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Effects of polyphenols and lipids from
Pennisetum glaucum grains on T-cell
activation: modulation of Ca2+ and ERK1/
ERK2 signaling
Abdelhafid Nani1,2,3, Meriem Belarbi2, Wided Ksouri-Megdiche4, Souleymane Abdoul-Azize3, Chahid Benammar2,
François Ghiringhelli3, Aziz Hichami3† and Naim Akhtar Khan3*†

Abstract

Background: Pearl millet (PM), i.e., Pennisetum glaucum, is widely grown in Africa and known for its anti-oxidant
and anti-hyperlipidemic properties.

Methods: The P. glaucum grains were obtained from the region of Ouled Aïssa (South of Algeria). We assessed the
effects of phenolic compounds and lipids, extracted from seeds of P. glaucum, on rat lymphocyte proliferation,
activated by phorbol 12-myristate 13-acetate and ionomycin. In order to explore signaling pathway, triggered by
these compounds, we assessed interleukin-2 (IL-2) mRNA expression and extracellular signal-regulated kinase-1/2
(ERK1/ERK2) phosphorylation. Finally, we determined increases in free intracellular Ca2+ concentrations, [Ca2+]i, by
employing Fura-2/AM in rat lymphocytes.

Results: The composition of P. glaucum grains in polyphenols was estimated to be 1660 µg gallic acid equivalents
(GAE)/g. Lipids represented 4.5 %, and more than 72% of the fatty acids belonged to unsaturated family. Our
investigation showed that both lipid and phenolic compounds inhibited mitogen-induced T-cell proliferation.
Compared with phenolic compounds, lipids exerted weaker effects on ERK-1/ERK2 phosphorylation and Ca2+

signaling in mitogen-activated T-cells.

Conclusion: We conclude that the immunomodulatory effects of P. glaucum could be contributed by its phenolic
and lipid contents.
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Background
Current recommendations from international health and
nutritional organizations, like Food and Drug Adminis-
tration (FDA), include an increase in the consumption
of high-bran cereals because of their potential benefits
on human health [1]. Millets are cereals that have been
cultivated for more than 3500 years in all Sahelian Africa
and tropical countries of Western Africa. Indeed, millets
are extremely resistant to dryness and well adapted to
manure-poor soil [2]. Millet refers to a number of

different species, and all of them are small-grained and
annual cereal grasses [3].
Millet grains have been shown to exert beneficial

effects in health and disease [4–6]. Lee et al. [4] reported
that foxtail and proso millet decreased plasma triglycerides
in hyperlipidemic rats. Shobana et al. [5] reported that
feeding a diet containing 20 % finger millet decreased
hyperglycemia and its associated complications in
streptozotocin-induced diabetic rats. In clinical stud-
ies, finger millet exerted anti-hyperglycemic effects in
diabetic patients [6]. The beneficial effects of pearl
millet (PM) have not been well studied except a few
available reports that have shown anti-oxidant activity
because of its high contents in polyphenols [7].
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Luteolin, a flavone present in millets, has been re-
ported to exert antioxidant, anti-inflammatory and
cancer-preventive properties [8, 9]. Van Rensburg [10]
and Chen et al. [11] reported that populations con-
suming cereals including millet had lower incidences
of esophageal cancer compared to those consuming
wheat or maize. Nani et al. [12] have shown that
streptozotocine (STZ)-induced diabetic Wistar rats
fed with pearl millet-enriched diet underwent a sig-
nificant curtailment in glycaemia and an improvement
of body weight. Regarding its chemical composition,
pearl millet has been attributed to having several
health promoting abilities: anemia, constipation, can-
cer, and diabetes [13].
As far as immune system is concerned, cereal consump-

tion has been reported to exert immune-modulating ac-
tivities. Recent studies have shown that cereals contain
a wide range of phenolic compounds [14–17]. The im-
munomodulatory effects of polyphenols have drawn
considerable attention in recent years [18–20]. González
et al. [21] have reported that flavonoids and related poly-
phenolic compounds possess anti-inflammatory activity.
Furthermore, the mechanisms of action of other polyphe-
nols, e.g., resveratrol, curcumin, genistein and epigallocat-
echin, in the modulation of immune system and the
secretion of pro-inflammatory mediators have been
reviewed [22]. In addition to dietary polyphenols, a great
attention has been paid to dietary lipids which are able to
modulate inflammatory status, depending on their fatty
acid content and composition [23–25]. In vitro and in vivo
studies have shown that fatty acids modulate a number of
lymphocyte functions [25], including proliferation [26],
cytokine release [27], and mitogenic signaling [28].
Pearl millet (PM), i.e., Pennisetum glaucum, is the

