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Unité d’Investigation Clinique, CHU, Nantes, France

BCL2-family proteins have a central role in the mitochondrial apoptosis machinery

and their expression is known to be deregulated in many cancer types. Effort in the

development of small molecules that selectively target anti-apoptotic members of this

family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among

these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising

preclinical and clinical activity in B cell malignancies. However, several mechanisms

of intrinsic or acquired resistance have been described ex vivo therefore predictive

markers of response as well as mechanism-based combinations have to be designed.

In the present study, we analyzed the expression of the BCL2-family genes across

10 mature B cell malignancies through computational normalization of 21 publicly

available Affimetrix datasets gathering 1,219 patient samples. To better understand the

deregulation of anti- and pro-apoptotic members of the BCL2-family in hematological

disorders, we first compared gene expression profiles of malignant B cells to their relative

normal control (naïve B cell to plasma cells, n = 37). We further assessed BCL2-family

expression according to tissue localization i.e., peripheral blood, bone marrow, and

lymph node, molecular subgroups or disease status i.e., indolent to aggressive.

Across all cancer types, we showed that anti-apoptotic genes are upregulated while

pro-apoptotic genes are downregulated when compared to normal counterpart cells.

Of interest, our analysis highlighted that, independently of the nature of malignant

B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in

tumor niches, suggesting a central role of the microenvironment in their regulation. In

addition, we showed selective modulations across molecular subgroups and showed

that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by

integrating recent data on venetoclax-monotherapy clinical activity with the expression of

BCL2-family members involved in the venetoclax response, we determined that the ratio

(BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response

for mature B cell malignancies in vivo.

Q10Keywords: BCL2, B-cell malignancy, lymphoma, cell death
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INTRODUCTION

B cell differentiation is a tightly controlled process that leads toQ6

Q20 the generation and selection of memory B cells and antibody-
secreting plasma cells (1, 2). B cells constitute an essential part
of our adaptive immune system but the genomic instabilities
necessary for the development of high affinity antibodies are
also involved in the initiation of malignant B-cell neoplasms
(3, 4). Thereby, hematological malignancies can arise from most
steps of B cell differentiation and more than 40 types of mature
B cell lymphomas are referenced in the latest World Health
Organization classification. The most frequent types include
diffuse large B cells lymphoma, DLBCL (25%), plasma cell
neoplasms (including multiple myeloma, MM (23%), chronic
lymphocytic leukemia, CLL (19%), follicular lymphoma, FL
(12%), splenic marginal zone lymphoma, SMZL (7%), mantle
cell lymphoma, MCL (3%), hairy cell leukemia, HCL (2%), and
Burkitt lymphoma, BL (1%) (5). All of these hematological
malignancies are characterized by their own genetic hallmarks,
even though most of them display deregulation of the B-cell
receptors (BCR), NFkB, Notch (see articles associated to this
Frontiers topic) or BCL2-family networks, leading to increased
survival and enhanced chemoresistance.

BCL2-family proteins, which play a central role in the
control of apoptosis, include multidomain anti-apoptotic
members (Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1), BH3-only
sensitizers (Bad, Bik, Noxa, Hrk, Bmf), BH3-only activators
(Bid, Puma, Bim), and pro-apoptotic effectors (Bax, Bak) (6).
The deregulation of the “B-cell lymphoma-2” (BCL2) family in
mature B cell malignancies has been first highlighted through a
translocation between the chromosomes 14 and 18 that led to
the overexpression of the Bcl-2 oncogene in follicular lymphoma
(7). Additional deregulations were then described such as 1q
amplification leading to Mcl-1 overexpression in MM (8), Bim
deletion in lymphoma cell lines (9) or miRNA deregulation
leading to Bcl-2 overexpression in CLL (10, 11).

