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Summary 

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like 

receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory 

signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the 

immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DC) 

are exacerbated by a high fatty acid (FA) metabolic environment. FA suppress the TLR-induced 

hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes 

enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein 

response (UPR) leading to a distinct transcriptomic signature, with IL-23 as hallmark. Interestingly, 

chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. 

Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 

expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate 

immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR. 

 

Introduction 

Metabolic adaptations play an important role in host response to pathogens (Wang et al., 2016; Weis 

et al., 2017). Inflammatory responses are triggered by pattern-recognition receptors (PRRs), such as 

Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) 

(Medzhitov, 2001). Inflammation is a tightly controlled process sensitive to dynamic changes in tissue 

environment and to the intrinsic state of immune cells, both contributing to initiation and resolution of 

inflammation (Netea et al., 2017). However, dysregulation of the transient inflammatory response can 

result in chronic inflammatory diseases (Fullerton and Gilroy, 2016). 

Recent evidence shows that metabolism of macrophages and DC plays a crucial role in inflammation 

(O’Neill and Pearce, 2016). Both DC and macrophages undergo a robust increase of glycolysis after 

acute activation by TLR agonists, whereas mitochondrial activity is suppressed in such conditions 

(Krawczyk et al., 2010; Tannahill et al., 2013). This shift of metabolic activity, known as glycolytic 

reprogramming, results in altered mitochondrial function, increased reactive oxygen species (ROS) 

production, and elevated secretion of pro-inflammatory cytokines (Tannahil et al., 2013; Lampropoulou 

et al., 2016; Mills et al., 2016). Importantly, processes that drive glycolytic reprogramming in M1 

macrophages, activated by the TLR4 agonist LPS, are down-regulated in IL-4-polarized M2 

macrophages (Jha et al., 2015) or in response to IL-10 (Ip et al., 2017). In addition, a recent study 

demonstrated that the key hallmarks of M2 macrophages are fatty acid oxidation (FAO)-independent 

and are not regulated by mitochondrial respiration (Divakaruni et al., 2018). Alterations of immune 
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signaling have a profound impact on whole body metabolism in metabolic diseases such as obesity 

and type 2 diabetes (Hotamisligil, 2017). Conversely, altered metabolic environment, for instance, due 

to obesity, affects myeloid cells during the innate inflammatory response (Duan et al., 2018). Immune 

cells sense environmental and metabolic cues that induce specialized stress responses in these cells 

(Chovatiya and Medzhitov, 2014). Flexibility of immune cells to adapt to different metabolic demands 

and diverse metabolic milieu via dynamic regulation of intracellular metabolism is an important 

component of inflammation and tissue homeostasis (Gaber et al., 2017). However, the underlying 

molecular mechanisms remain poorly understood. We hypothesized that metabolic adaptations during 

DC innate immune activation might be sensitive to extracellular metabolites such as FA, whose 

concentrations are altered by nutritional status and in several metabolic diseases (Karpe et al., 2011). 

Our results show that FA enhance TLR-mediated innate activation by inhibiting hexokinase (HK) 

thereby impairing the glycolytic reprogramming, leading to disturbed mitochondrial fitness and 

increased mtROS generation. This results in an exacerbated unfolded protein response (UPR) and, in 

turn, induces a distinct molecular signature and inflammatory response characterized by increased IL- 

23 production. Thus, adaptation of glycolysis to the metabolic environment links mtROS production to 

UPR activation and represents a specific mechanism regulating innate immunity. 

 

Results 

FA alter TLR-induced innate immune response 

To study whether the metabolic environment modulates the innate immune response, we analyzed the 

impact of FA on TLR-mediated activation of mouse GM-CSF bone marrow-derived DC (GM-DC). In 

GM-DC, PA, a common saturated FA in processed food diets, alone did not induce a significant 

expression of pro-inflammatory cytokines, but it greatly modified Il23a, Il6, and Il12a expression in 

response to TLR activation (Figure 1A-B and S1A-C). Moreover, PA potentiated IL-23 expression 

induced by activation of another PRR Dectin-2 (by furfurman), but not by Dectin-1 (by curdlan), as well 

as by TNF, but not by IL-1(Figure S1D). Likewise, PA robustly increased IL-23 expression  upon 

TLR4 and TLR7/8 activation in bone marrow derived macrophages (BMDM) (Figure S1E). These data 

indicate that IL-23 expression is sensitive to the presence of a high FA metabolic environment. 

Next, we focused on activation of DC with TLR7/8 ligand imiquimod (IMQ) which induced the strongest 

synergistic effects with PA. Interestingly, PA only modified expression of a subset of cytokines and 

chemokines among all induced by IMQ (Figure S1C), suggesting that FA promote a distinct innate 

immune signature in TLR-activated DC. 

 

PA modulates glycolysis in TLR-activated DC 
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TLR activation rapidly increases glycolysis in DC (Everts et al., 2014; Krawczyk et al., 2010) 

Furthermore, PA affects early TLR4 signaling in macrophages (Lancaster et al., 2018). Consequently, 

we hypothesized that PA might modulate the DC inflammatory response either by acting as a signaling 

molecule or by altering intracellular metabolism. Stimulation of GM-DC from wildtype and TLR4- 

deficient mice with IMQ and PA resulted in similar IL-23 induction (Figure S2A). Moreover, the up- 

regulation of IL-23 by PA was not due to NF-B signaling (Figure S2B) or JNK siganling (Figure S2C- 

D). Furthermore, the monounsaturated oleic acid (OA) also increased IL-23 secretion upon IMQ 

activation, independently of TLR4 (Figure S2E). Taken together, these results show that FA increase 

IMQ-mediated IL-23 expression through a yet unknown mechanism. We thus investigated the impact 

of PA on intracellular metabolism in IMQ-stimulated DC. The dose-dependent increase of IL-23 

expression and secretion upon IMQ and PA late co-stimulation was associated with a decrease of 

lactate secretion (Figure S2F), indicating reduced glycolytic activity. Moreover, PA suppressed lactate 

production during the late PRR activation (Figure 1C and S2G). Notably, PA presence did not affect 

extracellular acidification rate (ECAR), a surrogate measurement of glycolytic activity, and oxygen 

consumption rate (OCR), a measurement of oxidative phosphorylation (OXPHOS), during the 

immediate response to IMQ activation (Figure S2H-I). These results indicate that PA supresses late, 

but does not interfere with early steps of glycolytic reprogramming. 