most widely grown species in Africa [29], and it consti-
tutes the daily basic food for 50 million inhabitants of
the Sahel [2]. PM contains several compounds including
lipids and polyphenols that could modulate immune sys-
tem. To our knowledge, no study concerning the effects
of PM polyphenolic or lipidic fractions on the modula-
tion of immune system is available. We, therefore, inves-
tigated the effect of phenolic compounds and lipids,
extracted from PM, on T-cell activation. Since an in-
crease in free intracellular Ca2+ concentration, [Ca2+]i
and mitogen-activated protein kinase (MAPK) phos-
phorylation, are the part of early events of T-cell activa-
tion, it was thought worthwhile to elucidate the effect of
PM lipids and phenolic extracts on Ca2+ and MAPK sig-
naling in T-cells.

Methods
Materials
Grains of pearl millet, Pennisetum glaucum, obtained
from the region of Ouled Aïssa (174 km in the North of

Adrar city and 70 km to the North-West of Timimoun,
Algeria), were used in this study. Wistar rats were obtained
from Janvier Elevage (Le Genest-st-isle, France). RPMI
1640 medium and L-glutamine were purchased from
Lonza Verviers SPRL (Verviers, Belgium). Fura-2 AM was
procured from Life Technologies (France). Anti-Phospho-
p44/42 mitogen-activated protein kinase (MAPK, Erk1/2)
and anti-p44/42 MAPK (Erk1/2) were obtained from Cell
Signaling (France). All other chemicals were purchased
from Sigma (USA).
The general guidelines for the care and use of labora-

tory animals, recommended by the council of European
Economic Communities, were followed. The experi-
mental protocol was approved by the Regional Ethical
Committee (Dijon).

Extraction and determination of phenolic compounds
The plant was recognized by a botanist (Pr Benabadji
Nouri, Université Aboubekr Belkaïd, Tlemcen) of the
Herbarium Center of the Faculty of Pharmacy (Tlemcen)
which contained the voucher specimen (PM 1681). PM
phenolic extracts were obtained according to the method
of Liyana-Pathirana and Shahidi [30] with slight modifica-
tions. Briefly, 2 g of PM grain powder were extracted two
times (2 h for each extraction) with 40 ml of metha-
nol–acetone–water (7:7:6, v/v/v) at room temperature
(25 ± 2 °C) with constant stirring. The mixtures were
centrifuged (20 min at 4000 g) and supernatants were
collected and subjected to extraction with an equal
volume of hexane to eliminate lipids.
Total phenolic contents in plant extracts were deter-

mined by Folin-Ciocalteu method [31] as described by
Miliauskas et al. [32]. Briefly, 0.5 ml polyphenol extract
was reacted with 2.5 ml of Folin-Ciocalteu reagent
(0.2 mol/l) for 4 min, then 2 ml saturated sodium car-
bonate solution (75 g/l) was added into the reaction
mixture. After 2 h incubation at room temperature, the
absorbance at 760 nm was determined. The content of
phenolic compounds was determined with reference to
standard curve determined with gallic acid. The content
of phenolic compounds was expressed as μg gallic acid
equivalents (GAE)/g dry matter (μg GAE/g).
Phenolic extract (20 μl) was analyzed by HPLC (Model

Agilent Technologies 1260, Germany) with reverse
phase Zorbax Eclipse XDB-C18 column (4.6 × 100 mm)
and a diode array UV-detector (operating at 280 nm).
The gradient mobile phase was composed of two sol-
vents: A and B. Solvent A was methanol and solvent B
was 0.1 % formic acid (v/v). Phenolic acid separation
was achieved using a 35 min linear solvent gradient at a
flow rate of 0.4 ml/min, as follows: 0 min 90 % B, 5 min
80 % B, 10 min 70 % B, 15 min 50 % B, 20 min 30 % B,
25 min 10 % B, 30 min 50 % B, 35 min 90 % B. PM
phenolic compounds were identified with reference to
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retention time of authentic standards and quantified on
the basis of their peak area. Standard phenolic compounds
used were: p-coumaric, chlorogenic, ferulic, gallic, trans-
hydroxycinnamic, syringic acid, ellagic acids, quercetin
and apigenin.

