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ABSTRACT
Measures of brain activity through functional magnetic resonance imaging (fMRI) or

Electroencephalography (EEG), two complementary modalities, are ground solutions in the
context of neuro-feedback (NF) mechanisms for brain rehabilitation protocols. While NF-
EEG (real-time neurofeedback scores computed from EEG signals) have been explored for
a very long time, NF-fMRI (real-time neurofeedback scores computed from fMRI signals)
appeared more recently and provides more robust results and more specific brain training.
Using simultaneously fMRI and EEG for bi-modal neurofeedback sessions (NF-EEG-fMRI,
real-time neurofeedback scores computed from fMRI and EEG) is very promising to devise
brain rehabilitation protocols. However, fMRI is cumbersome and more exhausting for patients.
The original contribution of this paper concerns the prediction of bi-modal NF scores from
EEG recordings only, using a training phase where EEG signals as well as the NF-EEG and
NF-fMRI scores are available. We propose a sparse regression model able to exploit EEG
only to predict NF-fMRI or NF-EEG-fMRI in motor imagery tasks. We compared different NF-
predictors steaming from the proposed model. We showed that predicting NF-fMRI scores from
EEG signals adds information to NF-EEG scores and significantly improve the correlation with
bi-modal NF sessions, compared to classical NF-EEG scores.

Keywords: Optimisation, EEG, sparsity, machine learning, Neurofeedback,EEG-fMRI, sparsity

1 INTRODUCTION

Neurofeedback approaches (NF) provide real-time feedback to a subject about its brain activity and help

him or her perform a given task (Hammond, 2011; Sulzer et al., 2013). The estimation of neurofeedback

information, is done through online brain functional feature extraction, to provide this real-time feedback

to the subject. NF appears to be an interesting approach for clinical purposes, for example in the context

of rehabilitation and psychiatric disorders (Sulzer et al., 2013; Birbaumer et al., 2009; Wang et al.,

2017). Functional magnetic resonance imaging (fMRI) and electro-encephalography (EEG) are the most

used noninvasive functional brain imaging modalities in neurofeedback. EEG measures the electrical

activity of the brain through electrodes located on the scalp. EEG has an excellent temporal resolution

(milliseconds), but a limited spatial resolution (centimeters) implying a lack of specificity. Furthermore,

source localisation in EEG is a well-known ill-posed inverse problem (Grech et al., 2008).

On the other hand, blood oxygenation level dependent (BOLD) fMRI, measures a delayed hemodynamic

response to neural activity with a good spatial resolution, and a temporal resolution of 1 or 2 seconds
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depending on the sequence used. Therefore fMRI is more specific than EEG, making the fMRI an

adequate modality for neurofeedback (NF-fMRI) (Thibault et al., 2018). However the use of the MRI

scanner is costly, exhausting for patients since staying perfectly still when suffering is challenging and

time consuming, hence NF-fMRI sessions cannot be repeated too many times for the same subject or

patient.

During the past few years, the use of simultaneous EEG-fMRI recording has been used to understand

the links between EEG and fMRI in different states of the brain activity and received recognition as a

promising multi-modal measurement of the brain activity (Perronnet et al., 2018; Abreu et al., 2018).

However this bi-modal acquisition is cumbersome for subjects or patients, due to the use of the fMRI

scanner. The methodology to extract information from fMRI with EEG have been also intensively

investigated (some methods involved in the process are reviewed here (Abreu et al., 2018)). Indeed, both

modalities are sensitive to different aspect of brain activity, with different speeds. EEG provides in real

time a direct measure of the changes in electrical potential occurring in the brain, while fMRI indirectly

estimates brain activity by measuring changes in BOLD signal reflecting neuro-vascular activity, which

occurs in general few seconds after a neural event (Friston et al., 1994; Logothetis et al., 2001). Several

studies have investigated correlations between EEG signal and BOLD activity, in specific and simple

tasks (de Munck et al., 2007; Goncalves et al., 2008; Engell et al., 2012; Magri et al., 2012; Scheeringa

et al., 2011), and found different relationships between certain frequency bands on the EEG signal with the

BOLD signal. All those studies reveal the existence of a link between EEG and fMRI, but this relationship

highly varies with the task, the location in the brain and the considered frequency bands.

In the literature, the term EEG-informed fMRI refers to methods extracting features from EEG signals

in order to derive a predictor of the associated BOLD signal in the region of interest under study. A

recent review (Abreu et al., 2018) gives a good overview of the principal EEG-informed fMRI methods

and their limitations. Different strategies have been investigated, depending on the type of activity under

study (epilepsy, resting state, open/closed eyes, relaxation): either by selecting one channel on interest,

either by using multiple channels, before extracting features of interest. For example in (Leite et al.,

2013; Formaggio et al., 2011), authors used a temporal independent component analysis to select the best

channel reflecting the epileptic seizures. In (Schwab et al., 2015), authors used a spatial, spectral and

temporal decomposition of the EEG signals to map EEG on BOLD signal changes in the thalamus. From

a more symmetrical way, in (Noorzadeh et al., 2017) it has been proposed a method for the estimation

of brain source activation, improving its spatio-temporal resolution, compared to EEG or BOLD fMRI

only. However, in the context of neurofeedback, using simultaneous recording of EEG-fMRI to estimate

neurofeedback scores computed in real time from features of both modalities (NF-EEG-fMRI) is a
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Figure 1. Objective : From bi-modal neurofeedback sessions (NF-EEG-fMRI) (see (Perronnet et al.,
2017) or section 3 for more details), we propose a method to learn a NF-predictor. The final goal of this
method is to propose NF sessions using EEG only, with the quality of bi-modal NF sessions. Therefore
reducing the use of fMRI.

recent application that have been first introduced, and its feasibility demonstrated by (Zotev et al., 2014;

Perronnet et al., 2017; Mano et al., 2017). The recent methodology synchronising both signals for real

time neurofeedback (Mano et al., 2017), allows the setup of a new kind of data named NF-EEG-fMRI

data, such as the dataset presented by (Perronnet et al., 2017), which we used for the present study.

