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Abstract

Background: Normalization is essential to ensure accurate analysis and proper interpretation of sequencing data,
and chromosome conformation capture data such as Hi-C have particular challenges. Although several methods have
been proposed, the most widely used type of normalization of Hi-C data usually casts estimation of unwanted effects
as a matrix balancing problem, relying on the assumption that all genomic regions interact equally with each other.

Results: In order to explore the effect of copy-number variations on Hi-C data normalization, we first propose a
simulation model that predict the effects of large copy-number changes on a diploid Hi-C contact map. We then
show that the standard approaches relying on equal visibility fail to correct for unwanted effects in the presence of
copy-number variations. We thus propose a simple extension to matrix balancing methods that model these effects.
Our approach can either retain the copy-number variation effects (LOIC) or remove them (CAIC). We show that this
leads to better downstream analysis of the three-dimensional organization of rearranged genomes.

Conclusions: Taken together, our results highlight the importance of using dedicated methods for the analysis of
Hi-C cancer data. Both CAIC and LOIC methods perform well on simulated and real Hi-C data sets, each fulfilling
different needs.
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Background
The spatial organization of the genome and the physical
interactions occurring within and between chromosomes
can play important roles in gene regulation and in genome
function in general. The organization and folding of mam-
malian chromosomes within the nucleus involve multiple
hierarchical chromatin structures (see Bonev et al. [1] for
a review). At the megabase-scale, the genome in the inter-
phase nucleus is divided into compartments of open and
closed chromatin, that are respectively associated with
gene-rich, actively transcribed regions and gene-poor,
silent regions [2, 3]. Compartment organization varies
across physiological conditions and during cell differen-
tiation [4, 5]. At the sub-megabase scale, chromosomes
are also partitioned into topological associated domains

*Correspondence: nicolas.servant@curie.fr
†Nicolas Servant and Nelle Varoquaux contributed equally to this work.
1Institut Curie, PSL Research University, F-75005 Paris, France
2INSERM, U900, F-75005 Paris, France
Full list of author information is available at the end of the article

(TADs). These have been proposed as possible functional
units of regulation, and are generally preserved across
cell types, as well as being conserved between mammals
[3, 4, 6, 7]. TAD boundaries are frequently associated with
CTCF binding sites. CTCF is also involved in the estab-
lishment of chromatin loops between convergent target
sites [3]. These chromatin loops are believed to provide
scaffold for promoter-enhancer contacts and can there-
fore be implicated in gene activation (see Bouwman et al.
[8] for a review).
Given the important recent insights that chromosome

conformation techniques have provided into 3D genome
organization in a normal context, the application of such
approaches to a disease context offers great promises to
explore the effect of perturbations in 3D genomic organi-
zation on cell regulation (see Kirjger et al. [9] for a review).
At a high enough resolution, such techniques can be used
to characterize links between disease-associated sequence
variants and the gene regulatory landscape. For example,
structural variants can disrupt boundaries between TADs,
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and consequently can act as driver events in the mis-
regulation of associated gene expression [10, 11].
Over the past decade, major advances have been made

in both high-throughput sequencing techniques and data
availability from large patient cohorts across multiple can-
cer types, enabling a comprehensive and systematic explo-
ration of genomic and epigenomic landscapes of a wide
variety of cancers. While cancer has been shown to have a
genetic component, our appreciation of the inherent epi-
genetic complexity is more recent and has dramatically
increased over the last few years. At the genetic level,
cancer is frequently associated with the sequential acqui-
sition of somatic variants, both at the single nucleotide
and at the copy number levels [12]. The different alter-
ations that characterize tumors are usually caused by a
few functional driver events, which occur among many
non-functional passenger events, mainly located in the
non-coding part of the genome [13]. One of the exciting
discoveries that has emerged from systematic sequencing
of cancer genomes was the high frequency of mutations
in genes known to regulate epigenetic processes such as
chromatin associated proteins, DNA methylation, or his-
tone variants and modifications [14]. The contribution
of altered epigenomes in the process of tumorigenesis is
thus at last being unraveled thanks to the combination
of genomic and epigenomic interrogation. More recently,
genetic and epigenetic alterations in the non-coding part
of the genome, including distal regulatory elements such
as enhancers or insulators, have been reported and found
to impact gene expression in cancer [15]. This has led to
intense interest in the spatial proximity and 3D organi-
zation of cancer genomes. Losada et al. [16] reviews the
effect of somatic mutations in cohesin complex proteins
(which play a citical role in TADs organization and chro-
mosome looping) in various types of cancer. Groeschel
et al. [17] and Taberlay et al. [18] describe how disruptions
in genome organization (respectively in leukemia and
prostate cancer) lead to major epigenetic and transcrip-
tional changes. Lastly, Hnisz et al. [19], Weischenfeldt
et al. [20], and Beroukhim et al. [21] show how disruptions
in long range DNA looping and genome rearrangements
lead to enhancer hijacking and Flavahan et al. [22] link
insulator dysfunctions to oncogene activation in cancer.
Thus, changes in chromosome conformation at differ-
ent scales are now considered as key potential players in
cancer, as well as important potential biomarkers.
Developing accurate and quantitative methods to ana-

lyze the chromatin conformation derived from disease-
associated cells/tissues is therefore of increasing interest
to a wide community of researchers and pathologists.
In addition to standard microscopy approaches, several
3C-based methods are now used: these rely on digestion
and religation of fixed chromatin to estimate the proba-
bility of contact between two genomic loci (see Ramani