Given the central role of the BCL2-family in the apoptosis
machinery, several strategies have been developed to target
this network in hematological malignancies, such as synthetic
antisense, specific peptides or BH3-mimetics (12, 13). Up to day,
BH3-mimetics displayed the best efficacy both in vitro and in vivo
(14, 15). Indeed, BH3-mimetics selectively bind anti-apoptotic
members of the BCL2-family with high affinity, leading to the
release of pro-apoptotic members that consequently induce cell
death (16). Several clinical trials are currently ongoing using
the first in class orally bioavailable BCL2-selective BH3-mimetic
venetoclax, demonstrating clinical efficacy as a single agent in
several B cell malignancies such as CLL, MCL, and MM (17–
21).

Nevertheless, mature B cell neoplasms do not harbor
similar dependence to anti-apoptotic members of the
BCL2-family. For example, whereas both CLL and DLBCL
overexpress Bcl-2 protein (10, 22), the overall response
rate (ORR) of patients to venetoclax-monotherapy strongly
diverged with 79 and 18%, respectively. In addition to
intrinsic resistance, acquired resistance to BH3-mimetics
has also been recently described (23–25). The challenge

is now to set up markers and functional assays that
predict responses to BCL2-family targeted strategies and
to design mechanism-based combinations to overcome
resistance.

To gain insight into BCL2-family expression and regulation
across most frequent mature B cell malignancies, we analyzed the
BCL2-family expression in ten different hematological disorders
i.e., MCL, BL, DLBCL, FL, B-cell prolymphocytic leukemia
(BPLL), CLL, HCL, mucosa-associated lymphoid tissue (MALT),
SMZL, MM, through normalization of Affymetrix Human
Genome U133 Plus 2.0 public datasets. We analyzed: (1) the
common modulations across all B-cell neoplasms in comparison
with their respective normal counterpart, (2) the modulations
associated to the microenvironment andmolecular subtypes, and
(3) established a ratio of expression involving Bcl-2, Bcl-xL, Bax,
and Bim that is associated with the response rate to venetoclax.

MATERIALS AND METHODS

Gene expression profiling datasets were selected on Gene Q8

Expression Omnibus (https://www-ncbi-nlm-nih-gov.gate2.
inist.fr/geo/) and ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/), for all mature B-cell malignancies series and
normal B-cell series (Table S1). In order to overcome data
normalization biases, only Affymetrix Human Genome U133
Plus 2.0 series with raw data were retained. Raw data (cel
files) were acquired as a whole and normalized using Affy and
gcrma packages and outlier samples were removed and data
were further quantile normalized (Figure S1A). Normalization
quality and the absence of a remnant batch-effect were further
assessed by the analysis of “anchoring genes” expression (CD27,
CCND1, SOX11, MKI67, BCL6, MME, CD200, ITGAE, CD38,
and SDC1), highlighting histological and/or B-cell differentiation
specificities, independent of source series (Figure S1). Normal
counterpart B-cell were associated to B cell malignancies
according to cell-of-origin classification [WHO, 2016]. For Q11

genes with multiple Affymetrix probes, probes were selected
according to correlations between GEP and RNA-seq data
for MM and MCL cell lines when available (https://www.
keatslab.org/data-repository) (n = 19) (Table S2). Given that
none of the BAD and HRK probes available gave a correlation
with RNA-seq, these genes were excluded from our study. In
addition, expression of BBC3 (coding for Puma protein) has
not been evaluated because of putative MIR3191/MIR3190
cross-hybridization (Affymetrix HGU133plus2.0 Annotation,
Revision 35).

Factor maps were constructed by FactoMiner and further
represented by factoextra package. Data used in the Principal
Component for each graph were a subset of the Bcl2-family
dataset we firstly constructed.

For quantitative variables, statistical testing was performed
using Wilcoxon-Mann-Whitney tests for two groups and
Kruskal-Wallis for more than two groups. For qualitative
variables, Fisher-test was performed. Statistical significance was
retained under α-risk of 0.05. Random forest analysis was
carried-out with 1,000 trees, using randomForest R-package.
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FIGURE 1 | BCL2-family is strongly deregulated in the landscape of B-cell malignancies. (A) Heat-map of Bcl-2 gene expression profiles among B-cell malignancies.