Furthermore, it has been shown in (Perronnet et al., 2017), that the quality of neurofeedback session is

improved when using simultaneously both modalities, in NF-EEG-fMRI sessions. Thus, being able to

reproduce in real time a NF-EEG-fMRI session when using EEG only, would reduce the use of fMRI

in neurofeedback, while increasing the quality of NF-EEG sessions. To export fMRI information outside

the scanner, most of the methods intend to predict the fMRI BOLD signal activity on a specific region

of interest by learning from EEG signal recorded simultaneously, inside the fMRI scanner. Indeed, the

method proposed in (Meir-Hasson et al., 2014), uses a ridge regression model with a `2 regularisation,

based on a time/frequency/delay representation of the EEG signal from a single channel. Results show a

good estimation of the BOLD signal in the region of interest, but the use of the fMRI neurofeedback in

this study is only to serve the paradigm. The method aims at better targeting the amygdala in NF-EEG

sessions.

Our challenge here, is to learn EEG activation patterns (see section 2.2) from hybrid (or bi-modal)

NF-EEG-fMRI sessions (Perronnet et al., 2017), and improve the correlation with NF-EEG-fMRI of

NF scores using EEG signal only. The motivation of this is multiple: since we are considering a new

kind of data, we want to provide a simple method characterising NF-EEG-fMRI in EEG, leading to

understandable model to confirm existing relations between EEG and fMRI in neurofeedback scores, or
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to discover new relationships. Neurofeedback features in fMRI come from the BOLD activation in one

or more region of interest. We propose an original alternative to source reconstruction in the context of

neurofeedback by taking advantage of the recent and unique dataset of NF-EEG-fMRI we have access

to. Indeed we directly intent to predict NF scores, without dealing with source reconstruction or spatial

filtering to estimate BOLD-fMRI signal first on a specific region of interest, as proposed by a previous

approach (Noorzadeh et al., 2017). To our knowledge, this problem of prediction of hybrid neurofeedback

scores (without source reconstruction) is new, and has not yet been explored in the literature. Also we

want the activation pattern to be applicable in real-time when using new EEG data. The main objective

of this paper (Figure 1) is to design a method able to exploit EEG only, and predict an NF score of

quality comparable to the NF score that could be achieved with a simultaneous NF-EEG-fMRI session.

The approach is based on a machine learning mechanism. During a training phase, both EEG and fMRI

are simultaneously acquired and used to compute and synchronise, in real time, NF-EEG and NF-fMRI

scores, both being combined into an hybrid NF-EEG-fMRI score (Mano et al., 2017). EEG signals and

NF scores are used to learn activation patterns. During the testing phase, the learned NF-predictor (also

called activation pattern) is applied to unseen EEG data, providing simulated NF-EEG-fMRI scores in

real time. Sparse regularisation is exploited to build a model called NF-predictor. The model used for the

NF-predictor uses an adapted prior for brain activation patterns, using a mixed norm giving a structured

sparsity, to spatially select electrodes and then select the most relevant frequency bands.

In section 2 we present the proposed model and the methods used to solve it. Then we will experiment

our learning model on neurofeedback sessions with motor imagery task, which unique data are presented

in section 3. Section 4 presents results on a dataset of 17 healthy subjects with 3 NF sessions of motor

imagery each, one is used to learn the model, and the two others are used to test the model. Section 5

provides a discussion of the proposed framework.

2 PROBLEM AND METHOD

Considering that, during a learning phase, we have access to reference scores y(t) and a temporal

representation (potentially non-linear) of EEG signalsX (called a design matrix, presented in section 2.1);

the approach consists in choosing a vector of parameters α such that y(t) ≈ q(X(t),α) for all t, where q

is some parametric function. α is a matrix matching the size ofX(t), here we consider

q(X(t),α) := 〈X(t),α〉 =
E∑
i=1

F∑
j=1

Xi,j(t)αi,j . (1)
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To determine this parameter α, a regularisation is used to select an optimal parameter α̂ that fits the

training data (see Figure 2 and section 2.3), while avoiding over-fitting, as detailed in Section 2.2.

Only a few brain regions are expected to be activated by a given cognitive task, therefore the electrodes

configuration is said to be spatially sparse. However frequency bands of each electrodes are not necessarily

sparse, and might even be smooth depending on the frequency band sampling.

From here, we will use the following notations :

• ye(t) ∈ R,∀t ∈ {1, ..., T} are the T neurofeedback scores estimated from EEG signals (noted SEEG ∈
RE×TEEG), measured from E electrodes during TEEG samples of time.

• yf(t) ∈ R, ∀t ∈ {1, ..., T} are the T neurofeedback scores extracted from Blood Oxygen Level

Dependent imaging (BOLD) signal of functional-MRI acquisitions SfMRI ∈ RV×TfMRI , with V the

number of voxels and TfMRI the number of acquired volumes.