Lipid extraction
Lipids were extracted according to the method of Hara
and Radin [33]. In order to avoid oxidation, all solvents
contained 0.01 % butylated hydroxytoluene (BHT).
Briefly, 1 g of millet grain powder plus 20 μg of internal
standard (C19:0) were blended with 8 ml isopropanol
and heated at 80 °C for 5 min. After cooling to room
temperature, the blended grain powder was crushed in
12 ml hexane. The mixture was briefly centrifuged, and
then the upper phase was collected. For complete recov-
ery, the pellet was re-extracted with 9 ml hexane and
2 ml isopropanol, and then the extract was combined
with the upper phase of the previous step. To remove
non-lipid fraction, the extract was partitioned into an
upper hexane phase by the addition of aqueous sodium
sulphate 6.5 % (0.5/1 : v/v). The upper phase, lipid ex-
tract, was transferred into a new tube, dried under a
stream of nitrogen and stored at −20 °C until fatty acid
analysis by gas–liquid chromatography (GLC).

Preparation of fatty acid methyl esters (FAMEs)
In brief, 0.1 ml of hexane, containing lipid extract, was
transferred into screw cap tubes and dried under nitro-
gen, then 1 ml of methanolic NaOH (0.5 N) was added
into tubes, and heated at 80 °C during 20 min. After
cooling at 4 °C, 2 ml of boron trifluoride-methanol solu-
tion (BF3) were added, and the methylation was per-
formed at 80 °C for 20 min. After cooling-down in ice,
2 ml of NaCl (35 %) plus 2 ml of hexane were added
into the tubes. After vigorous agitation and centrifuga-
tion (1200 g/5 min), the upper phase containing fatty
acid methyl esters was transferred into new tubes, and
analyzed by gas − liquid chromatography (GLC).

Gas liquid chromatography (GLC)
GLC was performed in a Packard Model 417 gas–liquid
chromatograph, equipped with a flame ionization de-
tector and a 30-m capillary gas column coated with car-
bowax 20 M. The analysis conditions were as follows:
oven temperature was 85 °C/1 min, increased to 150 °C
at 30 °C/min, then increased at 4 °C/min to 210 °C.
Helium was used as carrier gas, with a flow rate of
0.4 ml/min. Analysis of fatty acid peaks was achieved
with reference to the internal standards (Nu-Chek-Prep,
Elysian, MN) by using DELSI ENICA 31 (Delsi Nermag,
Rungis, France). The fatty acid levels were expressed
as g/100 g of total fatty acids.

Isolation and preparation of splenic T-cells
Fresh splenocytes were harvested from Wistar rat spleens
under aseptic conditions. The removed spleens were im-
mediately transferred to the petri dishes, containing
RPMI-1640 complete medium (RPMI 1640 medium sup-
plemented with 10 % foetal calf serum, 2 mM L-glutamine,
100 U/ml of penicillin, and 100 μg/ml of streptomycin
and 25 mM HEPES) . Spleens were teased apart using a
wire gauge. After lysis of red blood cells, with Red Cell
Lysing Buffer (Sigma, USA) and centrifugation (200 × g,
5 min), the pellet was resuspended in RPMI-1640
complete medium, and placed into a sterile petri dish for
1 h at 37 °C, in a humidified chamber containing 95 % air
and 5 % CO2, to remove the macrophages by adherence.
T lymphocytes were isolated by panning [34]. In brief, the
unadhered cells were decanted, centrifuged (200 × g,
5 min) and transferred to the petri dishes that were previ-
ously coated with anti-rat IgG (5 μg/ml) overnight at 4 °C.
Hence, selective depletion of B lymphocytes was accom-
plished because they adhered to the substratum of the
petri dishes. After an incubation of 1 h at 4 °C, the T-
lymphocyte–rich supernatant was decanted and centri-
fuged (200 × g, 5 min) twice with RPMI-1640 complete
medium. This technique provided us with an enriched
(99 %) T-cell population as verified by cyotofluorime-
try (not shown). Cell numbers were determined by
hemocytometer.