Next, we speculated that GM-DC become sensitive to metabolic effects of PA once the cells acquire 

“Warburg-like” metabolism (O’Neill and Pearce, 2016). Indeed, GM-DC demonstrated a highly 

glycolytic phenotype with inhibited mitochondrial respiration after IMQ activation (Figure 1F-I). 

Interestingly, while PA rapidly increased mitochondrial respiration in resting and IMQ-activated GM-DC 

(Figure 1F-G), only IMQ-activated “Warburg-like” cells displayed decreased glycolytic activity in 

response to PA (Figure 1H-I). Similarly, PA inhibited lactate secretion from TLR-activated “Warburg- 

like” BMDM (Figure S2J). Together, these data show that PA alters late stages of glycolytic 

reprogramming, resulting in a shift from aerobic glycolysis towards OXPHOS. This metabolic effect of 

PA was not due to alterations in glucose uptake (Figure S2K) or mitochondrial content (Figure S2L), 

nor was it explained by changes in activity of electron transport chain (ETC) complexes (Figure S2M). 

Although IMQ activation in GM-DC increased ATP levels and decreased ATP/ADP ratio (indicating 

elevated energy utilization), PA presence did not alter these parameters in  IMQ-stimulated cells 

(Figure S2N). 

 

PA inhibits hexokinase activity and increases IL-23 expression independently of FAO 

Octanoic acid, a medium chain saturated FA, has been shown to inhibit key glycolytic enzymes in the 

liver (Weber et al., 1966). We hypothesized that PA might also inhibit glycolytic enzymes during the 
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late-stage TLR activation in GM-DC. Indeed, PA reversed the IMQ-induced increase of hexokinase 

(HK) activity at 24 hr (Figure 1J). Furthermore, various FA were capable to inhibit lactate secretion 

when added for 2 hr to GM-DC primed with IMQ for 24 hr (Figure S2O). Interestingly, 2-methyl-PA 

failed to inhibit lactate secretion in this setting, suggesting that an intact carboxylic acid moiety is 

required for the PA-dependent regulation of HK activity. Finally, the PA-mediated inhibition of HK was 

not due to its dissociation from mitochondrial outer membrane into the cytosol (Figure S2P). 

We next assessed whether PA activation to PA-CoA was required for the inhibition of glycolytic activity. 

As the effect of PA on glycolysis was not modulated by triacsin C, an inhibitor of long-chain-FA-CoA 

ligases (Figure S2O and Q), its conversion to PA-CoA by these enzymes appears dispensable. 

Mitochondrial FAO depends on the activity of FA importers CPT1A and CPT2 (Mehta et al., 2017). 

Cpt1a-deficiency or silencing both Cpt1a and Cpt2 did not alter the PA-mediated increase in IL-23 

expression (Figure S3A-B and D-F). Moreover, Cpt1a deficiency did not affect the PA-mediated 

inhibition of HK activity in IMQ-activated GM-DC (Figure S3C). In addition, using a FAO-specific 

concentration of CPT1 inhibitor etomoxir (Divakaruni et al., 2018) did not alter IL-23 expression 

(Figure S3F). Furthermore, activation with IMQ decreased Cpt1a expression and reduced  complete 

PA oxidation to CO2 in GM-DC, despite a modest increase of acid-soluble metabolite  (ASM) 

production, which was not rescued by pre-incubation with PA (Figure S3G-H), indicating greatly 

reduced PA catabolism. In line, IMQ activation led to elevated accumulation of free non-metabolized 

PA in GM-DC (Figure S3I). These results indicate that elevated intracellular FA concentrations, rather 

than their metabolization via FAO, are critical for the inhibition of HK activity and ensuing increase in 

IL-23 production at the late stage of TLR activation. 

 

PA inhibits glycolytic fluxes and disturbs mitochondrial fitness 

We next investigated whether the FAO-independent inhibition of glycolysis by PA was associated with 

alterations in the glycolytic pathway. IMQ-mediated DC activation induced the expression of genes 

encoding glycolytic enzymes and lactate transporters (Figure S4A and P left). Interestingly, PA addition 

to IMQ repressed Ldha, Pfkl, and Pfkfb3 expression compared to IMQ alone (Figure S4A and P right). 