• yc(t) = ye(t)+yf(t) ∈ R,∀t ∈ {1, ..., T} a combination of both NF scores (more details are provided

in section 3).

• y(t) ∈ R,∀t ∈ {1, ..., T} is a set of neurofeedback scores that can be ye, yf or yc.

First, to build our predictor, relevant information from EEG data need to be extracted and organised to

form what we call a design matrix.

2.1 Structured design matrices from EEG signal

The design matrix X0 ∈ RT×E×B , where E is the number of electrodes and B the number of

frequency bands, contains relevant information extracted from the EEG signal. Each temporal matrix of

X0, X0(t) ∈ RE×B ∀t ∈ {1; . . . ;T} is a frequency decomposition corresponding to the past 2 seconds

of SEEG. We used a Hamming time window of 2 seconds, to estimate the average power of each frequency

band b ∈ {1; . . . ;B} (defined below) on each channel ∈ {1; . . . ;E}. Each time window of EEG signal

is overlapped by 1.75 seconds (0.25 seconds shift), to match with the 4Hz sample of the y values. The

B frequency bands have an overlap of 1 Hz with the next band, and are defined between a minimum

frequency bmin Hz and a maximum frequency bmax Hz (see section 3). We chose to use several relatively

narrow frequency bands to let the model select the relevant bands for each electrodes. Furthermore it has

been suggested (de Munck et al., 2009; Rosa et al., 2010) to use different frequency bands when working

with coupling EEG-fMRI data.

The model also has to be able to predict yf scores, derived from BOLD signal (see section 3). There

is no linear relationship between BOLD signal and average power on frequency bands from EEG signal.

Therefore, to better match yf scores, we decided to apply a non-linear function to X0, used in fMRI
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to model BOLD signals (Pedregosa et al., 2013; Lindquist et al., 2009), the canonical Hemodynamic

Response function (HRF). We convolved X0 on its temporal dimension with the HRF, formed by 2

gamma functions, for a given delay of the first gamma function to compensate the response time of BOLD

signal, as suggested in (Meir-Hasson et al., 2014; Moosmann et al., 2008). The HRF will temporally

smooth and give a BOLD-like shape to the design matrix and increase a potential linear relationship

between yf and design matrix. Since HRF is known to vary considerably across brain regions and

subjects (Handwerker et al., 2004), it is therefore recommended to consider different delays, but also to

chose a range of values corresponding to the task asked. For the type of task addressed in the experimental

part, the observed delay is around 4 seconds, therefore we convolved X0 with 3 different HRFs leading

to 3 new design matrices X3,X4,X5 with respectively peak locations of 3, 4 and 5 seconds. We started

from the canonical HRF and changed the peak parameter (respectively using 3 4 and 5) to induce the 3

different HRF used to induce time delay to the initial design matrixX0. By doing so, we keep the total of

design matrices of a reasonable size

Those design matrices are concatenated in their 2nd dimension to form the Xc ∈ RT×M×B matrix,

with M = 4 ∗ E. Therefore, for each time t, Xc(t) = [X0(t);X3(t);X4(t);X5(t)]. We also denote

Xd(t) = [X3(t);X4(t);X5(t)] the design matrix of the different delays.

2.2 Optimisation

EEG data are now represented into a structured design matrix Xc, we can search for a weight matrix

α̂ ∈ RM×B , such that
∑

m,h α̂(m,h)Xc(t,m, h) estimates as well as possible the NF score y(t),∀t ∈
{1; . . . ;T}. Note: the methodology is presented for the design matrixXc, but can be used forX0 orXd.

To identify the α̂, called activation pattern, we propose the following strategy, which consists in learning,

for a given subject and a NF session, the optimal α̂ by solving the following problem:

α̂ = argmin
α

T∑
t=1

1

2

(
y(t)− q(Xc(t),α)

)2
+ φλ(α) (2)

with φλ a regularisation term, λ a weighting parameter for the regularisation term. This α̂ is then applied

to a design matrixXtest
c from a new session, to predict its NF scores

ỹα̂(t) = q(Xc
test(t), α̂) ∀t ∈ {1; . . . ;T} (3)

Equation (2) is of the form argmin(g1(α)+g2(α)) and its resolution can be done using the Fast Iterative

Shrinkage Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009), which is a two-step approach of

the Forward-Backward algorithm (Combettes and Wajs, 2005) making it faster. FISTA requires the same
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conditions as the Forward-Backward algorithm, meaning a convex differentiable with Lipschitz gradient

term g1 and a convex term g2 that is not necessarily differentiable but smooth enough to make its proximal

map computable.

Here g1(α) =
∑T

t
1
2(y(t)− q(Xc(t),α))2 is a sum of convex and differentiable functions with

5g1(α) =
∑
t

−Xc(t)(y(t)− q(Xc(t),α)) (4)

since ∀i ∈ {1; . . . ;M}, j ∈ {1; . . . ;B}, [∂q(Xc(t),α)
∂α(i,j) ]i,j = Xc(t, i, j). By representing Xc(t) and α as

vectors of sizeM ∗B, we can easily note that ∂g1∂α is a sum of Lipschitz functions. Therefore, the Lipschitz

constant of ∂g1∂α is L = ‖Xᵀ
VXV ‖ with XV ∈ RT∗M∗B the vectorised version ofXc.