et al. [23] for a review). In Hi-C experiments, the con-
tact frequencies between two genomic loci are roughly
proportional to the reads counts observed between two
regions after sequencing [2]. However, as is the case for
many high-throughput technologies, the raw contact fre-
quencies are affected by systematic biases such as GC
content, mappability, or restriction fragment size [24].
Estimating and correcting these biases is therefore an
important step in ensuring accurate downstream analy-
sis. In the past few years, several methods and packages
have been developed to normalize Hi-C data (see Ay
and Noble [25] for a review). These methods fall into
two main categories: explicit factor correction methods
ormatrix balancing algorithms. Explicit-factor normaliza-
tion methods require an a priori knowledge of the Hi-C
systematic biases. Yaffe et al. [24] first proposed a non-
parametric model to estimate the probability of observing
a contact between two loci given these biases. The main
limitation of this method is its computational cost. Sub-
sequently, Hu et al. [26] proposed a much faster explicit
correction method, based on Poisson or Negative Bino-
mial regression which can be applied at the bin resolution,
and gives similar performance compared to the original
method. Unlike the explicit factor correction methods,
the matrix balancing methods do not assume any spe-
cific source of biases, and are in theory able to correct
for all unwanted variances in the contact map [3, 27, 28].
Applying such methods leads to an optimization prob-
lem that can be solved efficiently and precisely using the
Sinkhorn and Knopp algorithm [28], or the Knight and
Ruiz algorithm [3].
In the context of cancer Hi-C data, an additional per-

turbation related to chromosomal rearrangements must
be considered. Amplified genomic regions have a greater
chance of being pull-down during the library preparation,
while genomic regions with lower copy numbers are more
difficult to detect. To date, such copy number variants
(CNVs) are usually ignored in cancer Hi-C data nor-
malization, although they raise interesting and important
questions both at the biological andmethodological levels.
The real impact of CNVs on contact frequencies remains
difficult to assess. For instance, a tandem amplification
has a very different impact on local chromatin organiza-
tion compared to the gain of a complete chromosome.
Similarly, a genomic duplication could lead to different
changes in contact frequencies depending on whether the
event occurs within a TADs or across/at a TAD boundary
[10]. Addressing the question of CNVs during normaliza-
tion is therefore an important challenge in the analysis of
Hi-C data and their interpretation in the context of genetic
and epigenetic mis-regulation in disease.
The question of how copy number signal should be

treated depends mainly on the related biological ques-
tions. One strategy is to consider the copy number effect



Servant et al. BMC Bioinformatics  (2018) 19:313 Page 3 of 16

as an unwanted effect, and to remove it during the nor-
malization step [29]. This strategy indeed makes sense for
the detection of a genome-wide list of significant contacts,
or for the direct comparison of samples with different
chromosomal rearrangement profiles. On the other hand,
the signal from copy number alterations can also be con-
sidered as important biological information, that can be of
interest for 3D modeling, genome reconstruction of can-
cer cells, or to simply further characterize the genomic
landscape of a tumor [30].
Here, we propose to further explore the impact of CNVs

on Hi-C data and provide tools that deal with its effects on
data normalization. First, we develop a model simulating
large copy number rearrangements on a diploid Hi-C con-
tact map. Using such simulated data, we demonstrate that
the naive matrix balancing algorithm which is commonly
used to normalize Hi-C data, cannot be applied to can-
cer Hi-C data. We then propose two methods that extend
the ICE algorithm and correct the data from systematic
biases, either considering the CNVs as a bias to remove
or as an interesting signal to conserve in the data struc-
ture. Finally, we apply these methods to several disease
associated Hi-C data sets, demonstrating their relevance.

Results
Simulating the effect of copy number variations on Hi-C
data
Due to the large number of genomic and epigenomic fac-
tors possibly involved, predicting the true effect of copy-
number variations on the 3D organization of the genome
is challenging. We propose a simple mathematical model
to simulate the effect of abnormal karyotypes on a diploid
Hi-C data set by estimating the enrichment in interac-
tions due to CNVs (see “Methods” section and Fig. 1). Our
model is based on the assumptions that (1) copies of chro-
mosomes are independent and have similar 3D structure
and (2) that the impact of copy number changes is higher
than 3D structure variations that occur across cell types.
Therefore, for a given copy number profile, our model will
estimate the expected Hi-C contact maps in the presence
of CNVs (Fig. 1d).
In order to validate our simulation model, we exploited

available Hi-C data from two epithelial cell lines: the
MCF7 breast cancer cell line and the MCF10A near-
diploid, non-tumorigenic cell line [5]. We extracted
the copy number information of the MCF7 line from
Affymetrix SNP6.0 array, filtering out any altered seg-
ments that were lower than the MCF10A’s Hi-C map res-
olution (1 Mb) and applied our simulation model on the
normal-like data, thus obtaining a simulation of MCF7’s
abnormal Hi-C data. We then compared our simulated
results with the real MCF7 Hi-C data set. As expected,
the contact counts (for both the simulated data and the
real data) are correlated with the copy number (Fig. 1e).

Both our simulations and the real data show blocks of
higher/lower contact frequencies in regions affected by
large copy number variants. Interestingly, for the high-
est copy numbers, both profiles increase concurrently, but
not at the same rate. One explanation would be that these
regions of very high copy number correspond to com-
plex rearrangements such as tandem focal amplifications
in cis and translocation in trans. Their linear proximity on
the genome would therefore explain the massive increase
of contact frequencies that we observed in real data, and
which are not modeled by our simulation. We then sum-
marized both data in one dimension (1D) by summing
the contact frequencies over each row. Overall, the sim-
ulated MCF7 profile is well correlated with the profile
of real MCF7 Hi-C data (Spearman cor=0.877, Fig. 1f,
Table S2). We can observe that the sum of interactions for
a genomic window is proportional to the copy number.
These observations lead us to believe that our simulation
method appropriately models the effect of copy number
variations in Hi-C data.