T-cell proliferation assay
The proliferation of splenic T-cells in response to PM
lipids and polyphenols was assessed according to the
method of Bonin and Khan [35] with slight modification.
Splenic T-cells were resuspended in RPMI complete
medium and plated into 96-well microplates at the con-
centration of 5 × 105 cells/well. Lipid and polyphenol ex-
tracts obtained from pearl millet, were solubilized in
ethanol, and added to cells, final ethanol volume was
below 0.1 % (v/v), 1 h before their activation with PMA
(50 nM) and ionomycin (500 nM). After 48 h of treat-
ment, T-cell proliferation was measured by Cayman’s
WST-8 cell proliferation assay kit (Cayman Chemical,
USA). The stimulation index (SI) was calculated as fol-
lows: SI = optical density (450 nm) of stimulated cells/
optical density (450 nm) of unstimulated cells × 100.

Cell preparation for western blot analysis
Splenic T-cells were serum starved for 6 h in RPMI 1640
medium without serum. Then, splenic T- cells (5 × 106/ml)
were pre-incubated for 5 min with either PGL or PGPC or
vehicle before stimulation with PMA (200 nM) for an add-
itional 30 min, according to Nel et al. [36]. Incubation was
stopped by centrifugation, and cell pellets were washed
twice with PBS and resuspended in 50 μl of lysis buffer
(HEPES, 20 mM, pH 7.3; EDTA, 1 mM; EGTA, 1 mM;
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NaCl, 0.15 mM; Triton X-100, 1 %; glycerol, 10 %; phenyl-
methylsulfonyl fluoride, 1 mM; sodium orthovanadate,
2 mM; antiprotease cocktail, 2 μl in 1 ml of buffer).
After centrifugation (2500 g for 1 min), the protein in
the supernatant was quantified with the bicinchoninic
acid (BCA) assay (Thermo Fisher Scientific, France)
and either used immediately for Western blot detec-
tion or stored at −80 °C.

Western blot detection of phosphorylated MAP kinases
Denatured proteins (60 μg) were separated by SDS-PAGE
(10 %) and transferred onto polyvinylidine difluoride
membranes, and immunodetection was performed by
using rabbit antibodies raised against phosphorylated or
non-phosphorylated P44/P42 MAPK. Primary antibodies
were detected with a horse radish peroxidase conjugated
mouse anti-rabbit antibody and visualised using an ECL
Kit (Merck Millipore) on Bio-Rad ChemiDoc XRS+ sys-
tem. Densitometric analysis was performed on Bio-Rad
Image Lab Software (version 4.1).

RNA isolation and real time quantitative PCR
Cells were cultured as described above in the presence of
either PGL or PGPC extracts and stimulated with anti-
CD3 antibodies for 2 h [37, 38]. Total RNA was extracted
using TRIzol Reagent and underwent DNase treatment
using the RNase-free DNase Set (Life Technologies).
500 ng of total RNA was reverse transcribed with Super
script II H-reverse transcriptase (Life Technologies) using
oligo (dT) according to the manufacturer’s instructions.
Real time PCR was carried out on the iCycler iQ real time
detection system and amplification was undertaken by
using SYBR® Green PCR Master Mix (Life Technologies)
as described elsewhere [39]. Oligonucleotide primers were
as follow: beta-actin forward: 5′-ATGATA TCGCCGC
GCTCGTCGTC-3′, beta-actin reverse 5′-AGGTCCCGG
CCAGCCAGGTCCAG-3′; IL-2 forward 5′ CACTAAT
TCTTGCACTTGTCAC-3′, IL-2 reverse 5′- CTTCTTG
GGCATGTAAAACT-3′. Relative quantification of IL 2
mRNA was determined by ΔΔCt method as follows:
ΔCt = Ct of IL-2 - Ct of beta actin. ΔΔCt = ΔCt of
treated cells - ΔCt control cells. Relative quantity
(RQ) was calculated as follows: RQ = (1 + E)-(ΔΔCt) .