The NF-predictor uses structured design matrix to have a better control on the interpretation of results

and to better optimise the weights α̂. Therefore we have to adopt an optimisation strategy coherent with

this structure. The activation pattern of the NF-predictor:

1. has to be spatially sparse to regulate the model as EEG signals are noisy and to select the most relevant

electrodes on each frequency bands,

2. has to be smooth across different overlapped frequency bands,

3. has to allow non-relevant frequency bands to be null.

The term g2 is the prior term. Here, for g2(α) = φλ(α), we chose to use a `21 mixed norm (Ou et al.,

2009) followed by a `1-norm (noted `21+1-norm in (Gramfort et al., 2011)) to fit all structure conditions

mentioned above.

φλ(α) = λ‖α‖21 + ρ‖α‖1 (5)

with ρ ∈ R+ and λ ∈ R+. We chose not to estimate the parameter ρ, to keep computation time reasonable.

Indeed, ρ weights the induced spatial sparsity over EEG channels, and we chose to fix this parameter

for all subjects, as we hypothesis that there is no reason, for the number of electrodes involved in the

activation pattern, to significantly change between subjects. However the estimation of λ parameter is

needed (since we do not have hypothesis on its behaviour) and presented in the next section. The `21

mixed norm that writes ‖α‖21 =
∑

m

√∑
b α

2
m,b satisfies conditions 1) and 2). The `1 norm defined as

‖α‖1 =
∑

m,b |αm,b| satisfies condition 3) since `p norms with p ≤ 1 are known to promote sparsity. The

last key point of FISTA algorithm is the proximal map associated to the `21+1 norm Prox`21+1
: RM×B −→
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Figure 2. Machine learning scheme. For each subject, a bimodal neurofeedback session (NF-EEG-
fMRI session 1 here) is used for the learning step, then the learned activation pattern α̂ is apply to the
other sessions (2 and 3) for the testing step. The learning data are split K times into a training set (90% of
the learning set) and a cross-validation (CV) set (10% of the learning set). The optimal λ̂ parameter is the
one minimising the variance and the bias in the learning step.

RM×B,β 7→ argminα(φλ(α) + 1/2‖β −α‖2), defined as

(Prox`21+1
(Y ))m,b =

Ym,b
|Ym,b|

(|Ym,b| − ρ)+(1− λ√∑
b(|Ym,b| − ρ)+2

)+ (6)

with operator (.)+ = max(., 0). One can note that by cancelling either the λ parameter or the ρ parameter,

we retrieve the proximal map associated to the `21 (when ρ = 0) and to the `1 norm (when λ = 0), which

demonstrations can be found in the appendix of (Gramfort et al., 2012). For the stopping criterion of

FISTA, a large enough number of iteration has been used, allowing the model to converge before reaching

the last iteration. All elements and conditions are gathered to run the FISTA algorithm.

2.3 λ parameter selection

The parameter λ is important in the optimisation problem and we decided to estimate it automatically.

The following process chooses the best λ among a list of Λ = {λ1; ...;λl} sorted in increasing order. First

of all, the data must be split into 2 sets. In our case subjects have 3 NF-EEG-fMRI sessions : one session
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is used as the learning set, and another NF-EEG-fMRI session is used as the testing set (see Figure 2).

For each value λi of Λ, the learning set, formed by T neurofeedback scores with their associated design

matrices, is divided K = 50 times into a training set of indices Rk, representing 90% of the T data, and

a cross-validation set CVk composed by composed by the remaining 10% of the learning set. A model

α̂(k,i) is estimated on the training dataset k composed byRk neurofeedback scores y(j) and the associated

design matricesXc(j) with λi, i.e.:

α̂(k,i) = arg min
∑
j

‖ y(j)− q(Xc(j), α̂
(k,i))‖2 + λi‖α(k,i)‖21 + ρ‖α(k,i)‖1 (7)

with j ∈ Rk and Xc(j) ∈ RM×B . For the current λi evaluation, we stop the process when∑
k |α̂

(k,i)|0/K < 2. There is no need to investigate the next λi, the current one is sparse enough, and the

next one might lead to null models.

We then apply the model α̂(k,i) to the corresponding cross-validation set of CVk NF scores, to obtain

estimated values of y(s), ỹ(s) = q(Xc(s), α̂
(k,i)), with s ∈ CVk. For each one of the 50 partitioning into

training and cross-validation sets, we computed the normalised mean squared error NMSE for a given set

of data {y,Xc}, for the training sets and the cross-validation sets.

NMSE({y,Xc}, α̂(k,i)) =

∑
s(y(s)− q(Xc(s), α̂

(k,i)))2∑
s(y(s)− ȳ)2

(8)

with ȳ = 1/n
∑n

s y(s). The optimal λ̂ parameter is defined as the one minimising the

error during training and cross-validation. Considering only the errors from the training set

NMSE({y(Rk),Xc(Rk)}, α̂(k,i)) would introduce bias, and considering only the error of the cross-

validation set NMSE({y(CVk),Xc(CVk)}, α̂(k,i)), would introduce variance. Then the optimal λ̂ is the

λi that minimises :

K∑
k=1

[NMSE({y(Rk),Xc(Rk)}, α̂(k,i)) + NMSE({y(CVk),Xc(CVk)}, α̂(k,i))] (9)

λ̂ parameter is the optimal parameter used for the model estimation. If there are several candidates, to

favor sparsity, the larger of these candidate is chosen.