The ICE normalization is not suitable for cancer Hi-C data
Several methods have been proposed to remove unwanted
technical and biological variations from Hi-C data.
Among them, the matrix-balancing methods leverage a
small number of hypotheses on the biases and on the
properties of Hi-C data to formulate their normalization
procedure: these do not assume any specific source of bias,
and are (as long as the hypotheses are fulfilled) able to cor-
rect for any factors affecting contact frequencies [27, 28].
In this context, the iterative correction method (ICE, [28])
has been successfully applied to many diploid Hi-C data
sets. ICE relies on two assumptions: (1) the bias between
two regions i and j can be represented as the product of
individual biases of these regions : N ICE

ij = βiβjCij; (2)
each bin should interact approximately the same number
of times:

∑
i N ICE

ij = k, where C represents the raw count
matrix, N ICE the ICE normalized count matrix, β the bias
vectors and k a constant.
We therefore applied our simulation model to assess the

ability of the ICE normalization method to correct for
CNVs. We simulated two data sets with different proper-
ties from the publicly available human IMR90 Hi-C data
[3]; a highly rearranged data set with segmental gains,
losses and a focal amplification up to 10 copies (Fig. 1c)
and a case of aneuploidy with gain or loss of entire chro-
mosomes (Additional file 1: Figure S2a). While the sim-
ulations were performed genome-wide, we restricted the
CNVs to the first chromosomes to ease the results inter-
pretation and visualization. The ground-truth normalized
data was found by applying ICE to the original diploid
data. We were thus able to assess the performance of ICE
to correct for unwanted sources of variation, including the
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Fig. 1 Simulation of cancer Hi-C data. a. In Hi-C data from diploid cells, the contact frequency measured between two loci i and j is equal to the sum
of 2 cis interactions (black solid lines) occurring within an individual allele and of 2 trans interactions between homologous chromosomes (transH,
black dashed lines). In addition, the contact frequency observed in trans between loci i and k is the sum of 4 interactions between non homologous
chromosomes (red dashed lines). b. In the context of segmental rearrangement, these properties can be extended and generalized if loci i and j
belong to the same DNA segment, or to different segments (see “Methods” section and Additional file 1: Figure S1). c. Simulation of cancer Hi-C data
from normal diploid (C) data by calculating the scaling factor matrix (p). Colors in scaling factor matrix represent the level of gains (red) and loss
(green) to simulate. For each interaction Csimij , the simulated count is finally estimated using a binomial down-sampling method (see “Methods” section).
d. Intra-chromosomal maps of chromosome 1 and 2 before (top) and after (bottom) simulation of copy number changes. Copy number effects are
characterized by blocks of high/lower signal. Overall, the simulation conserves the structure and the counts/distance properties of the Hi-C maps.
e. Validation of the simulation model using Hi-C data from MCF10A cell line from which we simulated the expected copy number of MCF7 cancer
cell line (MCF7 simulated). The mean O/E (Observed/Expected) counts per block of copy number of intra (cis) and inter-chromosomal (trans) maps
at 1 Mb resolution is represented. Looking at the intra-chromosomal maps of chr3 and 8 demonstrates that our model efficiently simulates large
copy number events. f. 1D genome-wide profiles of near-diploid MCF10A, simulated MCF7 and real MCF7 Hi-C data. MCF7 gain and losses are
represented in red and green
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copy number, by comparing the obtained matrices to the
ground-truth.
Before running the ICE normalization, we first rep-

resented the data in 1D, by summing each row of the
matrix. As previously mentioned, the sum of genome-
wide interactions per bin is proportional to the copy
number (Fig. 2a). After applying ICE, each genomic region
now interacts the same number of times genome-wide, as
expected. However, ICE leads to an imbalance between
cis and trans contact counts; cis contact counts are now
depleted for regions with high copy number, and trans
contact counts are enriched (Fig. 2b). On the other hand,
lost regions now present higher contact probabilities than
regions of gain in cis. The same conclusions can be made
in the context of aneuploidy (Additional file 1: Figure S2).
However, we notice that in this case, ICE can yield to
the expected results if the analysis is restricted to intra-
chromosomal contacts.
If the downstream analysis is restricted to intra-

chromosomal interactions, one may ask whether apply-
ing ICE independently to each intra-chromosomal maps
could mitigate the introduction of biases. We therefore
independently normalized by ICE all intra-chromosomal
maps. Although the effects are less strong, we observed

the same phenomenon in complex rearrangements
(Additional file 1: Figure S3).
Altogether, these results demonstrate that ICE does not

adequately normalize data from cells with abnormal kary-
otypes. More importantly, using ICE on cancer Hi-C data
can lead to a misinterpretation of the contact probabili-
ties between rearranged regions. Its use is therefore not
recommended in this context.

Estimation of copy number from Hi-C data
Analyzing cancer samples usually requires access to CNV
profiles. External sources of data (such as whole-genome
sequencing or microarray data) can be used to infer DNA
breakpoints along the genome, and thus to define DNA
segments of equal copy number. If such data is not avail-
able, we propose to directly infer the copy number profile
from the Hi-C contact maps (see “Methods” section).
Although in theory, all sequencing reads are useful to esti-
mate the copy number profile, we first validated that using
the counts from the contact maps (i.e. the subset of valid
interaction products) is sufficient. For this, we compared
our estimated copy number profile fromMCF7 and T47D
Hi-C contact maps, with the results of the Control-FREEC
software [31] that directly uses the aligned sequencing

a b

Fig. 2 Impact of matrix balancing normalization on simulated cancer Hi-C data. a. Simulated Hi-C contact maps (500 kb resolution) of the first four
chromosomes and contact frequencies presented as the sum of genome-wide contacts per locus, using either all (inter and intra-chromosomal), cis
(intra-chromosomal) or trans (inter-chromosomal) contacts. Rearranged regions are highlighted in red (gain) or green (loss). The 1D profile of ICE
data is constant genome-wide as expected under the assumption of equal visibility. However, the iterative correction on simulated cancer data
results in an shift of contacts between altered regions (see arrows for examples). b. Block-average error matrix of simulated raw and ICE cancer data
(150 Kb resolution) (See Additional file 1: Method 1.4). The iterative correction does not allow to correct for segmental copy number bias
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reads to call the CNVs (Additional file 1: Figure S4).
We observe a good correlation between both methods
(MCF7 spearman cor=0.888, T47D spearman cor=0.855)
therefore validating our approach.
We then applied our segmentation strategy to our Hi-C