Q14

Q4

Q5 The color corresponds to the intensity of the median gene expression. Blue indicates lower and red higher transcript abundance. MCL, Mantle Cell Lymphoma; BL,

(Continued)
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FIGURE 1 | Burkitt lymphoma; DLBCL, Diffuse Large B-cell Lymphoma; FL, Follicular Lymphoma; BPLL, B-cell Prolymphocytic Leukemia; CLL, Chronic lymphocytic

leukemia; HCL, Hairy Cell Lymphoma; MALT, mucosa-associated lymphoid tissue lymphoma; SMZL, Splenic Marginal Zone Lymphoma; BMPC, Bone Marrow Plasma

Cell, MM: multiple Myeloma. (B) Expression of BCL2, BCL2A1, and BCL2L11 in the different B-cell malignancies compared to their respective control.

Wilcoxon-Mann-Whitney tests. **p < 0.01 ***p < 0.001 ****p < 0.0001. (C) Representation of the individual factor map of each sample for the PCA and according to

the two first dimensions. Colored ellipses are drawn around the mean of the group (=barycenter), with the 95% confidence interval of the mean in the corresponding

plan. BCL2 is coding for Bcl-2 protein, BCL2L1 for Bcl-xL, MCL1 for Mcl-1, BCL2L2 for Bcl-w, BCL2A1 for Bfl1, BIK for Bik, PMAIP1 for Noxa, BMF for Bmf, BID for

Bid, BCL2L11 for Bim, BAX for Bax, and BAK1 for Bak.

RESULTS

B-cell Malignancies Display Unbalanced
Regulations of their Anti-and
Pro-apoptotic Genes
B cell malignancies were classified and compared to their normal
B cell counterparts according to the latest WHO classification
(26). Whereas, MCL was defined as a pre-GC (germinal-
center) neoplasm, FL, BL, and DLBCL were defined as GC
neoplasms and SMZL,MALT, BPLL, CLL, HCL, andMM as post-
GC neoplasms (Figure 1A). Within GC neoplasms, we further
compared highly proliferative BL and DLBCL to centroblasts and
the mostly indolent FL to centrocytes.

Anti-apoptotic members of the BCL2-family have a tendency
to be overexpressed in most malignancies compared to their
relative normal control, with the striking exception of BCL2L1,
coding for BCLxL protein (Figure 1A, Figure S2). BCL2 was
overexpressed in MCL, DLBCL, FL, BPLL, and CLL. Of note,
BCL2A1, coding for Bfl1 protein, appeared to be the most
frequently elevated genes (8 out 10 malignancies, Figure 1B).
As previously described, overexpression of BCL2A1 was not
observed in MM (27). Furthermore, in contrast to most
mature B cell malignancies, MM and BL did not show major
modulations of anti-apoptotic genes when compared to their
normal counterparts (Figure 1A, Figure S2).

Pro-apoptotic BH3-only have a tendency to be downregulated
in all mature B cell malignancies compared to their relative
normal control, BCL2L11, coding for Bim protein, being the
most frequently significantly deregulated gene (7 out of 10
malignancies, Figure 1B, Figure S2). Regarding pro-apoptotic
effectors we observed a BAX/BAK1 switch of expression in
malignant B cells compared to their normal counterparts. Indeed,
whereas BAX was elevated, BAK1 appeared downregulated in all
malignancies, excepted in MM and BL (Figure 1A, Figure S2).