3 DATA ACQUISITION AND PRE-PROCESSING

We used an existing dataset presented in (Perronnet et al., 2018), composed of 17 healthy subjects that

were scanned using the hybrid Neurofeedback platform from Neurinfo (Rennes, France) coupling EEG
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Figure 3. Bi-modal neurofeedback metaphors (1D on the left, 2D on the middle), displayed during
sessions (Perronnet et al., 2018). 1D: the ball’s position represents the sum of ye and yf. 2D: the left
axis represents the ye and the right axis represents the yf scores. The 2 plots on the right show NF scores
from EEG and from fMRI, green areas are task, white areas are rest. The goal is to bring the ball in the
dark blue area.

and fMRI signal (Mano et al., 2017). Data are now available online in BIDs format on openneuro

: https://openneuro.org/datasets/ds002338 (Lioi et al., 2019). A 64-channel MR-

compatible EEG solution from Brain Products (Brain Products GmbH, Gilching, Germany) has been

used, the signal was sampled at 5kHz, FCz is the reference electrode and AFz the ground electrode. For

the fMRI scanner, we used a 3T Verio Siemens scanner with a 12 channels head coil (repetition time (TR)

/ echo time (TE) = 2000/23ms, FOV = 210×210mm2, voxel size = 2×2×4mm3, matrix size =105×105

with 16 slices, flip angle = 90◦). All subjects are healthy volunteers, right-handed and had never done

any neurofeedback experiment before. They all gave written informed consent in accordance with the

Declaration of Helsinki, as specified in the study presenting the data (Perronnet et al., 2017). They all

had 3 NF motor imagery sessions of 320 seconds each, after a session dedicated to the calibration. One

session consists in 8 blocks alternating between 20 seconds of rest, eyes open, and 20 seconds of motor

imagery of their right hand. The neurofeedback display was uni-dimensional (1D) for 9 subjects (Figure 3

left), and bi-dimensional (2D) for 8 subjects (Figure 3 middle). For both, the goal was to bring the ball

into the dark blue area (Perronnet et al., 2018).

NF scores ye and yf being from different modalities, were standardised before summing to form yc. In

this study NF scores refer to standardised scores, except when they are predicted. For this study, ye have

been computed from the commonly used, in neurofeedback, the Laplacian operator, centred around the

region of interest, channel C3 here. For each time interval It the spatial filtering is noted Lap(C3, It). The

temporal segments It are spaced by 250ms, and a length of 2 seconds (therefore an overlapping of 1,75

seconds), as for the design matrix construction. The power of the frequency band [8Hz - 30Hz] is then

extracted via the Power Spectral Density function PSD:

ye(t) = −PSD[8−30](Lap(C3,It))

This is a provisional file, not the final typeset article 10
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One may note the presence of the minus operator used here, for the sake of coherence with yf (Figure 3

right).

The neurofeedback scores yf have been computed from the maximal intensity of BOLD signal covering

the right-hand motor area and the supplementary motor area, one score is computed per volume acquired

(i.e 1 per second). Then scores yf are re-sampled and smoothed (using a Savitzky-Golay filter, known to

avoid signal distortion) to fit the 4Hz ye scores (T = 1280).

An active set have been selected on design matrices to avoid potentially correlated noise, due to head

movement during resting blocks, obstructing signal from channels of interest. Indeed in coupling EEG-

fMRI acquisitions, subjects are lying into the MRI scanner, therefore outer electrodes can be in contact

with the bed or holds. We excluded outer electrodes and kept 28 electrodes, the 3 central lines have 7

electrodes (FCz is the reference), 3 frontal electrodes and 3 posterior electrodes.

Potential outliers in the design matrices (i.e. observations > mean±3std) were thresholded in the NF-

EEG-fMRI session used as learning set, and bad observations from annotations on the EEG signal were

removed as their corresponding NF scores. For frequency dimension of the design matrixX0 construction

(cf section 2), and therefore for the other design matrices, we chose bmin = 8, bmax = 30 to cover alpha

and beta frequency bands involved in motor tasks. We considered B = 10 frequency bands, leading to

bands of 3 Hz wide with an overlap of 1Hz.

As mentioned in the previous section, for the regularisation of the NF-predictor, we used 15 values of

λi from 100 to 3000 and fixed the parameter ρ = 1500.

4 EXPERIMENTS AND RESULTS

As said in the previous section, we have 3 neurofeedback sessions per subjects. For each subjects, we will

consider 1 session as learning set, and the 2 others as testing sets. Leading to 3 different learning sets, and

6 different testing sets per subjects.

4.1 Experiments and validation

We tested different NF-predictors for the prediction of different NF scores, ∀t ∈ {1; . . . ;T}:

1. ỹα̂c
(t) = q(Xtest

c (t), α̂c) with α̂c (eq. 2), learned fromXc and yc

2. ỹα̂f
(t) = q(Xtest

d (t), α̂f ) withXd = [X3;X4;X5], and α̂f (eq. 2), learned fromXd and yf

3. ye(t) + ỹα̂f
(t) using NF-predictor 2
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The advantage of the last NF-predictor is the possibility of using the 2D score visualisation (Figure 3)

to display NF scores. Also in this case, only NF-fMRI scores has to be learned. We run the following

experiments to test our different NF-predictors:

- Model validation: we used the learning set to assess if the different NF-predictors could model

accurately the NF scores. For each subject and each NF-predictor, we estimated correlations with

the reference NF score to quantify the quality of prediction. As a reference, we compared to the

correlation of ye to yc, which is part of the yc score, to assess if, in the validation process, the model

can better predict yc scores than ye.