In line with gene expression data, [1,2-13C]glucose flux via glycolysis into lactate (M+2) was 

significantly reduced upon PA treatment in IMQ activated GM-DC, whereas the (M+1) flux via the 

oxidative pentose phosphate pathway (PPP) was not altered (Figure 1K). Analysis of glycolysis 

intermediates showed non-significant increases of total fructose-1,6-biphosphate, 3-phosphoglycerate 

and pyruvate upon IMQ stimulation (Figure S4C-F). However, GM-DC co-stimulated with IMQ and PA 

displayed significantly decreased 3-phosphoglycerate compared to IMQ alone, in line with reduced 

glycolytic activity (Figure S4E and P). 
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IMQ activation generally down-regulated genes in the TCA cycle compared to resting cells (Figure 

S4G and P). These transcriptional changes led to accumulation of itaconate, and to elevated fumarate 

and malate levels, but no changes in citrate, isocitrate, and succinate were found in IMQ-activated 

GM-DC (Figure S4G-M and P). By contrast, IMQ and PA stimulation increased expression of pyruvate 

dehydrogenase (Pdhb), malate dehydrogenase (Mdh1/2) and mitochondrial isocitrate dehydrogenase 

2 (Idh2) but decreased lactate dehydrogenase (Ldha) expression compared to IMQ-activation (Figure 

S4A, G & P). Surprisingly, in this setting, [1,2-13C]glucose fluxes into TCA metabolites, such as 

isocitrate, itaconate, and malate, were significantly inhibited by PA (Figure 1L), and intracellular citrate 

and itaconate levels were reduced (Figure S4H and J). Itaconate regulates the late inflammatory 

response in macrophages (Bambouskova et al., 2018). Because PA decreased itaconate levels, we 

treated Acod1−/− (also known as Irg1−/−) GM-DC, deficient in itaconate synthase, with IMQ and PA. 

While Irg1-deficiency affected IMQ+PA-induced IL-23 expression, the effect was relatively small 

(Figure S4Q). Thus, the up-regulation of IL-23 by PA is unlikely due to the modulation of intracellular 

itaconate. 

Inhibited HK activity can lead to uncoupling of intra- from extramitochondrial metabolism (Robey and 

Hay, 2006), which might result in mitochondrial stress. Indicative of mitochondrial stress, mtROS 

generation was significantly increased by PA in IMQ-activated GM-DC (Figure 1M). Moreover, 

inhibition of HK activity by 2DG phenocopied the PA-induced increase of mtROS generation (Figure 

1N). Taken together, these results indicate that the metabolic adaptation of glycolysis/ to a high FA 

environment is associated with inhibition of glycolysis, reduced glycolytic flux into the TCA cycle, and 

elevated mitochondrial stress. 

 

PA increases IL-23 expression through elevated generation of mtROS by complex I 

As PA elevated mitochondrial stress and increased IL-23 expression, we investigated whether these 

events are functionally associated by inhibiting of mtROS generation. Both mitoTEMPO, an mtROS 

scavenger, and rotenone, an inhibitor of ETC complex I, diminished mtROS generation and blunted 

the PA-dependent increase in IL-23 expression (Figure 2A-C). These results suggest that mtROS 

generation by complex I or III activity links FA to IL-23 expression. Notably, although it generally 

diminished mitochondrial respiration, mitoTEMPO neither prevented the PA-mediated inhibition of 

glycolytic and HK activities in IMQ-activated GM-DC nor altered GAPDH activity (Figure S5A-E). Thus, 

the increased mtROS generation is rather the result of inhibited glycolytic activity, not the cause. 

ROS generation has been shown to rapidly up-regulate oxidative PPP activity in keratinocytes leading 

to increasing NADPH production to insure stabilization of redox balance and ROS clearance (Kuehne 

et al., 2015). We investigated whether alterations in PPP might functionally link the PA-mediated 
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glycolysis inhibition with increased mtROS production. PA inhibited activity of G6PDH, a rate limiting 

enzyme of the oxidative PPP, and treatment with mitoTEMPO diminished this effect (Figure S5F). In 

addition, the product of the oxidative PPP, ribose-5-phosphate (R5P), was decreased (Figure S5G), 

and [1,2-13C]glucose fluxes into R5P via non-oxidative PPP (M+2), but not oxidative PPP (M+1), were 

decreased by PA in IMQ-activated GM-DC (Figure S5H). Interestingly, PA treatment also affected the 

PPP metabolite sedoheptulose-7-phosphate (S7P) (Figure S5I-J). Altogether, these data show that 

extracellular FA establishes a new metabolic equilibrium involving a modulation of the PPP activity, 

redox balance and mtROS generation in TLR-activated DC. 

 

Increased mitochondrial activity potentiates IL-23 expression 

To demonstrate the relevance of these results in vivo, we used a mouse model of IMQ-induced skin 

inflammation (Fits et al., 2009), which shares some features with human psoriasis, an IL-23- 

dependent disease (Teng et al., 2015). IMQ treatment and high-fat diet (HFD) feeding increased 

concentrations of non-esterified FA (NEFA) in plasma (Figure S6A-B) in agreement with published 

results (Stelzner et al., 2016). As reported (Kanemaru et al., 2015), HFD feeding increased epidermal 

thickening (Figure S6C-D). Moreover, in IMQ-treated mice, HFD feeding increased the population of 

IL-23+ conventional DC (cDC) in skin draining inguinal lymph nodes (iLN) (Figure 2D). Upon HFD 

feeding, IMQ-activated cDC exhibited increased expression of genes involved in OXPHOS (Figure 

S6E) and generated more mtROS (Figure S6F), similar to the in vitro findings (Figure 1M). Notably, 

HFD feeding enhanced the IL-23-induced expression of a subset of IMQ-responsive genes in skin 

(Suárez-Fariñas et al., 2013), while it did not exert such an effect in the absence of IMQ (Figure S6G), 

suggesting that increased IL-23 production links HFD feeding with exacerbated skin  pathology. 