To compare the 10 entities studied in regard to their BCL2-
family profile, we performed a Principal Component Analysis
(PCA, Figure 1C). We observed that CLL and MM displayed
unique profiles. The variable plot highlighted that CLL profile
was mostly carried by the expression of BCL2, BMF, PMAIP1,
coding for Noxa protein, and the absence of BID whereas MM
cells were characterized by the projection of BCL2L1, BAK1, and
BCL2L11 and the absence of BCL2A1 (Figure 1C, lower panel).

BCL2-family Genes Display Differential
Expression According to the
Microenvironment
We, and others, previously demonstrated that
microenvironment-dependent modulations of BCL2-family
members were involved in the survival and chemoresistance of B

cell malignancies (23, 28, 29). To get insight into the role of the
microenvironment in the BCL2-family regulation, we compared
the expression profile of lymphoma cells from peripheral blood
(PB) and tumoral niches i.e., lymph nodes (LN), bone marrow
(BM) or spleen (SPL) for MCL, FL, CLL, and SMZL. MCL
displayed the most frequent modulations with 11 out of 12 genes
being significantly differently expressed between LN and PB
with a general increase of all anti-apoptotic members within LN
(Figure 2A, Figure S3). Although, PB and LN samples were not
paired, these data suggest that MCL cells have divergent BCL2
profiles depending on their microenvironment.

Of interest, our analysis highlighted that, independently
of the nature of malignant B cells, the pro-apoptotic BH3-
only BCL2L11 and PMAIP1 genes were deeply repressed in
tumor niches (Figure 2B). In contrast, anti-apoptotic regulation
seemed to be cell-type specific and only BCL2L1 was commonly
upregulated in the LN of both MCL and FL (Figures 2A,B).

PCA of these entities showed that tumor localization
prevailed over entity intrinsic hallmarks (Figure 2C). Indeed, PB
lymphoma cells from FL, MCL, and SMZL segregated together
and apart from their relative LN cells. In contrast, CLL samples
form a separated group independent of their tumor localization
(PB, LN, and BM), confirming the specific profile of this
malignancy as mentioned before (Figures 1C, 2C).

Intra-entities BCL2-family Heterogeneity Is
Related to Molecular Subtypes and
Aggressiveness
Molecular subgroups have been previously described in several B
cell disorders (26).We thus compared the BCL2 profile according
to molecular subtypes in DLBCL, MCL, and MM (Figure 3,
Figures S4, S5).

Conventional MCL cells are characterized by a strong
expression of the oncogene SOX11. A SOX11-negative
(SOX11-) leukemic non-nodal minor MCL subtype is now
well-characterized and displays a limited number of genomic
alterations and a more indolent clinical course (30). The
BCL2-family profile of conventional PB SOX11+MCL was
mostly similar to the one of leukemic non-nodal SOX11- MCL
(Figure 3A). Nevertheless, SOX11- MCL cells displayed a
moderate increase in MCL1 expression and a dramatic decrease
in BIK expression when compared to SOX11+.

We next compared the profile of 3 subtypes of DLBCL,
GC-type (GCB), ABC-type (ABC), and primary mediastinal
(PMBL, Figure 3B). Our analysis showed that ABC cells were
characterized by a high level of BCL2, BID, and BMF, which is
consistent with previous reports (31). In contrast, PMBL cells
displayed a high expression of BCL2L1 (Figure 3B).
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FIGURE 2 | BCL2-family is regulated by the tumor microenvironment. (A) Heat-map of Bcl-2 gene expression profiles for MCL, FL, CLL, and SMZL in function of theirQ15

tissue localization. Wilcoxon-Mann-Whitney tests. *p < 0.05. (B) Comparison of BCL2L11, PMAIP1, and BCL2L1 gene expression according to their localization. LN,

lymph nodes; PB, peripheral blood; BM, bone marrow. Wilcoxon-Mann-Whitney tests. **p < 0.01 ***p < 0.001 ****p < 0.0001. (C) Representation of the individual

factor map for the PCA according to the two first dimensions and their respective correlation circle. Colored ellipses are drawn around the mean of the group