- Model prediction: we apply the learned activation patterns to a new NF-EEG-fMRI recorded session

(testing set, Figure 2). For each subject and each pair of session (6 learning/testing pair per subject),

we compared correlations between NF-predictors ỹα̂c
and ye + ỹα̂f

to reference score yc, and between

the prediction of ỹα̂f
to yf.

- To observe the captured structure in the activation pattern α̂c and α̂f respectively learned to predict

yc and yf, we re-shaped the averaged activation patterns of a subject over sessions, into the matrices

corresponding to the design matrices defining Xc respectively Xd (see section 2.1), and displayed

results of the first dimension (electrodes) and of the second dimension (frequency bands).

4.2 Results

4.2.1 Model and prediction

The model validation of the NF-predictors (i.e. the learned activation patterns α̂ are applied to the

learning set) results are shown at Figure 4 left side. Pearson’s correlation coefficients between the

prediction and the ground truth are computed for each of the 3 learning sessions and for all subjects.

Correlations are very high (> 0.8) for the 2 NF-predictors of yc scores, letting think that the model is

adapted to the problem of NF prediction. Indeed, the model could fit NF-fMRI scores using only EEG

signals information with a median correlation of r = 0.81 with yf.

For the evaluation of the model prediction, the learned activation patterns are applied to the testing sets

i.e. the 2 other unseen NF sessions, for each one of the 3 NF sessions. The significance of the differences

between the correlations to the reference NF scores is assessed by applying a Fisher transformation to

the correlation coefficients. The p-values obtained with Student’s t-test, after this transformation, indicate

the significance of the differences between the correlation coefficients distributions. Table 1, shows that

ye + ỹα̂f
, whose median correlation is r = 0.74, better predicts yc than ye only, despite the fact that ye

is part of yc. The paired t-test, gives a p-value p = 6.6e-4 (t = 3.52), meaning that the prediction of

NF-fMRI scores by ỹα̂f
significantly adds information to ye. Predicting yc scores with ye + ỹα̂f

is also
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Figure 4. Model validation and prediction. Boxplots (median and quartiles) of Pearson’s correlation
coefficients over all subjects and sessions, between NF-predictors and yc or yf. The right part of the plot
indicates the correlation of the reference NF scores ye and yf versus the corresponding reference bi-modal
NF scores yc(= ye + yf).

Table 1. Model prediction : Pearson’s correlation coefficients over all subjects and sessions, between
NF-predictors and yc. The table shows p-values of t-test, the hypothesis is : models in columns correlates
better with yc than models in rows.

paired t-test
Correlation (yc,.) ỹα̂c

ye + ỹα̂f
ye

ỹα̂c

N.A. t = −23.17 t = −12.76
p = 1 p = 1

ye + ỹα̂f

t = 23.17 N.A. t = 3.52
p = 2.e-42 p = 6.6e-4

ye
t = 12.76 t = −3.51
p = 9e-23 p = 1 N.A.

better than ỹα̂c
(p = 2e-42, t = 23.17), which is expected since the models predicts NF-fMRI scores

and directly use NF-EEG scores (with all the potential noise coming from the EEG measures) which are

part of the reference score, as ye is in ye + ỹα̂f
, and therefore correlates well with yc. Furthermore the

proposed model is able to predict yf scores with a fair correlation of 0.36 in median and 0.35 in average.

Thus predicting NF-fMRI scores, instead of predicting bi-modal NF scores, seem to be the best way of

predicting those bi-modal NF scores. Figure 5 gives examples of predictions of yc with ye + ỹα̂f
and ỹα̂c

.
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Figure 5. Examples of prediction of NF scores. The x-axis is the temporal axis in milliseconds. Vertical
bands indicate the rest and the task blocks. The correlation coefficient r indicates the correlation between
each pair of time-series NF scores. Top: prediction of yc with ye + ỹα̂f

. Middle : prediction of yc with ỹα̂c
.

Bottom : prediction of yf with ỹα̂f
.

It also illustrates that, even if the correlations of ỹα̂c
are lower than ye + ỹα̂f

(Table 1), ỹα̂c
can predict

correctly the reference score yc.

During the learning session (i.e. the NF session used to learn the predictor), subjects might unevenly

focus on their fMRI or EEG feedbacks, and when subjects focus more on NF-fMRI than on NF-EEG,

the EEG-signals might lose coherence with respect to the NF-fMRI scores. Even though, the EEG signals

could predict NF-fMRI scores with a correlation of 0.36 in median and mean 0.35 (cf Figure 4, which is a

fair correlation between such different modalities. Examples of NF prediction are given at the bottom of

Figure 5, the plot shows the prediction ỹα̂f
of NF-fMRI scores on a testing set.

4.2.2 Activation patterns

We now focus on the learned models to evaluate the sparsity, over sessions and subjects and observe the

dispersion of the learned patterns over sessions and frequency bands of a subject. For each subjects and
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Table 2. Sparsity of the learned models α̂c and α̂f . Proportion of zero coefficients in the learned models.
α̂0 α̂3 α̂4 α̂5 all

α̂f x 0.92± 0.03 0.96± 0.03 0.91± 0.03 0.93± 0.04
α̂c 0.87± 0.05 0.92± 0.03 0.96± 0.02 0.93± 0.03 0.92± 0.05

each learning session, we computed the proportion of zero coefficients of the activation patterns (Table 2).

By construction of the design matrix Xc, α̂c and α̂f can be split into different activation patterns, as

shown in columns of Table 2. The models could select relevant coefficients of the design matrices to

predict reference NF scores. In average, there is 87 non-zeros coefficient on α̂c to predict yc, and 57

non-zeros coefficients on α̂f to predict yf.