simulated data (Fig. 3b). In order to assess the robust-
ness of this approach, we further simulated 100 addi-
tional data sets with distinct CNVs profiles. Results on
this larger number of data sets show a 91% recall and a
precision of 62.4%. In particular, we observe that the pre-
cision of breakpoint detection can sometimes be lower in
highly amplified regions. Finally, we also applied our seg-
mentation procedure to the IMR90 diploid data set. As
expected, we obtain a nearly uniform copy number profile
(Additional file 1: Figure S6c). Interestingly, we frequently
observe a decrease of contacts at telomeric regions which
therefore results in a breakpoint in the segmentation. This

telomeric pattern is expected, even in a diploid sample,
as the assumption of equal visibility in these regions is
questionable.

LOIC: a novel normalization strategy for cancer Hi-C data
As presented above, ICE relies on the assumption of
equal visibility of each genomic bin. In the presence of
copy number variations, this assumption does not hold:
genomic bins with higher copy number variations will
interact overall more frequently than genomic bins of
lower CNVs. In addition, the copy number effect between
loci i and j (Bij), cannot be decomposed into the prod-
uct of an effect in locus i and an effect in locus j, thereby
also violating the ICE hypothesis. Instead, we propose to
extend the ICE model, through the assumption that equal
visibility remains true across regions of identical copy
number. In addition, biases associated to fragments (such

a c

b

Fig. 3 Generalization of matrix balancing algorithms for cancer Hi-C data. a. Rationale of LOIC method versus standard ICE method. The LOIC
method extends the ICE normalization by constraining the genome-wide Hi-C 1D profile to follow the copy number signal. b. Segmentation of the
Hi-C 1D genome-wide profile of simulated cancer data. The red line represents the smoothing line that estimate the copy number level. c. LOIC
normalized Hi-C contact maps of simulated data on the first four chromosomes. The 1D profiles are represented by the sum of genome-wide
contacts at each locus using either all (inter and intra-chromosomal), cis (intra-chromosomal) or trans (inter-chromosomal) contacts. As a results, we
can see that the LOIC method allows to normalize cancer Hi-C data keeping into account the copy number information
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as fragment length, GC-content, or mappability) can still
be decomposed into the product of two region-specific
biases.
We thus first propose to extend ICE by assuming that

the sum of contacts for a given genomic bin is constant
across genomic bins of identical copy number (Fig. 3a):∑

i CLOIC
ij = kj, where kj is the interaction profile asso-

ciated to the copy number of j (see “Methods” section).
We refer to this method as a LOcal Iterative Correction
(LOIC). When there is no copy number alteration, LOIC
solves exactly the same problem as ICE.
We applied the LOIC procedure to our highly rear-

ranged simulated Hi-C data set using the breakpoint posi-
tions estimated by our segmentation procedure (Fig. 3c).
As expected, we observe that the genome-wide sum of
contacts of each bin is proportional to the copy number,
and that bins within a DNA segment are normalized to
the same level of interactions. The previous effects on the
cis and trans sum of contacts observed using the standard
ICE strategy, is no longer found. In addition, we calcu-
lated the effective fragment length, the GC content and
the mappability features for each 500 Kb bin as already
proposed [26], and then represented the average contact
frequencies among those genomic features. Despite a few
local enrichments due to CNVs, we observe that LOIC
normalization is as effective as ICE normalization for
correction of GC content, effective fragment length and
mappability (Additional file 1: Figure S5). We then turned
to the aneuploid simulated data set. In this case, LOIC
enables conservation of the inter-chromosomal scaling
factor due to CNVs. Differences in intra-chromosomal
maps between ICE and LOIC remain negligible and are
related to the segmentation profile (Additional file 1:
Figure S6a, b).
In conclusion, the LOIC strategy presented here can be

seen as a generalization of the ICE method allowing to
correct the Hi-C maps for systematic biases while keep-
ing the copy number signal. In this sense, applying either
methods to a diploid data set leads to identical results.

CAIC: estimating and removing the copy-number effect on
cancer Hi-C data
We also set out to estimate and to correct the effect intro-
duced by copy number changes. We assume that copy
number effects can be represented as a block-constant
matrix where each block is delimited by a copy number
change (see “Methods” section). In addition, we assume
that, on average, each pair of loci interacts the same way
as any other pair of loci at the same genomic distance s.
In summary, the raw interaction count Cij is roughly equal
to the product of a CNV bias Bij and the expected contact
count at genomic distance s: Cij � Bijes(i,j). We thus cast
an optimization problem to find the CNV block biases B
and the expected contact count at genomic distance s (see

“Methods”section). We refer to this method as CNV-
Adjusted Iterative Correction (CAIC).
We applied CAIC normalization to the two simulated

data sets. Looking at the 1D signal of the CAIC nor-
malized data using the cis and trans data validates that
the method tends to remove the CNV effect (Fig. 4a).
In addition, the unbalanced effect that we previously
observed with the ICE normalized data disappeared. We
then divided the normalized contact matrices by the
expected count matrices, thus removing the structure due
to genomic proximity. Taking the average per block, we
observe that the expected CAIC matrices are much more
uniform than the ICE normalized matrices (Additional
file 1: Figure S7 and S8). On the aneuploid simulated data
set, it is worth noting that ICE and CAIC yield very close
results in cis. We then compared the normalized contact
maps to the ground-truth by computing the error matrix
as well as three additional error measures (see Fig. 4b and
Additional file 1: Methods 1.4). We observe that the copy
number effect is well removed both on the aneuploid and
highly rearranged data set (Table S3).
Altogether, these results demonstrate that the

CAIC normalization procedure effectively removes
copy-number effects from Hi-C contact maps.