Measurement of free intracellular Ca2+concentrations;
[Ca2+]i
Splenic T-cells (2 × 106 cells/ml) were washed with
phosphate-buffered saline, pH 7.4, and then incubated
with Fura-2/AM (1 μM) for 60 min at 37 °C in loading
buffer containing: 110 mM, NaCl; 5.5 mM, KCl; 25 mM,
NaHCO3; 0.8 mM, MgCl2; 0.4 mM, KH2PO4; 0.33 mM,
Na2HPO4; 20 mM, HEPES; 1.2 mM, CaCl2, and the pH
was adjusted to 7.4. After loading, the cells were washed
three times (720 g × 10 min) and remained suspended in

the identical medium. The fluorescence intensities were
measured in the ratio mode in the PTI spectrofluorome-
ter at 340 and 380 nm (excitation filters) and 510 nm
(emission filters). The cells were continuously stirred
throughout the experiment. The intracellular concentra-
tions of free Ca2+, [Ca2+]i, were calculated by using the
following equation: [Ca2+]i = Kd × (R-Rmin)/(Fmax-F)(Sf2/
Sb2). A value of 224 nM for Kd was added into the calcula-
tions. Rmax value was obtained by the addition of ionomy-
cin (5 μM) and Rmin value was obtained by the addition of
MnCl2 (2 mM), Triton X-100 (0.1 %) and EGTA (24 mM).
For experiments conducted in the absence of external

calcium (0 % Ca2+), CaCl2 was replaced by 1 mM EGTA
in the buffer [40]. All test molecules were added in small
volumes with no interruption in recordings.

Statistical analyses
Results are shown as mean ± SD (standard error devi-
ation) for a given number of experiments (n). Data were
analysed by using Statistica (4.1 version, Statsoft, Paris,
France). The significance of differences between mean
values was determined by one-way ANOVA, followed by
Fisher’s least-significant-difference (LSD) test. Differences
with p < 0.05 were considered to be significant.

Results
Phenolic acid and lipid composition of PM grains
The total content of phenolic compounds in PM grains
was estimated to be 1660 μg GAE/g. Table 1 shows that
p-coumaric acid represents 81 %, and ferulic acid repre-
sents 12 % of the total phenolic compounds.
Total lipids were estimated to be 4.5 % (Table 2).

Alpha-linoleic acid (18:2n-6) was the most abundant
fatty acid (44.95 %), and oleic acid (18:1 n-9) was the
second most abundant fatty acid (24.88 %). The propor-
tion of unsaturated fatty acids was estimated to be 72 %
(Table 2).

Table 1 Phenolic acid composition of PM grains

Phenolic compounds μg/g sample (dry weight)

Gallic acid 15.351

Chlorogenic acid 16.074

Syringic acid 7.380

p-Coumaric acid 1350.884

Ferulic acid 199.562

Hydroxycinnamic acid 41.330

Ellagic acid 14.4364

Quercetin 5.904

Apigenin 9.078
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PGL and PGPC decrease T-cell proliferation
Figure 1a shows the effects of increasing concentration
of PGL on T-splenocyte proliferation either in the pres-
ence or absence of mitogens (PMA + Iono). We ob-
served that PGL until 20 μg/ml concentration exerted
no significant effect on basal splenic T-cells proliferation.
However, PGPC at 20 μg/ml decreased basal T-cells pro-
liferation. We also observed that both PGL and PGPC
curtailed, in a dose-dependent manner, T-cell prolifera-
tion induced by PMA + Iono. PGPC exerted more in-
hibitory effect on T-cell proliferation than PGL (Fig. 1b).

PGL and PGPC diminish PMA-induced ERK1/ERK2
activation
Figure 2 shows that both PGL and PGPC dose depend-
ently diminished PMA-induced ERK1/2 phosphorylation
in splenic T-cells. PGPC completely blocked MAP kinase
phosphorylation even at a low concentration (10 μg/ml)
(Fig. 2b), whereas the effects of PGL was weaker than
that of PGPC. (Fig. 2a).

PGL and PGPC decrease IL-2 mRNA expression
Our results show that PGL and PGPC exerted no effect
on basal expression of IL-2 mRNA in splenic T-cells.
However, both PGL and PGPC extracts diminished, in a
dose-dependent manner, PMA + Iono-induced IL-2
mRNA expression (Fig. 3). As observed for T-cell prolifer-
ation and ERK1/2 phosphorylation, PGPC exerted more
important inhibitory effect than PGL on IL-2 mRNA
expression.