To display the activation patterns of a subject over its 3 sessions, we denote ζ̂c =
∑3

s=1 |α̂
(s)
c | ∈ RM×B

the absolute activation pattern of α̂c (respectively ζ̂
f

d =
∑3

s=1 |α̂
(s)
d | ∈ RM×B for α̂f ), and γ̂c =∑3

s=1 α̂
(s)
c ∈ RM×B the average activation pattern (respectively γ̂fd =

∑3
s=1 α̂

(s)
d ∈ RM×B). We can

display heat maps for each of the 4 absolute activation patterns at each electrodes
∑

b∈B ζ̂0,
∑

b ζ̂3,
∑

b ζ̂4

and
∑

b ζ̂5 (Figure 6, top line of each panels); and colour maps of the 4 average patterns
∑

b γ̂0,
∑

b γ̂3,∑
b γ̂4 and

∑
b γ̂5 (Figure 6, bottom line of each panels) showing the sign of the strongest and most

stable coefficients across all subjects and sessions. Activation patterns displayed at Figure 6, represent the

dispersion of the learned parameters for one example subject over its 3 bi-modal NF sessions for which

he received a bi-dimensional display. The subject used had a median correlation with the corresponding

reference score of 0.44 for ỹα̂f
, of 0.76 for ỹα̂c

and of 0.81 for ye + ỹα̂f
. All maps present different

distributions of the non-zero coefficients. As expected when learning yc scores, the most intense heat map∑
b ζ̂0 with a maximum value of 45, concentrates its non-zero values on C3 channel (above the right-

hand motor area) and corresponds to the design matrix X0, directly extracted from EEG signal without

non-linear temporal delay. The next heat map in intensity order is
∑

b ζ̂5 with two peaks with a parietal

positioning above Pz and P4 channels, corresponding to the Brodmann area 7, involved in the visuo-

motor coordination. As presented in an interesting study (Sitaram et al., 2017), this brain area is active

during generalised neurofeedback when feedback is presented visually. In (Sitaram et al., 2017) it is also

mentioned that this part of the cortex is part of the executive control network connected to the thalamus.

The activation of the executive control network during motor imagery task is relevant, and indicates that

the subject is trying to do the task. It is also interesting to observe that the main activation peaks of
∑

b ζ̂5

( Pz and P4) have opposite signs with the activation peak of
∑

b ζ̂0 (above C3), suggesting a negative

correlation between neural activation measured at C3 and the neural activation of posterior parietal Pz

and P4 channels , part of the control network in neurofeedback. Panel B of Figure 6 presents comparable

learned activation patterns to predict ỹα̂f
, however more spread over sessions than for the model on panel

A, even if the model as around 93% of null coefficients (Table 2). This suggests that, even for a same
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Figure 6. Activation patterns over sessions and frequency bands b for one example subject. There is
two lines for each model, panel A represents activation patterns for α̂c and panel B represents activation
patterns for α̂f . The last column is the sum of the other ones. Top line: Heat map representing the
distribution of non-zero coefficients. Maximum value is indicated for each map with the red letter M, dark
blue areas represent zero values. Bottom line: Average activation patterns, representing the sign of the
main non-zero values across subject and sessions. Minimum and maximum values are indicated for each
map with the letters m and M, green areas represent zero values.

subject, the relation between EEG and fMRI changes over sessions, probably depending on the strategy

used by the subject.

At last, it is also possible to display the frequency profile of each average activation patterns. The 4

frequency profiles are
∑

e∈{1,...,E} γ̂0,
∑

e γ̂3,
∑

e γ̂4 and
∑

e γ̂5, e ∈ {1, ..., E}, summing weights over

electrodes. Figure 7 shows that the most used frequency bands over all sessions and electrodes are alpha

band ([8-12] Hz) and lower beta band ([13-17] Hz), the last 4 frequency bands are not displayed as they

only have null coefficients. We can observe the effect of `2 regularisation which allows continuity in the

This is a provisional file, not the final typeset article 16



Cury et al.

Figure 7. Frequency profiles, across subjects and sessions, of each average activation patterns, to
represent the implication of each frequency bands in the activation patterns. e ∈ {1, ..., E}. For each
average activation pattern, the y-axis indicates the sum of weights over electrodes, for each frequency
bands f ∈ {1, ..., B} on the horizontal axis.

frequency bands, and the effect of the subsequent `1 regularisation which removed the smaller coefficients

located in the high frequencies. When considering all activation patterns (Figure 7 right side), there is a

change of sign between alpha and lower beta. Each activation pattern shows a different frequency profile,

which, together with Figure 6, tends to demonstrate that patterns have complementary information.

4.3 Ablation study

We run an ablation study to understand the impact of the non-linearity part of the model, obtained by

the convolution of different HRFs inducing different delays for the prediction of NF-fMRI scores, by

analysing results of the model without HRFs convolutions. Therefore, in this ablation study we used the

exact same processes as described in section 4 (with a learning step and a testing step), except that we

used the design matrixX0 alone to learn the model parameters to predict yc scores and yf scores.