Indeed, IMQ-induced skin inflammation was abrogated upon treatment with an IL-23-blocking antibody 

(Figure S6H). Moreover, in HFD fed mice treated with IMQ, Cpt1a-deficiency in cDC did not alter IL-23 

expression and skin pathology (Figure S6I-K), in agreement with in vitro data (Figure S3B). Taken 

together, these results indicate that IMQ-activated cDC respond to a high FA environment in vivo via a 

FAO-independent mechanism by increasing mtROS generation and IL-23 expression. Next, we tested 

whether inhibition of ETC complex I activity could mitigate the effects of HFD feeding on increased IL- 

23 production in vivo. Metformin, a complex I inhibitor active in macrophages (Kelly et al., 2015), 

significantly reduced mitochondrial respiration in IMQ-activated GM-DC in the presence of PA (Figure 

S6L) and decreased IL-23 expression induced by IMQ and PA (Figure 2E) through an AMPK- 

independent mechanism (Figure S6M). In HFD-fed mice, metformin significantly reduced IL-23+ cDC 

numbers in iLN and epidermal thickness induced by epicutaneous application of IMQ (Figure 2F) and 

mitigated  psoriasis-associated  gene  expression  in  the  skin  (Figure  S6N).  Thus,  in  vivo      IL-23 
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production by cDC is enhanced by HFD-derived NEFA through a mechanism dependent on complex I 

activity. 

 

PA-mediated increase of IL-23 expression is associated with a decrease in the 

glutamate/glutathione axis 

We noticed, that the level of NADPH, a product of oxidative PPP, was decreased (Figure 2G) and 

NADP+/NADPH ratio was increased by PA in IMQ-activated cells (Figure S5L). Decreased NADPH 

might thus explain the elevated mtROS generation in response to PA. Interestingly, mitoparaquat 

(mitoPQ), which increase mtROS generation, up-regulated IL-23 expression in non-activated GM-DC 

but failed to potentiate IL-23 expression in IMQ-activated cells (Figure 2H). Glutathione (GSH) is an 

important component of the cellular anti-oxidant system (Mailloux et al., 2013). IMQ treatment resulted 

in a robust increase of GSH levels during the late TLR7/8 response, but this effect was reversed in the 

presence of PA (Figure 2I). Metabolomic data analysis revealed a decrease of intracellular glutamine 

and glutamate levels in IMQ-activated GM-DC treated with PA (Figure 2J), which was associated with 

inhibited flux into glutamate from glycolysis but not from glutaminolysis (Figure 2K). As glutamate is a 

key component for GSH synthesis, reduced glutamate may also account for the decreased levels of 

GSH, and thereby elevated mtROS generation, in GM-DC treated with IMQ and PA. 

To test whether glutamine plays a role in the regulation of IL-23, we deprived GM-DC from glutamine 

before activation with IMQ and found significantly increased IL-23 expression (Figure 2L). Similarly, 

silencing of Gls and Gls2 (Figure 2M), genes encoding enzymes mediating glutaminolysis, decreased 

glutamate and GSH levels (Figure 2N-O) and also increased mtROS generation and IL-23 expression 

in IMQ-activated GM-DC (Figure 2P-R). These results show that the pro-inflammatory effect of PA 

depends, at least in part, upon the reprogramming of the glutamine/glutamate/GSH axis. 

 

Upper glycolysis inhibition promotes IL-23 expression 

Because PA inhibited HK activity, we determined whether glycolytic inhibition was sufficient per se to 

enhance IL-23 expression. Treatment with 2DG led to elevated IL-23 expression in GM-DC in synergy 

with IMQ activation (Figure 3A). In line, intraperitoneal injection of 2DG significantly increased the 

accumulation of IL-23+ cDC in IMQ-treated mice (Figure 3B). Taken together, these results show that 

inhibition of HK activity promotes IL-23 expression in TLR7/8-activated DC in vitro and in vivo. PA 

inhibited aerobic glycolysis in part through transcriptional regulation with a pronounced effect on 

Pfkfb3 gene (Figure S4A). PFKFB3 increases glycolysis in macrophages (Jiang et al., 2016). Upon 

activation by IMQ and PA IL-23 expression was significantly increased in Pfkfb3-knocked-down GM- 

DC  (Figure  3C).  We  next  evaluated  whether  lower  glycolysis  was  critical  for  IL-23  expression. 
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Combined inactivation of Pfkl (liver-type phosphofructokinase 1) and Pfkp (6-phosphofructo-1-kinase) 

decreased lactate secretion in IMQ-activated DC (Figure S7). However, this inactivation failed to up- 

regulate IL-23 expression (Figure S6O), indicating that the activity of upper, but not lower, glycolysis is 

essential for the regulation of IL-23 expression. 

We further confirmed the role of upper glycolysis on IL-23 regulation using a model of genetic 

inactivation of HIF1, which controls glycolytic activity in myeloid cells (Corcoran and O’Neill, 2016). 

Accordingly, lactate secretion and HK activity were significantly decreased in IMQ-activated HIF1- 

deficient GM-DC (Figure 3D-F), while mtROS generation was significantly elevated (Figure 3G). In 

line, IMQ-activated, but not resting, HIF1-deficient GM-DC displayed increased IL-23 expression and 

secretion (Figure 3H). Similar results were observed in HIF1-deficient GM-DC from Hif1aVav/Vav mice 

and tamoxifen-treated Hif1afl/flRosa26CreER mice (data not shown). Finally, the increase of IL-23 

expression in IMQ-activated HIF1-deficient GM-DC was abrogated by inhibiting mtROS generation, 

but not pyruvate dehydrogenase kinase (PDK) activity (Figure 3I). Taken together, these results show 

that chemical or genetic inhibitions of upper glycolysis lead to increased mtROS generation and IL-23 

expression. 