PGL and PGPC induce increases in [Ca 2+]i in splenic
T-cells
Figure 4 shows that both PGL and PGPC evoked a dose-
dependent increase in [Ca2+]i in splenic T-cells; however,
the increase in [Ca2+]i triggered by PGPC was signifi-
cantly higher than that triggered by PGL (Fig. 4). In
order to assess the origin of Ca2+ mobilized by lipids
and phenolic compounds, we conducted experiments in

Table 2 Fatty acid composition (% of total FA) of Pennisetum
glaucum

Fatty acids Content (%) in total oil

Palmitic 16:0 20.13 ± 0.16

Palmitoleic 16:1 0.52 ± 0.04

Stearic 18:0 5.11 ± 0.19

Oleic 18:1 24.88 ± 0.19

Linoleic 18:2n-6 44.95 ± 0.32

Linolenic 18:3n-3 3.03 ± 0.03

Arachidic 20:0 0.90 ± 0.02

Gonodoic 20:1 0.25 ± 0.01

Behenic 22:0 0.23 ± 0.01

a b

Fig. 1 Effect of PGL and PGPC on T cell proliferation. The cells (5 × 105 cells/ml) were stimulated with different concentrations of the extracts as
described in Methods. Cell number were determined with a hemocytometer. Inserts show the stimulation index (SI) of T-cell proliferation in response
to PGL (left panel) and PGPC (right panel). Data represent means ± SD (n = 6). p < 0.01 as compared to cells without PGL or PGPC, *represents p <
0.001 as compared to PMA + Iono-stimulated T-cells. NS = insignificant differences. p values were obtained by one-way ANOVA, followed
by Fisher’s LSD test
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the absence (0 % Ca2+) and presence (100 % Ca2+) of
Ca2+ in the extracellular medium. Figure 5 shows that
the PGPC and PGL induced a weak and discrete in-
crease in [Ca2+]i in 0 % Ca2+ medium as compared to
that induced in 100 % Ca2+ medium.
As the polyphenolic and lipidic extracts were able to

induce increases in [Ca2+]i even in the absence of ex-
ternal calcium, it was thought worthwhile to examine

the nature of intracellular stores involved in this rise
in [Ca2+]i. We used thapsigargin, known to induce in-
crease in [Ca2+]i by inhibiting the endoplasmic reticulum
Ca2+-ATPase [41, 42]. Figure 6 illustrates that thapsi-
gargin alone triggered a calcium peak, and addition
of PGL or PGPC after thapsigargin or vice versa
evoked additive effects on the increases in [Ca2+]i in
these cells.

a

b

Fig. 2 Effects of PGL and PGPC on PMA + Iono-stimulated ERK1/ERK2 phosphorylation in splenic T-cells. Data were quantified by densitometry
and expressed as phosphorylated /non phosphorylated ERK1/ERK2 ratio. Splenic T-cells (5 × 106 cells/ml), before determination of MAP kinase
phosphorylation, were incubated for 6 h in RPMI 1640 medium without serum, and treated with increasing concentrations (0 to 40 μg/ml) of PGL
in (a) and PGPC in (b). After 5 min of incubation, cells were stimulated with PMA (50 nM) and Iono (500 nM) for another 30 min at 37 °C. Cells
were lysed and phosphorylated MAP kinases were detected performed as described in Materials and Methods. Results are expressed as arbitrary
units in bar graphs. *Represents P < 0.001 as compared to PMA + Iono-stimulated T-cells in the absence of PGL (a) and PGPC (b). NS = insignificant
differences. p values were obtained by one-way ANOVA, followed by Fisher’s LSD test

a b

Fig. 3 PGL and PGPC modulate IL-2 mRNA expression. Splenic T-cells (5 × 105 cells/ml) were incubated with increasing concentrations (0 to 40 μg/ml)
of PGL (a) and PGPC (b), and stimulated with anti-CD3 antibodies for 2 h. Each value represents the mean of three determinations. * Represents P< 0.001
as compared to PMA + Iono-stimulated T-cells. NS = insignificant differences. The p values were obtained by one-way ANOVA, followed by
Fisher’s LSD test
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Discussion
Millet grains, widely consumed in many areas of Asia,
Africa and Latin America, have been shown to exert
several beneficial effects in health and disease [5].
Among millets species, pearl millet (PM) has been the

least studied. In this study, we examined the effects
of polyphenols and lipids, extracted from PM, on
T-cell proliferation. We investigated the involve-
ment of calcium and MAP kinase signaling in this
process.

