponding reference bi-modal
NF scores/.(= Yet ¥s)-

Table 1. Model prediction : Pearson's correlation coef cients over all subjects and sessions, between
NF-predictors ang,. The table shows p-values of t-test, the hypothesis is : models in columns correlates
better withy,. than models in rows.

paired t-test
Correlation {,.) Yo, Yet ¥b, Ye
N.A. t= 2317[t= 1276
Yo, p=1 p=1
t=23:17 N.A. t=352
Yet ¥o; p=2:e-42 p = 6:6e-4
t=12:76 | t= 351
Ye p=9e-23| p=1 N.A.

better thany, (p = 2e-42,t = 23:17), which is expected since the models predicts NF-fMRI scores
and directly use NF-EEG scores (with all the potential noise coming from the EEG measures) which are
part of the reference score, gsis in Yo+ ¥y, and therefore correlates well with. Furthermore the
proposed model is able to predigtscores with a fair correlation @36 in median and:35in average.

Thus predicting NF-fMRI scores, instead of predicting bi-modal NF scores, seem to be the best way of
predicting those bi-modal NF scores. FigEre 5 gives examples of predictigpsvith y. + ¥, andy,.
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Figure 5. Examples of prediction of NF scores. The x-axis is the temporal axis in milliseconds. Vertical
bands indicate the rest and the task blocks. The correlation coef cienicates the correlation between
each pair of time-series NF scores. Top: predictiop.afith y. + ¥, . Middle : prediction ofy with y,_.

Bottom : prediction ofy; with ¥y, .

It also illustrates that, even if the correlationsygf, are lower thary, + ¥y, (Table[]r),ybc can predict
correctly the reference scoyg

During the learning session (i.e. the NF session used to learn the predictor), subjects might unevenly
focus on their fMRI or EEG feedbacks, and when subjects focus more on NF-fMRI than on NF-EEG,
the EEG-signals might lose coherence with respect to the NF-fMRI scores. Even though, the EEG signals
could predict NF-fMRI scores with a correlation of 0.36 in median and mean 0.35 (cf Figure 4, which is a
fair correlation between such different modalities. Examples of NF prediction are given at the bottom of
Figure|'_?{>, the plot shows the predictigp. of NF-fMRI scores on a testing set.

4.2.2 Activation patterns

We now focus on the learned models to evaluate the sparsity, over sessions and subjects and observe t
dispersion of the learned patterns over sessions and frequency bands of a subject. For each subjects a
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Table 2. Sparsity of the learned models and” ¢ . Proportion of zero coef cients in the learned models.
/\o N 3 /\4 N 5 a”

4r: X 092 003|096 003|091 003|093 004

Ne [ 0:87 0:05][0:92 0:03[096 002|093 0:03|0:92 0:05

each learning session, we computed the proportion of zero coef cients of the activation patterng|(Table 2).
By construction of the design matrX ¢, ¢ and *¢ can be split into different activation patterns, as
shown in columns of Tablg] 2. The models could select relevant coef cients of the design matrices to
predict reference NF scores. In average, there is 87 non-zeros coef cieht tm predicty,, and 57

non-zeros coef cients ort¢ to predicty;.

P
To display the activation patterns of a subject over its 3 sessions, we derote 2_, j2#®)j2 RM B

o o Af P39, M B A A=
the absolute activation pattern 6f; (respectively y = "y 2R for 2¢), and”, =

s=1

3,7 2 RM B the average activation pattern (respectivefy= "~ 2, ~() 2 RM B) we can
display heat maps for each of the 4 absolute activation patterns at each electr@ge%; b b, i b b,
and bb5 (Figure@, top line of each panels); and colour maps of the 4 average pattging |, bs,
P pbsgand | bs (Figure@, bottom line of each panels) showing the sign of the strongest and most
stable coef cients across all subjects and sessions. Activation patterns displayed af Figure 6, represent the
dispersion of the learned parameters for one example subject over its 3 bi-modal NF sessions for which
he received a bi-dimensional display. The subject used had a median correlation with the corresponding
reference score d®:44 for y,, , of 0:76 for ¥, and of 0:81 for y.+ ¥y, . All maps present different
distributions of the non-zero coef cients. As expected when leargirsgores, the most intense heat map