Results of the ablation study are displayed at Figure 8 and are to be compared with results of the

proposed model presented at Figure 4. Figure 8 shows that during learning step, the prediction of ỹα̂f
,

using X0 only, correlates with yf with a correlation of only 0.48 in mean and median. This prediction is

significantly improved by the use of the different HRFs functions (paired t-test, t = −14, 64, p = 1e-26),

as in the proposed model ỹα̂f
correlates with yf with a correlation of 0.81 in median and mean. Therefore, it

is natural to observe that the prediction of the bi-modal NF score by ye + ỹα̂f
is also significantly improved

by the use of non-linearity (paired t-test, t = −11, 87, p = 4e-21). Figure 8 shows that for the testing

step, the prediction of ỹα̂f
, using X0 only, correlates with yf with a correlation of 0.14 in mean and 0.15

in median, which is significantly lower than the proposed model (paired t-test, t = −9.56, p = 2e-18).

The prediction of the bi-modal NF scores by ye + ỹα̂f
is also significantly lower than the proposed model
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Figure 8. Ablation study. Removing non-linearity, keeping X0 only in the model to understand the
importance of the non-linearity induced by the use of different HRF functions.

(paired t-test, t = −2.74, p = 3e-3). Also, when using X0 only, the prediction of the bi-modal NF scores

using ye + ỹα̂f
do not significantly improve over ye alone (paired t-test, t = −0.69, p = 0.5).

5 DISCUSSION AND CONCLUSION

The model validation supports that the optimisation strategy we chose for our problem is adapted to the

model, as is the choice of the different design matrices. The ablation study supports the use of different

non-linear delays to improve the prediction of NF-fMRI scores using EEG signal. The evaluation of the

model prediction strongly suggests that predicting only NF-fMRI scores from EEG signal while applying

a Laplacian on EEG signal appears to be the best solution. Indeed, for ỹα̂c
, when predicting the bi-modal

NF scores, the variability between EEG signals induces decreasing correlation with the reference NF score

yc. Also NF-EEG scores can always be computed from available EEG signals, which leave only NF-fMRI

scores to estimate from EEG signals. However, one might want to improve the selection of features for the

computation of NF-EEG scores, but this raises different questions about the validation and the reference

score. Here we assumed that the given NF scores are relevant to the task and good enough to be considered

as reference scores. As expected, for the prediction of the bi-modal NF scores by ỹα̂c
, when decomposing

the activation pattern α̂c (from ỹα̂c
), into the 4 matrices corresponding to the different design matrices,

the weights corresponding toX0 (0 second of delay) are mainly located above C3, which is the centre of
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the Laplacian used for the computation of the NF-EEG scores. This seem to support the fact that with a

delay of 0 seconds, only the part of the NF coming from the EEG brings information.

A possibility to increase the prediction of NF-fMRI scores, would be to use more NF sessions as

learning sessions, since as observed, EEG signals bring variability in the prediction. Each new bi-modal

neurofeedback session could be added to the subject-specific model, to better adapt the model to the

subject or patient. This will be investigated in a next study. Given the improved correlation of the proposed

NF predictor with bimodal NF scores, it would be interesting in future work to validate its improved

performance in actual NF sessions, compared to classical NF-EEG scores. In particular to assess the

response of subjects to the predicted bi-modal NF scores and in particular the predicted NF-fMRI scores

learned by the proposed model over a standard NF-EEG neurofeedback session, a new and large enough

study is needed, as subjects can learn at different pace to regulate their own brain activity.

Presently, the proposed model learns an individual or specific model for each subject that allows a

personalised model for adapted neurofeedback sessions. Also a change in strategy for the task (here no

specific strategy to imagine moving their right hand was given to the subjects) might impact the learned

model, as the relation between EEG and fMRI signals can change. However, in a future work, we

are investigating an adaptation of the methodology for the extraction of a common model, taking into

account the differences between sessions and subjects, allowing the prediction of NF-EEG-fMRI scores

on new subjects who did not participated to the model construction. The model might be less specific, but

this would give access to neurofeedback sessions of bi-modal quality using EEG only, for subjects with

MRI contraindications, and/or drive a subject-specific model estimation, respecting the strategy used by

the subject to progress in its neurofeedback task. The learned NF predictor is of course specific to the

particular task considered during the learning session. One can expect to generalise the approach to other

tasks where spatial sparsity is relevant. Its extension beyond such tasks is more challenging.

Other ways to improve the method proposed here would be to investigate the use of dynamic functional

connectivity, a relatively recent field in BOLD fMRI which needs further investigations to be used

along with EEG data (Tagliazucchi and Laufs, 2015). Dynamic functional connectivity would allow to

take into account the different network (reward, control and learning) involved during neurofeedback

sessions (Sitaram et al., 2017). Dynamic functional connectivity study the temporal fluctuations of the

BOLD signal across the brain, and appears to be a promising approach in the EEG-fMRI research

field (Allen et al., 2018). However, one should be careful with the potential unknown remaining noise

coming from the MRI during EEG-fMRI simultaneous recording, that might unsettle the EEG signal

coherence between electrodes.
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The long-term objective of our project is to learn from EEG-fMRI NF sessions to provide, outside the

MRI scanner, enhanced NF-EEG sessions (Figure 1). A future work will investigate the portability of the

learned model (on EEG-fMRI neurofeedback data), outside the MRI scanner, bringing new challenges as

dealing with the remaining noises in the MRI after artefact correction, and the absence of ground truth

once the EEG is measured outside the MRI scanner.

To conclude, the proposed model here is able to provide a good enough prediction of the NF-fMRI

scores, to overcome the absence of NF-fMRI and allows to significantly improve the estimation of NF-

EEG-fMRI scores when using EEG only.
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