a b

Fig. 4 Ca2+ signaling modulation by PGL and PGPC in splenic T-cells. Cells (2 × 106/ml) were loaded with the fluorescent probe, Fura-2/AM, as
described in Methods. The arrow head indicates the time when PGL or PGPC were added into the cuvette without interruptions in recordings.
Figures show the single traces of observations which were reproduced independently (n= 6). Inserts show the increase in [Ca2+]i evoked by the increasing
concentrations (10 to 40 μg/ml) of PGL (a) and PGPC (b). *Represents P< 0.001 as compared to control (untreated cells). NS = insignificant differences. The
p values were obtained by one-way ANOVA, followed by Fisher’s LSD test

a b

Fig. 5 Ca2+ signaling modulation by PGL (a) and PGPC (b) in splenic T-cells in 0 % Ca2+-buffer and 100 % Ca2+-buffer. PGL and PGPC-evoked
increases in [Ca2+]i are curtailed in 0 % Ca2+-buffer in T-cells. Cells (2 × 106/ml) were loaded with the fluorescent probe, Fura-2/AM, as described
in Methods. *Represents P < 0.001 as compared to [Ca2+]i increases in 0 % Ca2+-buffer. The p values were obtained by one-way ANOVA, followed
by Fisher’s LSD test
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Most of the millet species contain phenolic compounds,
which are detected in the pericarp, testa, aleurone layer,
and endosperm [43]. In our study, the total polyphenol
content of the PM extract was estimated to be 1660 μg
GAE/g, in agreement with other studies in which the
values ranged from 1387 to 2580 μg GAE/g [44, 45]. Simi-
larly to the finding of Shahidi and Chandrasekara [46], we
observed that PM grains contained principally p-coumaric
acid and ferulic acid. In addition, apigenin, a flavonoid,
was detected in PM grains [46].
It is well established that, except finger millet, millet

species have higher lipid contents, ranging from 3.5 % to
5.2 %, than other cereals [46]. In our investigation, total
lipids were estimated to be 4.5 % in PM grains. Indeed,
Ragaee et al. [44] found that PM had the highest content
of lipids (4.2 %) compared to wheat flours and other
cereal whole grains. The high content of lipids in PM
grains might be due to the presence of embryo in which
lipids are concentrated. Daniel et al. [47] had reported
that PM oil yielded three fatty acids as major components.
Hence, alpha-linoleic acid amounted to be 45.6 % followed
by oleic acid (28.5 %) and palmitic acid (20.6 %), whereas
linolenic and stearic acids were the minor fatty acids. In

our samples, we obtained a high amount of both linolenic
and stearic acid (3.03 % and 5.11 %, respectively).
T-lymphocytes represent a fundamental component of

the adaptive immune response. The lymphocyte trans-
formation assay is an important tool to measure, in vitro,
mitogen-induced lymphocyte proliferation [48, 49]. Fol-
lowing T-cell receptor (TCR) engagement, one of the early
events in T-cell activation is the phosphorylation of tyro-
sine kinases and the generation of inositol 1,4,5-triphos-
phate (IP3), leading to the release and influx of Ca2+, and
the rise in cytoplasmic Ca2+ concentration [50]. The rise
in [Ca2+]i activates via calcineurin induces IL-2 gene ex-
pression [51]. To our knowledge, the present report is the
first study assessing the immunomodulatory effects of PM
polyphenols and lipids. PM extracts were rich in apigenin,
p-coumaric acid and other phenolic acids. Apigenin has
been shown to inhibit T-cell proliferation [52], without
exerting any toxic effect [53]. Interestingly, p-coumaric
acid has been reported to exert anti-cancer [54], anti-
mutagenic [55], and anti-inflammatory activities [56].
PGPC strongly inhibited T-cell proliferation and IL-2
mRNA expression. Other investigators have also reported
that plant polyphenols inhibited proliferation and IL-2
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Fig. 6 Effects of thapsigargin (TG) on PGL and PGPC-induced rise in [Ca2+]i in lymphocytes that were tretaed as follows : TG (a), PGL followed by
TG (b), TG followed by PGL (c), TG followed by PGPC (d, and PGPC followed by TG (e). Cells (2 × 106/ml) were loaded with the fluorescent probe,
Fura-2/AM, as described in Methods. The arrow head indicates the time when 20 μg/ml of PGL, PGPC, or TG (5 μM) were added into the cuvette. The
figure shows the single traces of observations reproduced independently (n = 6)
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production in human lymphocytes [39, 57, 58]. Gao et al.
[59] reported that resveratrol, a stilbene, inhibited the pro-
liferation and IL-2 and interferon (IFN)-γ production by
splenic lymphocytes. Kaempferol, a flavonoid, was able to
reduce IFN-γ and IL-2 production by murine T-cells [60].
Curcumin, that gives rise mainly to ferulic acid and vanil-
lin, also inhibited IL-2-induced T-proliferation of splenic
cells [61].
PGL also, to a lesser extent than PGPC, inhibited T-

