On the genetic bases of incomplete hippocampal inversion: a genome-wide association study

To cite this version:

HAL Id: inserm-02074616
https://inserm.hal.science/inserm-02074616
Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the genetic bases of incomplete hippocampal inversion: a genome-wide association study
Claire Curý1,2, Marzia Antonella Scelsi1, Roberto Toro1, Vincent Frouin3, Eric Artiges1, Andreas Hein3, Henrik Walter4, Hervé Lemaître3, Jean-Luc Martinot5, Jean-Baptiste Poline6, Michael Smolka16, Gunter Schumann11, André Altman2, Olivier Colliot1,2

1 Inria/IRISA Rennes, France. 2 University College London, UK. 3 Institut Pasteur, France. 4 CEU, Neurospin, France. 5 INSERM Unit 1000, France. 6 Charité-Universitätsmedizin, Germany. 8 Hôpital Necker, Paris, France. 9 McGill University, Canada. 10 Technische Universität Dresden, Germany. 11 King’s College London, UK. 12 Aramin Lab, ICM, France.

INTRODUCTION

Incomplete hippocampal inversion (IHI), is an anatomical variant of the hippocampus present in about 20% of healthy individuals (Baulac et al., 1998; Bajic et al., 2008; Bernasconi et al., 2005; Curý et al., 2015).

No IHI:

- Hippocampus flat, properly inverted

→ We performed the first genome-wide association study (GWAS) of IHI to unveil the genetic factors that may contribute to incomplete inversion during brain development.

METHODS

<table>
<thead>
<tr>
<th>DATA</th>
<th>DISCOVERY COHORT: IMAGEN (N = 138)</th>
<th>VALIDATION COHORT: PING (N = 161)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>mean age=14.5 years</td>
<td>mean age=16.1 years</td>
</tr>
<tr>
<td>GENOTYPING</td>
<td>blood samples on 610-Quad SNP and 660-Quad SNP arrays from Illumina</td>
<td>saliva samples on Human660W-Quad arrays from Illumina</td>
</tr>
<tr>
<td>ANCESTRY</td>
<td>European</td>
<td>European</td>
</tr>
<tr>
<td>IHI</td>
<td>26.1%</td>
<td>23.6%</td>
</tr>
</tbody>
</table>

IHI scoring (Curý et al., 2015):

- Manual scoring of the IHI using individual criteria (Curý et al. 2015)
- A cut off at 4 was used to classify hippocampi in the IHI group or in the non-IHI group.

Pre-processings steps:

- Raw genotyping data were prepared for imputation and haplotype reference consortium (HRC) v1.1
- SNPs were imputed on the Sanger imputation server1 using EAGLE2 for pre-phasing and PBWT for imputation.
- QC was conducted on SNP level leaving 6,742,645 SNPs across the autosomes for the association analysis.

GWAS with Plink v1.9:

- assuming an additive genetic model
- correcting for sex, age and five principal components for population structure and with a standard genome-wide threshold of p<5e-8.

SNPs selection for validation:

- Validation cohort: SNPs exceeding the threshold for suggestive association with IHI (p<1e-5).
- If the top SNP not genotyped in PING, LDlink2 was used to identify a proxy in linkage disequilibrium LD (r2) within +/- 50kb of its location.

GWAS summary statistics:

- Statistics annotated using the FUnctional Mapping and Annotation (FUMA)3
- IHI heritability estimated from GWAS statistics using LD score regression method (Bulik-Sullivan et al., 2015)