Application to breast cancer Hi-C data
A number of studies performedHi-C experiments on can-
cer samples or cell lines [5, 18, 32]. We further explored
the effect of our normalization procedures on two previ-
ously published Hi-C data from breast cancer cell lines:
T47D [32] and MCF7 [5]. We processed the T47D and
MCF7 samples from raw data files to raw contact maps
using the HiC-Pro pipeline [33]. As already seen in
our simulation data (Fig. 2a), we observe a strong copy
number effect on the raw contact maps with respec-
tively higher/lower contact frequency on gained/lost
DNA regions in both samples (Fig. 5, Additional file 1:
Figure S9). Applying ICE on these data sets does not
entirely remove the copy number effect, and tends to flip
the coverage profile between gained/lost regions in cis,
therefore validating our previous observations on simu-
lated data (Fig. 5a, Additional file 1: Figure S9a).
In order to estimate the copy number signal from these

cell lines, we segmented the 1D Hi-C profile as previ-
ously described. Interestingly, on both T47D and MCF7
data we observed a very good correlation between the
copy number signal extracted directly from the Hi-C
data and the copy number profile extracted from SNP6
Affymetrix array (Fig. 5b, Additional file 1: Figure S9b,
Spearman cor=0.87 for both MCF7 and T47D data) We
then applied the LOIC strategy presented above, so that
the sum of each column/row follows the segmentation
profile extracted from the data. As expected, we observe
that the LOIC normalized contact maps conserves the
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a b

Fig. 4 CNV-adjusted normalization of cancer Hi-C data. a. Hi-C contact maps of the four first chromosomes of our highly rearranged simulated data,
together with the 1D signal of all, cis and trans data. Regions in red and green correspond to simulated gains and losses. b. Block-average error
matrix of simulated ICE and CAIC Hi-C data. The CAIC efficiently removed the CNV effect, whereas the ICE normalization does not allow to correct for
its effect

copy number properties, and that the biases introduced by
the ICE normalization no longer hold true. In addition, we
also applied the CAIC normalization to correct for CNVs
signal. Looking at the correlation between Hi-C counts
and the copy number signal validates the efficiency of the
methods (Fig. 5c, Additional file 1: Figure S10). In con-
clusion, applying the LOIC and CAIC methods on both
cancer data set allows us to correct for systematic bias
while conserving or removing the copy number structure.

Normalization of capture-Hi-C data with genomic
duplication
In addition to cancer data, we also investigated the rel-
evance of LOIC for the normalization of Hi-C data in
samples with local structural events. Recently, Franke et al.
[10] investigated the effect of local duplications on chro-
matin structure and, in particular, on the formation of
new TADs. We processed the capture Hi-C data across
the Sox9 locus and generated the raw and ICE contact
maps at 10kb resolution. We focused our analysis on
samples with inter-TAD (dup-S) and intra-TAD (dup-L)
duplications. In the context of an inter-TAD duplication,
Franke et al. [10] described the formation of a new domain
in the duplicated region by comparing the raw contact
maps of wild type (WT) and dup-L samples (Fig. 6c-d).

Interestingly, when we compared the WT sample and
the samples with the duplication events normalized by
the ICE method, we observed that the ICE normalized
maps do not allow duplication effects to be observed
clearly. This is in agreement with our previous observa-
tions on cancer Hi-C data. We then applied our LOIC
strategy following the observed 1D coverage profiles. As
illustrated in Fig. 6, the LOIC normalization is able to
remove systematic biases while keeping the copy number
effect. The effects of both intra and inter-TAD dupli-
cation can therefore be clearly observed, validating the
interest of our method for the study of local structural
rearrangements.

Removing the CNVs signal avoids misinterpretation of the
chromosome compartment calling of cancer Hi-C data
We also explored the impact of CNVs and normal-
ization on chromosome compartment calling. In intra-
chromosomal contact maps, chromosome compartment
profiles appear as checker-board-like interaction patterns,
shifting from blocks with either high or low interac-
tion frequency. Thus, chromosome compartments are
usually detected using a Principal Component Analysis
(PCA) on the correlation matrix of the distance-corrected
intra-chromosomal contact maps. The first principal



Servant et al. BMC Bioinformatics  (2018) 19:313 Page 9 of 16

a

b c

Fig. 5 Normalization of T47D Hi-C data. a. Hi-C contact maps (250 Kb resolution) of the first four chromosomes of T47D cancer Hi-C sample. When
looking at the 1D cis and trans profiles, we observed that ICE introduces a bias in the normalized data, therefore validating the observation made on
the simulated data. We then applied the LOIC and CAIC normalizations in order to efficiently correct the data from systematic bias, while removing
or keeping the CNVs effect. b. Estimatation of the copy number signal from the Hi-C data after correction and segmentation of the 1D profile. The
inferred copy number signal from the Hi-C data are highly correlated with the copy number profile from Affymetrix SNP6.0 array. c. Correlation of
raw and normalized contact frequencies with the copy number

component then distinguishes the open (A) from closed
(B) compartments [2] (see Additional file 1: Methods).
We performed compartment calling analysis on the

MCF7 Hi-C data set normalized by ICE, LOIC, or CAIC
methods and integrated the results with the histonemarks
data obtained from the ENCODE project [34]. Surpris-
ingly, we observed that compartment calling is globally
not affected by the CNVs onMCF7 data (Additional file 1:
Figure S12) with around 8% of chromosome compart-
ments switching from open to closed states (and vice-
versa) according to the normalization method (Additional
file 1: Figure S13a). We then assessed how the A/B com-
partments correlated with the active and repressive his-
tone marks genome-wide (see Additional file 1: Methods).
As expected, open compartments are associated with
open-chromatin marks such as H3K27ac, H3K36me3 and