be with a maximum value of 45, concentrates its non-zero values on C3 channel (above the right-
hand motor area) and corresponds to the design métgxdirectly extracted from EEG signal without
non-linear temporal delay. The next heat map in intensity ordgrkj@s with two peaks with a parietal
positioning above Pz and P4 channels, corresponding to the Brodmann area 7, involved in the visuo-
motor coordination. As presented in an interesting study (Sitaram| et al., 2017), this brain area is active
during generalised neurofeedback when feedback is presented visually. In (Sitaram et al., 2017) it is also
mentioned that this part of the cortex is part of the executive control network connected to the thalamus.
The activation of the executive control network during motor imagery task is relevant, and indicates that
the subject is trying to do the task. It is also interesting to observe that the main activation pgqg(@@f
( Pz and P4) have opposite signs with the activation peaFl)< QPO (above C3), suggesting a negative
correlation between neural activation measured at C3 and the neural activation of posterior parietal Pz
and P4 channels , part of the control network in neurofeedback. Panel B of Fjgure 6 presents comparable
learned activation patterns to predygt, however more spread over sessions than for the model on panel

A, even if the model as arour@B% of null coef cients (Tablg R). This suggests that, even for a same
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Figure 6. Activation patterns over sessions and frequency bdnids one example subject. There is

two lines for each model, panel A represents activation patternrddand panel B represents activation
patterns for™;. The last column is the sum of the other ones. Top line: Heat map representing the
distribution of non-zero coef cients. Maximum value is indicated for each map with the red letter M, dark
blue areas represent zero values. Bottom line: Average activation patterns, representing the sign of th
main non-zero values across subject and sessions. Minimum and maximum values are indicated for eac
map with the letters m and M, green areas represent zero values.

subject, the relation between EEG and fMRI changes over sessions, probably depending on the strateg

used by the subject.

At last, it is also possible to display the frequency pro le of each average activation patterns. The 4
frequency proles are gy ;...eqbo; ebs,  ¢bgand bs,e2f 1 Eg summing weights over
electrodes. Figure| 7 shows that the most used frequency bands over all sessions and electrodes are alp
band ([8-12] Hz) and lower beta band ([13-17] Hz), the last 4 frequency bands are not displayed as they

only have null coef cients. We can observe the effect pfegularisation which allows continuity in the

This is a provisional le, not the nal typeset article 16



Cury et al.

Figure 7. Frequency pro les, across subjects and sessions, of each average activation patterns, to
represent the implication of each frequency bands in the activation pateethd.1;:::; Eg. For each
average activation pattern, the y-axis indicates the sum of weights over electrodes, for each frequency
bands 2 f 1;:::; Bgon the horizontal axis.

frequency bands, and the effect of the subsequemgularisation which removed the smaller coef cients
located in the high frequencies. When considering all activation patterns (Figure 7 right side), there is a
change of sign between alpha and lower beta. Each activation pattern shows a different frequency pro le,
which, together with Figuri| 6, tends to demonstrate that patterns have complementary information.

4.3 Ablation study

We run an ablation study to understand the impact of the non-linearity part of the model, obtained by
the convolution of different HRFs inducing different delays for the prediction of NF-fMRI scores, by
analysing results of the model without HRFs convolutions. Therefore, in this ablation study we used the
exact same processes as described in s€ction 4 (with a learning step and a testing step), except that w
used the design matriX o alone to learn the model parameters to pregicicores ang; scores.

Results of the ablation study are displayed at Figure 8 and are to be compared with results of the
proposed model presented at FigEre 4, Fi@lre 8 shows that during learning step, the prediggion of
usingXg only, correlates witty; with a correlation of only0:48in mean and median. This prediction is
signi cantly improved by the use of the different HRFs functions (paired t-test, 14;64, p = 1e-26),
asinthe proposed modgl  correlates witly; with a correlation 00:81in median and mean. Therefore, it
is natural to observe that the prediction of the bi-modal NF scosg byy,, is also signi cantly improved
by the use of non-linearity (paired t-test= 11,87, p = 4e-21). Figurd B shows that for the testing
step, the prediction ofy, , usingXo only, correlates wity; with a correlation 0f0:14in mean and:15
in median, which is signi cantly lower than the proposed model (paired t-test, 9:56, p = 2e-18).

The prediction of the bi-modal NF scores Y+ 4, is also signi cantly lower than the proposed model
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Figure 8. Ablation study. Removing non-linearity, keeping o only in the model to understand the
importance of the non-linearity induced by the use of different HRF functions.

(paired t-testt =  2:74, p = 3e-3). Also, when using{ g only, the prediction of the bi-modal NF scores
usingye + ¥, do not signi cantly improve ovey, alone (paired t-test,=  0:69, p = 0:5).

