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Synopsis
b-tensor encoding enables the separation of isotropic and anisotropic tensors. However, little consideration has been given as to how to design
a b-tensor encoding sampling scheme. In this work, we propose the first 4D basis for representing the diffusion signal acquired with b-tensor
encoding. We study the properties of the diffusion signal in this basis to give recommendations for optimally sampling the space of axisymmetric
b-tensors. We show, using simulations, that the proposed sampling scheme enables accurate reconstruction of the diffusion signal by expansion
in this basis using a clinically feasible number of samples.

Introduction
Multi-dimensional diffusion MRI (MD-dMRI) is a recent diffusion signal modelling and reconstruction framework where the diffusion signal is derived from
the diffusion tensor distribution (DTD). Advanced magnetic gradient modulation schemes, resulting in b-tensor encoding, enable separation of isotropic
and anisotropic tensors . Often diffusion tensors are assumed to be axisymmetric, so the DTD is 4D . While algorithms have been proposed for
recovering the DTD from b-tensor encoded measurements of the diffusion signal , little consideration has been given to the b-tensor sampling scheme.
Currently, b-tensors are empirically chosen, often from uniform sampling of b-tensor parameters , typically resulting in on the order of 1000 samples to
recover the full DTD . To our knowledge, no b-tensor sampling scheme has been proposed for optimally sampling the MD-dMRI signal. We present the
first 4D basis for representing the MD-dMRI signal. This enables us to study the properties of the signal in this basis to give recommendations for sampling
the space of axisymmetric b-tensor, while enabling accurate reconstruction of the MD-dMRI signal.

MD-dMRI Signal Basis and b-tensor Sampling Scheme

is the diffusion signal acquired with b-tensor encoding, where  is the DTD,  are second order symmetric positive-definite diffusion and b-tensors
respectively, and . For a discrete set of diffusion tensor populations,

where  is the proportion of tensor population  and  is the number of populations. The axisymmetric diffusion tensor can be parameterised as ,

where  is a rotation operator. The b-tensor can be parametrised in terms of ,

Expanding , using the above parameterisation, gives a separable expression in , and the other three parameters, :

. This enables  to be expanded in a separable and orthogonal 4D basis which is the product of

a 1D basis for  dimension and a 3D basis for  and  dimensions. As  is a function of negative exponential of , we use an exponential

modulated with a Laguerre polynomial, which together form an orthogonal basis over  dimension . Similarly, we use the spherical Laguerre basis , a 3D
orthogonal basis with an exponential weighting function in the radial direction, for  dimensions, leading to expansion:

where  is the spherical Laguerre basis, with  and 

.  are spherical harmonics of maximum degree ,  are scale factors and  are maximum orders for 

and  bases respectively. Coefficients  are defined by inner product . Due to the separability of

this basis, we can design a separable transform,
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with Gauss-Laguerre quadrature  used to choose the weights , and sample locations  for the  and  dimensions. We use the
scheme  to place the samples in the angular dimension. For a band-limited signal, this quadrature enables exact reconstruction and efficient sampling
with the number of samples equal to number of coefficients.

Methods
The Magic DIAMOND model is used to study maximum orders needed for expansion of the diffusion signal in the proposed basis and to evaluate
reconstruction accuracy of the proposed sampling scheme. Magic DIAMOND , an extension of the DIAMOND model  for axisymmetric tensor
acquisitions, describes the DTD through a mixture of non-central matrix-variate Gamma distributions, where each diffusion compartment is represented
through a single distribution with two shape parameters, that set axial and radial heterogeneity of a compartment, and a scale parameter. Compartments
are used to represent diffusion molecules hindered and restricted by fascicles, and free water diffusion. We used a range of diffusivities and distribution
parameters representative of those in the human brain.

Results and Discussion
As Magic DIAMOND model is linear, it is sufficient to study each compartment individually; the truncation order of the compartment with the highest
truncation order is sufficient to represent all combinations of compartments. Fig.1 shows the spherical harmonic band-limit as a function of . Fig.2
shows the reconstruction error as a function of increasing truncation order for maximum  and  of . It was found that 

 were sufficient for reconstruction error smaller than  for all compartments, resulting in the sampling
scheme (Fig.3) with 192 samples, the same order as several state-of-the-art sampling schemes in q-space . Fig.4 shows the mean reconstruction error
evaluated at 1080 uniformly placed measurements for 640 realisations of Magic DIAMOND.

Conclusion
We present the first 4D basis and reconstruction algorithm for representing and reconstructing the axisymmetric b-tensor encoded diffusion signal. We
study the properties of the signal to inform how many and which b-tensors should be used, thereby providing sampling recommendations. Although
preliminary, the high reconstruction accuracy achieved on Magic DIAMOND model is promising for interpolation of b-tensors encoded measurements to
enable algorithms for recovering the DTD to achieve higher accuracy and/or reduce the number of measurements.
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Fig.1: Maximum absolute reconstruction difference between the reconstructed signal and the ground truth as a function of the spherical harmonic band-
limit  and  value.  required to accurately represent (maximum absolute reconstruction difference is above , as required by MD-dMRI

Gaussian diffusion assumption ) the diffusion signal at different -values is shown by the black line.
 

Fig.2: Maximum absolute reconstruction difference between the reconstructed signal and the ground truth as a function of the  truncation order  (left)
and the  truncation order  (right). The truncation order should be high enough so that the reconstruction error is smaller than  (shown by the

black line).
 

Fig.3: Proposed b-tensor sampling scheme: a) the b-tensors shown for a single orientation, and b) the orientations used in the proposed sampling
scheme, projected onto a single sphere, samples on the inner most to outer most shell are shown in green, red (two shells with this sampling) and blue for
each shell respectively. Locations where antipodal symmetry is used to infer the value of the signal are lighter in colour.
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Fig.4: Mean absolute reconstruction error over 1060 uniformly placed samples on a Cartesian grid for 640 realisations of the magic DIAMOND model.
 