H3K4me. Respectively, closed compartments are asso-
ciated with repressive marks such as H3K27me3 or
H3K9me3 (Fig. 7a).
Interestingly, looking at each chromosome indepen-

dantly shows that, on the MCF7 data, the chromosome
8 harbours distinct compartment patterns according to
the normalization method (Additional file 1: Figure S13a).
In this case, it is clear that the copy number affects the
PCA analysis and the compartment calling (Fig. 7b, c).
We therefore conclude that it is important to correct
for the copy number effect before running such analysis,
and therefore that, by definition, the LOIC normaliza-
tion method is not appropriate to this task. Applying
the CAIC normalization method outperforms the other
methods, resulting in a compartment profile which is well
correlated with active/inactive histone marks, and which
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a

c

d

b

Fig. 6 Duplication in capture-Hi-C and normalization. a. 1D profiles of capture-Hi-C wild-type sample (WT), with intra-TAD duplication (dup-S) or
with inter-TAD (dup-L) duplication [10]. As expected, the duplication samples are characterized by twice more contacts at the duplicated sites.
b. Raw and ICE normalized contact maps of WT sample. c. Normalization of the dup-S sample with the ICE and LOIC methods. The duplication effect
is visualized by subtracting the normalized WT and dup-S contact maps. d. Same approach applied to the dup-L sample

is closer to the normal MCF10A chromosome 8 profile
(Fig.7b, c). The compartments pattern of the chromosome
8 extracted from the ICE normalized data is concordant
with our previous conclusion that ICE is not appropriate
to correct for CNVs, potentially leading to a wrong inter-
pretation of the compartment profile. However, we also
noticed that, in this case, the A/B compartments can be
rescued by looking at the second principal component of
the PCA.
Altogether, these results demonstrate that although

compartment calling seems globally unaffected by copy
number effects, applying the CAIC strategy to normal-
ize the data improves the detection of A/B compartments,
avoiding potential issues in their interpretation.

Discussion
Chromosome conformation techniques provide a means
to investigate links between the 3D organization of the
genome and biological processes such as the functional
and phenotypic effects of genomic variation in disease.
Unsurprisingly, structural and copy number variations
have also been observed to affect the genome architecture
of cancer cells, perturbating TADs as well as the cell’s reg-
ulation [18, 35, 36], and as a result, the contact count maps
of the genome. How do such genomic rearrangements
impact on the performance of existing pipelines?
In order to better understand how large copy number

variations can affect Hi-C data, we first propose a sim-
ple simulation model. From an existing diploid data set,
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a b

c

Fig. 7 Detection of chromosome compartments. a. Genome-wide enrichment of ChIP-seq histone marks in open (A) or closed (B) compartments.
Open compartments are enriched in open-chromatin marks, whereas closed compartments are enriched in repressive marks. The results are
concordant genome-wide, whatever the normalization method applied. b. Histone marks enrichment on chromosome 8 of MCF7 sample. On this
chromosome, the copy number has a strong impact on the compartment calling. c. Results of the compartment calling for the chromosome 8 of
MCF7 sample (first principal component), together with normalized ChIP-seq tracks. Open chromatin domains are in red. Closed domains in blue

our model is able to predict the effects of large copy
number changes on interaction patterns by estimating a
subsampling coefficient that can be applied in the pres-
ence of copy number variation. In addition to providing
us with a theoretical framework to assess the enrich-
ment and depletion of contact counts with respect to copy
number variations, such a model can be used to assess
how normalizationmethods and downstream analyses are
affected by copy number variation. Our model is never-
theless simplistic and can be elaborated upon. For exam-
ple, we consider that duplicated regions are non-tandemly
rearranged events, which, in some cases, certainly under-
estimates the intra-chromosomal effect of copy number.
In addition, the model does not integrate any biologi-
cal knowledge and is therefore not designed to simulate
changes due to the alteration of regulatory elements such
as insulator regions. We also note that the subsampling

strategy that we have applied here requires a high resolu-
tion diploid Hi-C data set as an input. However, as Hi-C
sequencing depth increases, this should no longer be a
limitation.
In our study, we go on to demonstrate that applying ICE

(the most commonly used normalization method on Hi-
C data) to data sets with abnormal copy number profiles
leads to unbalanced corrections between amplified and
lost regions and between inter and intra-chromosomal
contacts. This unwanted effect can then lead to prob-
lematic results in downstream analysis (for example, in
the identification of open and closed compartments).
We therefore propose two new normalization methods
that can remove systematic biases: LOIC, which pre-
serves the effect of copy number variation, and CAIC,
which removes the effects of copy number. In order to
achieve this, both normalization methods require the
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identification of breakpoints. We thus also propose a seg-
mentation procedure to directly extract the copy number
signal and the location of breakpoints from the Hi-C
contact maps. Although this step is crucial for the nor-
malization and can be challenging for noisy samples, our
procedure performs well on all the data set used in this
study, including the normal diploid IMR90 sample. It also
confirms that the Hi-C technique could become in the
near-future a powerful approach to infer CNV profile in
tumors.
Both CAIC and LOIC methods perform well on sim-

ulated and real Hi-C data sets, each fulfilling different
needs. From a methodological point of view, we note that
our assumption that the CNV effect is constant for each
block delimited by a copy number change, cannot always
be fulfilled, especially for very large genomic alterations.
In such cases, modeling the CNV effect according to the
distance between pairs of interacting loci could be an
interesting extension to our current model.
The choice of which normalizationmethod to use in Hi-

C data analysis, will depend on the specific context and
biological question. As an example, we demonstrate here
that although chromosome compartment calling and PCA
analysis are not dramatically affected by the copy number
changes inMCF7 data, inappropriate normalization of the
data can lead to incorrect interpretation of the results of
such analysis. This effect can be even greater with other
cell lines, as it is dependent on the copy number profile of
the tumor (data not shown). This first experiment shows
that CAIC, which removes the copy number biases, can
enable existing analysis pipelines to be applied to cell lines
with abnormal karyotypes. Yet, in other contexts, keeping
the CNV informations could also be pertinant. For exam-
ple, it may be of interest to examine the precise effect of
local structural rearrangements and CNVs at smaller scale
such as TADs level. As illustrated here with capture Hi-C
data, applying our LOIC normalization procedure could
be useful to remove systematic biases appropriately, while
keeping the copy number structure.