 

Metabolic adaptation to a high FA environment is associated with a distinct transcriptional 

program 

To get further insight into the mechanisms of metabolic adaptation of DC to a high FA environment, we 

performed microarray analysis of GM-DC activated by IMQ and PA. IMQ alone induced pronounced 

changes in the DC transcriptional program, whereas PA alone only modestly affected gene expression 

(Figure 4A). By contrast, combined PA and IMQ treatment resulted in robust alteration of the DC 

transcriptional program, significantly modulating the expression of 874 genes (594 up-regulated and 

280 down-regulated) compared to GM-DC treated with IMQ alone (Figure 4A-B). Analysis of the 594 

up-regulated genes revealed an enrichment in the UPR, IRE1/XBP1 pathway, and N-linked 

glycosylation (Figure 4C), including up-regulated expression of multiple genes from the UPR and the 

integrated stress response pathways (Figure 4D). Similarly, transcriptomic analysis of cDC isolated 

from IMQ-treated mice showed that, compared to CD, HFD feeding led to an increase in the UPR 

gene signature (Figure 4E). Taken together, these results suggest that metabolic adaptation of IMQ- 

activated DC to a high FA environment induces a distinct transcriptional program associated with 

exacerbated UPR. 

 

PA potentiates the UPR in TLR-activated DC 

The UPR regulates immune homeostasis and responses in DC (Martinon et al., 2010; Osorio et al., 
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2014; Tavernier et al., 2017). Thus, we further analyzed the impact of UPR alterations on IL-23 

expression. While PA alone acted on a very restricted gene subset, compared to IMQ alone, PA and 

IMQ differentially altered the expression of genes involved in the UPR (Figure S7A). In particular, 

combined action of IMQ and PA resulted in an additional increase of protein and/or gene expression of 

Hspa5 (encoding BIP), Ddit3 (encoding CHOP), and the spliced form of Xbp1 (XBP1s), but not the 

cleaved form of ATF6 p50 (Figure 5A-B and S7B). Likewise, in sorted cDC, key UPR genes were 

differentially expressed in response to HFD feeding (Figure S7C). Notably, this was not associated 

with elevated expression of the UPR receptors PERK or IRE1(Figure 5A and S7B). In line with these 

data, the accumulation of XBP1s protein was maximal after 24 hr of combined treatment with IMQ and 

PA (Figure S7D-E). Furthermore, PA potentiated UPR activation by TLR2, 3, and 4 in GM-DC (Figure 

5B), indicating that this effect is not limited to TLR7/8 pathway. These results thus show that the late 

metabolic adaptation of TLR-activated DC to a high FA environment results in a synergistic induction 

of the UPR. 

 

PA-induced metabolic adaptations hyperactivate the UPR 

Next, we determined whether metabolic adaptations to PA directly potentiate TLR-mediated UPR 

activation. In GM-DC treated with IMQ and PA, complex I and mtROS inhibition decreased CHOP and 

XBP1s expression (Figure 5C-H). Furthermore, inhibition of glycolysis in IMQ-activated GM-DC 

resulted in an increase of Ddit3 and Xbp1s expression (Figure 5I-J). Accordingly, Ddit3 and Xbp1s 

expression were significantly increased in HIF1-deficient GM-DC that failed to increase glycolytic 

activity upon TLR-activation (Figure 5K-L). Importantly, Xbp1-deficiency neither affected glycolytic 

activity, nor altered mitochondrial respiration in IMQ-activated GM-DC (Figure S7F), indicating that the 

increased UPR is a consequence rather than a cause of the inhibited glycolytic activity driven by PA. 

Taken together, these results indicate that metabolic adaptations to PA control the UPR in TLR- 

activated DC. 

 
UPR increases IL-23 expression through the PERK/CHOP and IRE1/XBP1 pathways 

Tunicamycin, a direct activator of the UPR, significantly increased IL-23 expression in resting GM-DC 

(Figure 6A). Interestingly, it synergistically enhanced IL-23 expression in IMQ-activated GM-DC 

(Figure 6A-B). Specific inhibitors of IRE1-dependent splicing activity and PERK signaling resulted in 

a significant and additive decrease of IL-23 expression in GM-DC treated with IMQ and PA (Figure 6C- 

D). Because these inhibitors also significantly decreased Xbp1s, Atf4, and Ddit3 expression (data not 

shown), downstream IRE1and PERK targets, we evaluated the impact of these transcription factors 

on IL-23 expression. Atf4 silencing decreased IL-23 expression in GM-DC activated with IMQ and PA, 
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but not IMQ alone (Figure S7G). Likewise, CHOP-deficient Ddit3−/− GM-DC (Oyadomari et al., 2001) 

displayed a lower IL-23 expression compared to Ddit3+/+ cells (Figure 6E-F). IL-23 expression was also 

decreased in XBP1-deficient Xbp1CD11c/CD11c GM-DC (Osorio et al., 2014; Cubillos-Ruiz et al., 2015; 

Tavernier et al., 2017) upon IMQ and PA activation (Figure 6G-H). Moreover, Ddit3−/−Xbp1CD11c/CD11c GM- 

DC (Tavernier et al., 2017), deficient for both XBP1 and CHOP (Figure S7H), showed a further 

decrease in IL-23 expression (Figure 6G-H). Of note, in IMQ-activated GM-DC, Il6 induction by PA 

was dependent on mtROS generation, and XBP1- and CHOP-deficiency significantly attenuated Il6 

expression (Figure S7I-J). Furthermore, in IMQ-activated GM-DC, single or combined XBP1- and 

CHOP-deficiency diminished IL-23 expression potentiated upon glycolysis inhibition by 2DG (Figure 

6I-J). GM-DC activation by IMQ and PA lead to increased mitochondrial UPR (UPRmt) (Wu et al., 

2014), and diminished mitochondrial localization of ATF5, a master regulator of the UPRmt in mammals 

(Shpilka and Haynes, 2018) (Figure S7K-L). However, Atf5 knock-down did not alter IL-23 expression 

in GM-DC (Figure S7M). Moreover, silencing Atf3, a transcription factor that controls the integrated 

stress response (Jiang et al., 2004), increased IL-23 expression in GM-DC activated with IMQ and PA 

(Figure S7N). 