cell proliferation. In PGL, n-3:n-6 ratio was estimated to
be 1:14 which is very close to the recommended ratio
(1:10), reported by Ma et al. [62]. The inhibitory effect of
lipid extract of PM may be attributed to linoleic acid, an
n-6 fatty acid. Linoleic acid (18: 2n-6) which represents
44.95 % of total fatty acids in PGL, could be involved in
T-cell immunosuppression. Indeed, Liu et al. [63] had
reported that linoleic acid inhibited IL-2 mRNA expres-
sion and, consequently, lymphocyte proliferation. An-
other study has shown that linoleic acid was a potent
inducer of cell death in human peripheral blood lympho-
cytes. The mechanism of action of linoleic acid on cell
apoptosis involved alterations in mitochondrial trans-
membrane potential and ROS production [64]. Similarly,
linolenic acid (18: 2n-3) could be involved in T-cell im-
munosuppression. Indeed, Denys et al. [65] have shown
that n-3 fatty acids inhibited mitogen-induced nuclear
translocation of NF-κB and IL-2 mRNA expression in
Jurkat T-cells. The inhibitory effect of PGPC and PGL
on T-cell proliferation could be mediated by their cap-
acity to reduce IL-2 mRNA expression. In fact, the tran-
sition of T-cells via S phase of cell cycle is associated to
the expression of IL-2 mRNA. The newly synthesized
IL-2 acts in an autocrine manner in order to assure the
T-cell cycle progression. Furthermore, inhibition of IL-2
production is associated with cell cycle arrest [66].
Mitogen-activated protein (MAP) kinases including

the extracellular signal-regulated kinase-1/2 (ERK1/ERK2)
have been shown to play a critical role in the events
leading to increased IL-2 production in mammalian
cells [36, 67]. Both PGL and PGPC dose-dependently
diminished PMA-induced ERK1/ERK2 phosphorylation
in splenic T-cells; however, the inhibitory effect of
PGPC was more pronounced. Our results agree with
the observations of Neuhaus et al. [68] who had dem-
onstrated that the phosphorylation of ERK1/ERK2 was
inhibited by epigallocatechin-3 gallate (EGCG). Simi-
larly, the treatment of ECV304 cells with ferulic acid, a
major phenolic acid in pearl millet, inhibited both cell
proliferation and ERK1/ERK2 phosphorylation [69]. Be-
sides, the PM lipid contents might be responsible for
the inhibition of MAPK phosphorylation as reported
previously [65].
We examined the actions of PGL and PGPC on the in-

creases in [Ca2+]i in T-cells. In the presence of 100 % Ca2+,

PGPC and PGL induced high increases in [Ca2+]i, suggest-
ing that Ca2+ influx plays a major role in the increase in
[Ca2+]i evoked by theses extracts. The kinetic study of PGL
and PGPC-induced Ca2+ mobilization showed that these
compounds produced a sustained increase in [Ca2+]i. We
also noted that PGPC induced stronger and more import-
ant increases in Ca2+ (around 6-fold), compared to PGL.
These sustained [Ca2+]i increases are correlated with the
immunosuppressive effects of PM extracts, as reported for
the prickly pear phenolic compounds [40].
To ascertain the nature of the intracellular Ca2+ pool

mobilized by lipids and phenolic compounds, thapsigargin,
an inhibitor of Ca2+-ATPase of endoplasmic reticulum
[41], was employed. The addition of thapsigargin during
the PGL or PGPC-induced Ca2+ peak, and vice versa,
suggesting that PGL and PGPC did not seem to act
on Ca2+-ATPase.

Conclusion
We can state that both PM polyphenols and lipids ex-
hibited an immunosuppressive effects. The PM polyphe-
nols seem to be more active than lipids. Two molecular
mechanisms seem to be involved in the immunosup-
pressive activity of PM extracts: i) the sustained in-
creases in intracellular free Ca2+ concentration and ii)
the inhibition of IL-2 mRNA expression and MAP kinase
phosphorylation. Our results argue for the use of millet
diet as dietary supplements for treatment of diseases asso-
ciated with a sustained activation of the immune system
such as autoimmune diseases.
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