Conclusions
Taken together, the analyses covered here confirm that
Hi-C can be a powerful technique to explore strutural
variations on tumor samples and highlight the impor-
tance of using dedicated methods for the analysis of such
data. The two new methods we introduce here (LOIC and
CAIC) performwell on both simulated and real cancer Hi-
C data sets, each answering different biological questions.
As the application of Hi-C techniques to cancer and other
samples to explore the 3D architecture of their genomes
will continue to grow in the coming years, the importance
of using the right techniques and developing more accu-
rate tools to characterize such data sets appropiately is
critical.

Methods
Let us first introduce some notations. Given a segmen-
tation of the genome into n genomic windows (or bins),
Hi-C data can be summarized by a n-by-n symmetric
matrix C, in which each row and column corresponds
to a specific genomic loci and each entry Cij the num-
ber of times loci i and j have been observed in con-
tact. Let K ∈ R

n the copy number profile of the sample
of interest, which we represent as a piecewise constant
vector.
We denote by s(i, j) the genomic distance between the

loci, defined as the number of base pairs between the cen-
ter of the two loci; if i and j are not part of the same chro-
mosome, we extend this definition by setting s(i, j) = ∞.
In this paper, we derive different ways to normalize the
raw count matrix C: we denote by Ny the contact count
matrix normalized with method y (e.g. N ICE represents
the ICE normalized count matrix).

Simulation of cancer Hi-C data
Before we turn to how to appropriately model cancer Hi-C
data, let us first review some terminology. In the literature,
cis-contact counts refers to the contact counts between
two loci of the same chromosome: this includes intra-
chromosomal contact counts but also inter-chromosomal
contact counts of homologous chromosomes. In this
paper, we restrict the use of cis-contact counts to con-
tact counts issued from the same DNA fragment, and we
denote by “trans-homologous” (transH) interactions, the
interactions between homologous chromosomes. Note
that cis and transH contact counts are mostly indistin-
guishable (with the exception of allele-specific Hi-C) in
Hi-C data hence the simplification of terminology usually
used.
We now return to the problem at hand: how to sim-

ulate a contact count matrix Csim of a cancer genome
with abnormal copy number from a raw diploid contact
count matrix C. In order to model the change in con-
tact count abundances due to copy number variation,
we first need to understand precisely which interactions
are observed in the case of a simple diploid genome.
For that purpose, we denote by Eij the expected contact
count between loci i and j, and Ecisij , EtransHij and Etransij the
expected cis, trans and transH-contact counts between i
and j.

• if loci i and j belong to the same chromosome, the
expected contact count Eij is the sum of (1)
cis-counts from either of the homologous
chromosomes; (2) the transH-counts between the
two homologous chromosomes:

Eij = 2Ecisij + 2EtransHij
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• if loci i and j belong to different chromosomes, then
the observed contact counts Eij is the sum of either of
the four possible trans interactions:

Eij = 4Etransij

This can be generalized to polyploid genome or to the
context of chromosomal abnormalities (Additional file 1:
Figure S1).

• if loci i and j belong to the same chromosome, let k
be the number of cis interactions. If i and j belong to
the same DNA segment, k = Ki = Kj. When i and j
belong to different DNA segments, k could in theory
take values between 0 andmin(Ki,Kj). Here, we
simulated the data with k = 2, or k = min(Ki,Kj) if
Ki < 2 or Kj < 2. Then

Eij = kEcisij + (KiKj − k)EtransHij

.
• if loci i and j belong to different chromosomes, then

Eij = KiKjEtransij

Now that we have derived how contact counts are
decomposed in terms of cis, transH and trans contact
counts, we can leverage those relationships to simulate
the effect of copy number variations on contact count
matrices.
In order to derive a scaling factor pij which incorporates

the copy number effect, we need to estimate Ecisij , Etransij
and EtransHij , which is impossible without further assump-
tions. In practice, little is known about the probability
of contact between homologous chromosomes, which is
therefore difficult to estimate. However, we know that the
chromosomes usually occupy their own space (chromo-
some territories) within the nucleus. We therefore make
the assumption that all chromosomes are independent,
and that the contact probability between homologous
chromosomes can be estimated using the trans interac-
tion between non-homologous chromosomes. We thus
consider that Etransij = EtransHij = Etrans.
From these relationships, we then calculate the scal-

ing factor pij as following (recall that Eij is the expected
copy number between i and j on genome with abnormal
chromosomal interactions):

• we estimate Etrans as the median trans-contact count;
• Ecisij = Cij − Etrans;
• Eij is estimated using the equations derived above;
• if loci i and j belong to the same chromosome,

pij = Eij
2Ecisij +2Etrans

• if loci i and j belong to different chromosomes,
pij = KiKj

4

We thus obtain, for each entry of the contact count
matrix Cij, a ratio pij corresponding to the expected fac-
tor of enrichment or depletion of interactions for the loci
i and j. In order to make the estimation of pij more robust,
we estimate it constant per blocks of identical copy num-
bers by taking the median of the empirical values in each
block. (See Additional file 1: Figure S11). Thus, the fac-
tor matrix p can be assumed to be block constant between
regions of identical copy number variations. We thereby
smooth p by computing the median scaling factor of block
of similar copy number.
Finally, the simulated contact counts Csim

ij are generated
by a binomial subsampling strategy of Cij by a probability
equal to pij

max(pij) [37]:

Csim
ij ∼ B(Cij, pij) (1)

The reason for choosing a binomial subsampling as
opposed to a simpler multiplication of the original Hi-C
counts by a CNV-dependent factor, is that if Cij follows a
Poisson or Negative Binomial distribution, then Csim

ij fol-
lows the same distributionwithmodified expectation [37].
One limitation of this model is that the simulated counts
can only be smaller than the original counts, whichmay be
problematic if we start from small counts. It thus requires
a diploid Hi-C data set with a sufficient sequencing depth
to apply the downsampling strategy.