Finally, ChIP-qPCR analysis revealed that CHOP and XBP1 interact with the mouse Il23a gene 

promoter in GM-DC and their binding increased by treatment with IMQ and/or PA (Figure 6K). 

Together, these results indicate that the endoplasmic reticulum UPR (UPRER), rather than UPRmt or the 

ATF3-dependent pathway, links metabolic adaptation to elevated extracellular FA concentrations to IL- 

23 expression in DC. 

 

HFD-feeding exacerbates IMQ-mediated inflammation through DC-specific XBP1-dependent 

regulation of IL-23 

To assess the contribution of the UPR to exacerbation of inflammatory response by HFD feeding, we 

evaluated IMQ-induced skin inflammation in mice harboring DC-specific XBP1-deficiency (Osorio et 

al., 2014). Whereas the number and proportion of IL-23+ and IL-6+ cDC were not significantly lower in 

CD-fed Xbp1CD11c/CD11c mice compared to their Xbp1fl/fl littermates, XBP1-deficiency in cDC strongly 

prevented the increase in IL-23+ and IL-6+ cDC in response to HFD feeding in IMQ-treated mice 

(Figure 7A-D). Importantly, Xbp1CD11c/CD11c mice displayed ameliorated IMQ-induced psoriasis-like skin 

inflammationbut showed no obvious difference in skin morphology without IMQ treatment (Figure 7E- 

F). These results show that UPR activation in DC contributes to TLR-mediated IL-23-driven 

inflammation enhanced by a high FA environment. 

 

Discussion 
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Here, we demonstrate that the UPR integrates the signal driven by metabolic adaptation of activated 

DC to a high FA environment into a specific inflammatory program, characterized by elevated 

expression of IL-23. Upon pathogen-mediated activation via PRRs, innate immune cells must meet the 

high energetic demand required for anti-infectious defenses while ensuring moderate ROS levels to 

preserve the host from cell damage. Hence, a trade-off exists between highly effective ATP synthesis 

by OXPHOS and excessive mtROS production. Here, we demonstrate that, in DC, glycolysis is 

sensitive to a high FA environment at the late stage of PRR activation. Mechanistically, this metabolic 

adaptation to excessive FA exposure is due to the inhibition of HK activity, resulting in  metabolic 

stress, in a decrease of carbon fluxes from glycolysis into the TCA cycle and, ultimately, in decreased 

mitochondrial fitness. In turn, it increases mtROS generation and drives a distinct immune response 

associated with hyperactivation of the UPR. Increased IL-23 and IL-6 are hallmarks of this 

metabolically-driven inflammatory response, and their expression is controlled by XBP1 and CHOP. IL- 

23 and IL-6 are known targets of NF-B signaling upon TLR activation (Matsusaka et al., 1993; Sheikh 

et al., 2010). However, in our model, regulation of IL-23 by PA was not due to elevated NF-B 

signaling. We also excluded the involvement of the UPRmt and ATF3-dependent pathway in regulation 

of IL-23 by PA. Similarly, a recently described JNK-dependent modulation of the early TLR response 

by PA (Lancaster et al., 2018) did not explain the PA-dependent up-regulation of IL-23 expression. On 

the other hand, we found that the glutamine/glutamate/glutathione axis contributes, in addition to 

decreased NADPH levels, to elevated mtROS levels upon PA treatment and in turn to increased IL-23 

expression. By contrast, our data show that itaconate is unlikely to be involved in the PA-mediated up- 

regulation of IL-23 expression. Further studies are however needed to better understand such 

integrated reprogramming mechanisms. 

Different types of TLR ligands, myeloid cell origins and the microenvironment, as well as duration of 

activation, can lead to differential metabolic responses (Stienstra et al., 2017). LPS treatment rewires 

glycolysis and TCA cycle metabolism in macrophages (Jha et al., 2015). We found similar 

transcriptional and metabolic alterations in DC activated by IMQ alone, where accumulation of non- 

metabolized PA and inhibited FAO suggest that FA are likely diverted from OXPHOS to  avoid 

activation of the ETC and generation of mtROS. It is also possible that triglyceride synthesis acts as a 

transient buffer for extracellular FA. However, excessive extracellular FA likely overwhelm this 

protective mechanism (Chitraju et al., 2017), inhibiting HK activity and resulting in a metabolic 

disequilibrium and up-regulation of IL-23 and IL-6. 

FAO contributes to polarization of M2 macrophages (Huang et al., 2014) or tolerogenic DC (Malinarich 

et al., 2015; Zhao et al., 2018), at least in the absence of an acute inflammatory stimulus. Importantly, 

a recent study challenged the role of FAO in M2 macrophage polarization as widely used etomoxir 
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concentrations show multiple FAO-independent metabolic effects that are absent in genetic models of 

FAO deficiency (Divakaruni et al., 2018). In line, we found that the PA-mediated increase of IL-23 

expression is FAO independent and rather due to direct FA-mediated inhibition of the upper glycolysis 

in DC. HK has been shown to be an innate immune receptor for bacterial peptidoglycan detection of 

and its activity controls a dialog between mitochondria and inflammasome (Wolf et  al.,  2016). 

PFKFB3 has been recently described as an important glycolytic activator controlling antiviral immune 

responses in macrophages (Jiang et al., 2016). Our results suggest that HK and PFKFB3 link the 

metabolic adaptation of glycolysis to high extracellular PA with inflammatory responses, including 

increased IL-23 expression. Given that glycolysis controls a specific inflammatory signature, 

manipulating its activity is a potential therapeutic approach to control innate inflammation. 