5 DISCUSSION AND CONCLUSION

The model validation supports that the optimisation strategy we chose for our problem is adapted to the
model, as is the choice of the different design matrices. The ablation study supports the use of different
non-linear delays to improve the prediction of NF-fMRI scores using EEG signal. The evaluation of the
model prediction strongly suggests that predicting only NF-fMRI scores from EEG signal while applying

a Laplacian on EEG signal appears to be the best solution. Indeeg, fawhen predicting the bi-modal

NF scores, the variability between EEG signals induces decreasing correlation with the reference NF scorce
Y. Also NF-EEG scores can always be computed from available EEG signals, which leave only NF-fMRI
scores to estimate from EEG signals. However, one might want to improve the selection of features for the
computation of NF-EEG scores, but this raises different questions about the validation and the reference
score. Here we assumed that the given NF scores are relevant to the task and good enough to be consider
as reference scores. As expected, for the prediction of the bi-modal NF scargs lshen decomposing

the activation patterrt¢ (from ¥y, ), into the 4 matrices corresponding to the different design matrices,
the weights corresponding 0 o (0 second of delay) are mainly located above C3, which is the centre of
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the Laplacian used for the computation of the NF-EEG scores. This seem to support the fact that with a
delay of 0 seconds, only the part of the NF coming from the EEG brings information.

A possibility to increase the prediction of NF-fMRI scores, would be to use more NF sessions as
learning sessions, since as observed, EEG signals bring variability in the prediction. Each new bi-modal
neurofeedback session could be added to the subject-speci ¢ model, to better adapt the model to the
subject or patient. This will be investigated in a next study. Given the improved correlation of the proposed
NF predictor with bimodal NF scores, it would be interesting in future work to validate its improved
performance in actual NF sessions, compared to classical NF-EEG scores. In particular to assess the
response of subjects to the predicted bi-modal NF scores and in particular the predicted NF-fMRI scores
learned by the proposed model over a standard NF-EEG neurofeedback session, a new and large enoug
study is needed, as subjects can learn at different pace to regulate their own brain activity.

Presently, the proposed model learns an individual or speci c model for each subject that allows a
personalised model for adapted neurofeedback sessions. Also a change in strategy for the task (here n
speci ¢ strategy to imagine moving their right hand was given to the subjects) might impact the learned
model, as the relation between EEG and fMRI signals can change. However, in a future work, we
are investigating an adaptation of the methodology for the extraction of a common model, taking into
account the differences between sessions and subjects, allowing the prediction of NF-EEG-fMRI scores
on new subjects who did not participated to the model construction. The model might be less speci ¢, but
this would give access to neurofeedback sessions of bi-modal quality using EEG only, for subjects with
MRI contraindications, and/or drive a subject-speci ¢ model estimation, respecting the strategy used by
the subject to progress in its neurofeedback task. The learned NF predictor is of course speci c to the
particular task considered during the learning session. One can expect to generalise the approach to othe

tasks where spatial sparsity is relevant. Its extension beyond such tasks is more challenging.

Other ways to improve the method proposed here would be to investigate the use of dynamic functional
connectivity, a relatively recent eld in BOLD fMRI which needs further investigations to be used
along with EEG datd (Tagliazucchi and Laufs, 2015). Dynamic functional connectivity would allow to
take into account the different network (reward, control and learning) involved during neurofeedback
sessions (Sitaram etlal., 2017). Dynamic functional connectivity study the temporal uctuations of the
BOLD signal across the brain, and appears to be a promising approach in the EEG-fMRI research
eld (Allen et al.,[2018). However, one should be careful with the potential unknown remaining noise
coming from the MRI during EEG-fMRI simultaneous recording, that might unsettle the EEG signal
coherence between electrodes.
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The long-term objective of our project is to learn from EEG-fMRI NF sessions to provide, outside the
MRI scanner, enhanced NF-EEG sessions (Figure 1). A future work will investigate the portability of the
learned model (on EEG-fMRI neurofeedback data), outside the MRI scanner, bringing new challenges as
dealing with the remaining noises in the MRI after artefact correction, and the absence of ground truth

once the EEG is measured outside the MRI scanner.

To conclude, the proposed model here is able to provide a good enough prediction of the NF-fMRI
scores, to overcome the absence of NF-fMRI and allows to signi cantly improve the estimation of NF-

EEG-fMRI scores when using EEG only.
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