Estimation of copy number from the contact count matrix
The copy number signal can be directly inferred from
the Hi-C data in two steps. We first calculate the one-
dimensional (1D) signal as the sum of genome-wide con-
tact per bin, assuming that this signal reflects the true
contact frequencies including the systematic Hi-C biases
and the CNVs signal. We further calculate the GC con-
tent, the mappability and the effective fragment length of
each bin end as already proposed [26]. The local genomic
features of all chromosome bins are defined as the aver-
age of the corresponding features among all overlapping
fragment ends. We then apply a Poisson regression model
to correct the signal from GC content, mappability and
fragment length, using the model proposed by Hu et al.
[26]. The corrected profile is obtained by subtracting the
fitted values to the observed data, and rescaled to be cen-
tered on 1. The normalized 1D data are then segmented
using a pruned dynamic programming algorithm [38].
The segmented profile is smoothed with the GLAD pack-
age [39] in order to optimize the breakpoint locations
and to remove false positives events. The segmentation is
an important step of the method which may need to be
adjusted according to the signal-to-noise ratio of the data.
In this study, we apply the same parameters to all data sets
and we consider the smoothed line after the segmentation
as the Hi-C derived copy number profile.



Servant et al. BMC Bioinformatics  (2018) 19:313 Page 14 of 16

To validate our estimation of copy number from Hi-C
contact maps, we simulate an additional 100 data sets with
varying copy number variations, as follows:

• draw a number of breakpoints along the genome;
• remove all breakpoints that fall into non mappable

genome;
• draw the copy number coefficient from a poisson

distribution of size 1. add 1 to these values;
• redraw any copy number coefficient that is equal to

its neighbour;
• apply the simulation model presented above on these

copy number profiles.

The copy number profiles are available as supplementary
data.

LOIC: Correcting technical biases of Hi-C cancer data
To normalize the contact count matrix, we adapt the ICE
method proposed by Imakaev et al. [28] to incorporate the
copy number effect. In particular, we use similar assump-
tions. First, the bias between two regions i and j can be
decomposed as the product of two region-specific biases
βij = βiβj.

∀i, j ∈[ 1, n] , Cij = βiβjNLOIC
ij , (2)

where β ∈ R
n is a vector of bin-specific biases, such as

gc-content, fragment lengths, mappability, etc.
Second, all copy-number identical regions interact as

much:

∀i ∈[1, n] ,
n∑

j=1
NLOIC
ij = 1

|{l |Kl = Ki}|
∑

l|Kl=Ki

n∑

j=1
Clj .

(3)

We refer to the second hypothesis as the “local equal-
visibility assumption” to contrast it with ICE’s “equal-
visibility assumption”: instead of enforcing an interaction
profile constant across all the genome, we enforce an
interaction profile constant for regions of identical copy
number.
Similarly to Imakaev et al. [28], this problem can be

solved exactly using matrix-balancing algorithms (under
the assumption that the matrix is full decomposable [40]).
Note that if there is no copy number variations, this boils
down to solving exactly the same problem as ICE. On the
other hand, in the presence of copy number variation, the
resulting interaction profile will be a constant piecewise
function, whose value depends on the copy number of the
two loci.
In order to apply the proposed method, one needs to

know a priori the set of bins with a given copy number or
the copy number breakpoints. It can either be found via

probing the samples to estimate it using specific technolo-
gies or through prior knowledge on the cell-line or sample
studied. When none of these options are available, we can
leverage the information provided by Hi-C data directly to
estimate it.

CAIC: Removing the copy number effect
The previous section describes how to normalize the raw
contact counts matrix C to adjust for unwanted variations
such as GC-content, mappability, fragment lengths, while
keeping the copy number information. We now propose
to estimate the effect of copy number variations on the
contact countmatrix to offer the possibility of removing it.
We denote byNCAIC the normalized contact count matrix
where the CNV effect has been removed.
We assume that the copy number effect for each pair of

loci is identical for element with identical copy-number
variations. This reflects that the copy-number effect
between loci i and j is related to the amount of genetic
material of those two regions, and thus identical between
all pairs with similar copy-number variations.We can thus
model the normalized contact countmatrix as the product
of a block-constant matrix B and corrected matrix NCAIC:
NCAIC
ij = BijNLOIC

ij , where each block is a function of the
copy number in i and in j.
In addition, we assume that, on average, each pair of loci

interacts roughly the same way as any pair of loci at the
same genomic distance s:

NCAIC
l,m � e(s(l,m)) , (4)

where e(s) is the expected contact count at genomic dis-
tance s. We leverage this assumption to cast an optimiza-
tion problem:

min
e,B

∑

i,j

(
NLOIC
ij − Bije(s(i, j))

)2

subject to B is block-constant
e decreasing

We solve this optimization problem genome-wide by iter-
atively estimating the block constant matrix B and the
expected counts function e using an isotonic regression.
Note that the trans estimation can be done jointly on the
whole genome independently from the cis estimation.

Additional file

Additional file 1: Supplementary Methods and Figures. This file
contains supplemental methods, Tables S1-S3, and Figures S1-S13
(PDF 19,614 kb)
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