Various TLR ligands and ROS are known UPR inducers (Grootjans et al., 2016; Martinon et al., 2010) 

and our data confirm these findings. Importantly, our results demonstrate a finely regulated cross-talk 

between the adaptation of glycolytic activity to the metabolic environment and the UPR in TLR- 

activated DC. Elevated glycolytic activity and reduced mtROS generation in TLR-activated DC are 

protective mechanisms that cells use to prevent excessive UPR activation upon inflammation. This 

hypothesis is in line with the observation that glucose utilization prevents UPR-induced neuronal 

damage during TLR3-induced and viral inflammation (Wang et al., 2016). The UPR has been shown to 

induce certain pro-inflammatory cytokines, such as IL-6, via NOD1/2 – another class of PRRs 

(Keestra-Gounder et al., 2016). Whether a similar cross-talk also plays a role in the integration of 

environmental metabolic signals with PRRs, other than TLRs and Dectin-2, remains to be 

investigated. 

Different branches of the UPR are involved in the homeostasis and the control of immune responses 

in DC (Janssens et al., 2014; Osorio et al., 2014; Tavernier et al., 2017). XBP1 regulates transcription 

of IL-6 and TNF in mouse macrophages (Martinon et al., 2010) and IL-23 production in human DC in 

response to zymosan (Márquez et al., 2017), while CHOP increases IL-23 expression in human DC in 

response to LPS and tunicamycin (Goodall et al., 2010). However, whether these effects require 

metabolic adaptations has not been investigated. 

Our results show that XBP1 and the UPR are potential therapeutic targets for IL-23-dependent 

inflammatory diseases. Interestingly, a recent study identified that activation of XBP1s by lipid 

peroxidation results in abnormal lipid accumulation in tumor-associated DC and inhibits their capacity 

to support anti-tumor T lymphocytes (Cubillos-Ruiz et al., 2015), suggesting that XBP1 provides a 

strong link between metabolic and immune functions in DC. 

IL-23 is a cytokine associated to protective immunity against some pathogens (Aychek et al., 2015). 

Moreover,  IL-23  plays  a  role  in  autoimmune  diseases  including  psoriasis,  psoriatic  arthritis, and 
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ankylosing spondylitis (Pfeifle et al., 2017; Teng et al., 2015). It is likely that the mechanism of 

metabolic adaptation reported here is relevant to psoriasis and other IL-23-dependent pathologies. 

During acute inflammation, elevated FA produced by lipolysis in adipose tissue (Rittig et al., 2016) may 

potentiate IL-23 and IL-6 production by DC, thereby promoting inflammatory effects  against 

pathogens. The innate immune system may have evolved to utilize the UPR as a sensor of elevated 

FA that tunes acute inflammatory responses of DC to the metabolic milieu. However, excessive FA in 

obesity and upon feeding with a HFD may result in hyperactivation of the UPR in DC and chronically 

increased production of IL-23 and IL-6. 

In conclusion, our results demonstrate that adaptation of the glycolysis/mtROS axis to a metabolic 

environment rich in FA and ensuing hyperactivation of the UPR represents a new regulatory 

mechanism of the innate immune response. 
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Figure Legends 

Figure 1. PA rewires inflammatory response and metabolism in TLR-activated DC. 

GM-DC were activated by TLR ligands during indicated time without (control) or with PA. 

(A-C) Il23a expression (A), IL-23p19 secretion (B) and lactate secretion (C) at 24 hr. 

(D-E) Lactate secretion and Il23a expression at indicated time after activation. 

(F-I) GM-DC activated during 24 hr, followed by extracellular flux analysis. Mitochondrial respiration 

calculated as OCR (F-G), glycolysis activity calculated as ECAR (H-I), before and after PA 

administration. Oligo, oligomycin; FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; AA, 

antimycin A; Rot, rotenone; 2DG, 2-deoxyglucose. 

(J) HK activity in GM-DC treated as in D-E. 

(K-L) Fluxes from 1,2-13C-glucose into intracellular lactate (K), isocitric, itaconic, and malic acids (L). . 

(M-N) MitoSOX staining in GM-DC activated by IMQ with/without PA (M) or with/without 2DG (N). 

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired 

Student’s t test or one-way ANOVA with Bonferroni test). #P < 0.05 as compared to mock/control 

treated cells (one-way ANOVA with Bonferroni test). See also Figure S1-5. 

 

Figure 2. PA increases IL-23 through mitochondrial respiration and mtROS generation. 

GM-DC were activated by IMQ without (Control) or with PA in the presence of indicated inhibitors for 

24 hr. 

(A-C) MitoSOX staining (A), Il23a expression and IL-23p19 secretion (B-C) in the presence of 

mitoTEMPO or rotenone. 

(D) Male mice were fed CD or HFD, abdominal skin was treated with IMQ or vehicle during 6 days. 

Proportion of IL-23+ cDC in iLN. n = 4-6 mice per group. 

(E) Il23a expression in GM-DC in response to metformin. 

(F) Male mice were fed HFD with or without metformin supplementation of drinking water during 3 

days followed by IMQ application to belly skin. Number of IL-23+ cDC in iLN 18 hr after IMQ treatment 

and average epidermal thickness after 5 days of IMQ treatment. n = 6-8 mice per group. 

(G) NADP+ and NADPH levels in GM-DC activated by IMQ with/without PA for 2-24 hr. 

(H) MitoSOX staining in GM-DC activated by IMQ with/without mitoParaquat (mitoPQ). 

(I) Intracellular GSH in GM-DC treated as in Figure 1D. 

(J) Intracellular glutamine and glutamate. 

(K) Carbon fluxes from 1,2-13C-glucose and U-13C-glutamine into intracellular glutamate. 

(L) Il23a expression in GM-DC pre-incubated with or without 2 mM glutamine for 4 hr and treated with 
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IMQ for 24 hr. 

(M-R) Gls and Gls2 expression (M), intracellular glutamate (N) and GSH (O), mtROS levels (P) and 

Il23a expression (R) in GM-DC transfected with siRNA against Gls and Gls2 or control siRNA and 48 

hr later treated with IMQ in media containing glutamine for 24 hr. 

n = 3-6 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 by unpaired 

Student’s t test. See also Figure S4 and S6. 

 

Figure 3. Upper glycolysis decreases IL-23 expression. 

(A) Il23a expression and IL-23 protein secretion in GM-DC activated by IMQ and treated with 2DG. 

(B) Number and proportion of IL-23+ cDC in iLN in mice 18 hr after IMQ application to abdominal skin 

and intraperitoneal injection with PBS or 2DG. n = 4-8 mice per group. 

(C) Pfkfb3 and Il23a expression in GM-DC transfected with siRNA against Pfkfb3 or control siRNA and 

48 hr later treated with IMQ. 

(D-J) Hif1afl/fl and Hif1aTie2/Tie2 GM-DC treated with IMQ. Lactate secretion (D), ECAR (E), hexokinase 

activity (F), MitoSOX+  staining (G). 

(H-I) Il23a expression and IL-23 secretion in Hif1afl/fl, Hif1aVav/Vav, and Hif1aTie2/Tie2 GM-DC treated with 

IMQ in the presence of mitoTEMPO and DCA. 

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired 

Student’s t test or two-way ANOVA with Sidak post-hoc test). See also Figure S3-4. 

 

Figure 4. PA and HFD feeding alter transcription program and induce the UPR in IMQ-activated 

DC. 

(A) Principal component (PC) analysis of 15000 genes with maximal average expression in GM-DC. 

(B) Volcano plot of differential gene expression in GM-DC treated with IMQ versus treated with IMQ 

plus PA; number of genes with fold-change > 1.5 and < 0.67 and adjusted P < 0.05 are shown. 

(C) Gene set enrichment analysis (GSEA) of the 594 genes from B using the Reactome database. 

(D) K-mean clustering of the 15000 genes. 

(E) GSEA using the “Unfolded Protein Response (UPR)” pathway in cDC sorted from iLN from IMQ- 

treated mice fed CD or HFD (15000 genes with maximal average expression). 

n = 4 in each group. See also Figure S6. 
 
 
Figure 5. PA enhances the UPR through mtROS generation and inhibition of glycolysis. 

(A) Representative Western blot analysis of the UPR proteins in GM-DC treated with IMQ and PA. 

TBP (TATA-binding protein) and -tubulin were used as loading controls. 
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(B) Hspa5, Ddit3, and Xbp1s expression in GM-DC treated with various TLR ligands without PA 

(Control) or with PA. 

(C-D) Ddit3 expression (C) and CHOP analysis by Western blot (D) in GM-DC treated as in A in the 

presence of rotenone. 

(E) Xbp1s expression in GM-DC treated as in C. 

(F) Representative flow cytometric analysis of XBP1s-venus+ GM-DC from ERAI mice treated as in C. 

(G-J) Ddit3 and Xbp1s expression in GM-DC treated as in A in the presence of mitoTEMPO or 2DG. 

(K-L) Ddit3 and Xbp1s expression in Hif1afl/fl and Hif1aVav/Vav GM-DC treated with IMQ. 

n = 2-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired 

Student’s t test or one-way ANOVA with Bonferroni test). #P < 0.05 as compared to mock/control 

treated cells (one-way ANOVA with Bonferroni test). See also Figure S7. 

 

Figure 6. PA and 2DG increase IL-23 expression through CHOP and XBP1s 

(A-B) Il23a expression (A) and IL-23p19 secretion (B) by GM-DC activated by IMQ and treated with 

tunicamycin (TN). 

(C-D) Il23a expression (C) and IL-23p19 secretion (D) by GM-DC activated by IMQ and PA and 

treated with 4µ8C (IRE1inhibitor) and/or GSK2606414 (PERK inhibitor). 

(E-F) Il23a expression (E) and IL-23p19 secretion (F) by Ddit3+/+ and Ddit3−/− GM-DC activated by IMQ 

and PA. 

(G-J) Il23a expression (G and I) and IL-23p19 secretion (H and J) by Xbp1fl/fl, Xbp1CD11c/CD11c, and 

Ddit3−/−Xbp1CD11c/CD11c  GM-DC activated by IMQ and PA or 2DG. 

(K) Schematic map of potential CHOP and XBP1 binding sites within the 5'-region of Il23a mouse 

gene and ChIP-qPCR analysis of XBP1 and CHOP binding to these sites in GM-DC treated as in (C- 

D). Data are shown as % DNA input enrichment for each site. TSS – transcription start site. 

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired 

Student’s t test or one-way ANOVA with Bonferroni test). See also Figure S7. 

 

Figure 7. HFD feeding exacerbates psoriasis-like inflammation through the Xbp1-dependent 

increase of IL-23 expression in cDC 

Xbp1fl/fl and Xbp1CD11c/CD11c littermate male mice were untreated or daily treated by application of IMQ to 

shaved abdominal skin during 5 days and fed CD or HFD. 

(A-D) Number and proportion of IL-23+  (A-B) and IL-6+  (C-D) cDC in iLN. 

(E) Representative MGG staining of sections from abdominal skin. Scale bar 50 µm. 

(F) Average epidermal thickness of abdominal skin. 
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n = 6-8 mice per group (IMQ treated) and n = 2 mice per group (untreated). Data are shown as  mean 

± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA with Tukey's post-hoc test; significance of 

genotype and diet effects or their interaction is shown). See also Figure S7. 
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