(=barycenter), with the 95% confidence interval of the mean in the corresponding plan.
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FIGURE 3 | Molecular subtypes display differential expression of the BCL2-family. (A) left; Heat-map of BCL2-family expression profile comparing PB MCL accordingQ16

to SOX11 gene expression (right). MCL1 and BIK expression in the two molecular subgroups. (B) left; Heat-map of BCL2-family expression profile comparing the

different subtypes of DLBCL: GCB (germinal center B cell, ABC (activated B-cell) and PMBL (Primary mediastinal B-cell lymphoma). right; Gene expression of

BCL2L1, BCL2, BID, and BMF for the three subtypes of DLBCL. (C) Representation of the individual factor map for the PCA and according to the two first

dimensions of multiple myeloma samples and their respective correlation circle. Colored ellipses are drawn around the mean of the group (=barycenter), with the 95%

confidence interval of the mean in the corresponding plan. (D) BCL2L2, BCL2L11, and BMF expression in the different multiple myeloma subtypes.

Several gene-expression profiling analyses of primary MM
cells have led to a molecular classification of MM subtypes (32–
34). This classification now includes 8 subgroups characterized
either by an IgH translocation with the CyclinD1 [t(11;14);
CCND1 group], the MMSET oncogene [t(4;14); MS group],
MAF oncogenes [t(14;16) and t(14;20)], or by specific gene
signatures (PR, HY, Myeloid, SOCS3, and NFKB) (35, 36). We
previously reported the apoptotic machinery diversity in MM
major subgroups (HY, CCND1, MF, and MS) (37). Here, we
enlarged the analysis by taking into account the 8 molecular

subgroups (33). As represented by PCA, the NFKB subgroup
displayed a specific BCL2-family profile and was characterized
by an overexpression of BCL2L2, BCL2L11, and BMF, while
the other groups overlapped without any exclusive signatures
(Figures 3C,D).

Histologic transformation of indolent B cell lymphomas
such as FL or MALT into an aggressive lymphoma (mostly
DLBCL) is a well-described phenomenon (38). Our analysis
highlighted that histologic transformation was associated with
common deregulations of the BCL2-family in both FL andMALT
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(Figure 4A, Figure S6). Indeed, we observed a downregulation
of BCL2 as well as an increase of the pro-apoptotic BCL2L11,
BID, and BAX and BAK1 in both entities after transformation
(Figure 4B). As observed in the PCA, the BCL2-family profile
of the aggressive forms of both FL and MALT segregated apart
from their respective indolent forms toward a profile close
to the one of DLBCL (Figure 4C). Of note, we investigated
whether BCL2-family expression patterns would differentiate the
non-transformed FL/MALT from the transformed one. To do
so, an ensemble machine-learning algorithm (random forest)
was trained on BCL2-family expression dataset to predict the
different B-cell malignancies. Using this trained algorithm on FL
and MALT, it classified the transformed forms of the latters as
DLBCL, thus efficiently predicting the aggressive transformation
in both FL [Odds Ratio [OR] for transformation = 31, p =

2x10−14] and MALT (OR= 30, p= 9× 10−5).

BCL2-family Expression Profile Predicts
the Sensitivity to BCL2 Specific
BH3-mimetics in Mature B Cell
Malignancies
We previously demonstrated that a ratio of BCL2 expression
with the resistance factors MCL1 and BCL2L1 could predict
sensibility to venetoclax in MCL and MM ex vivo and in vivo
(20, 39, 40). Here, to determine the best predictive ratio across
mature B cell malignancies, we analyzed the correlations between
expression of previously described factors involved in venetoclax
resistance (MCL1, BCL2L1, BCL2A1) (14, 23, 25, 39–41) as well
as factors involved in venetoclax efficacy (BCL2, BCL2L11, BAX)
(24, 25, 42) with overall response rate (ORR) in patients treated
with venetoclax. Recent publications have shown an elevated
ORR of venetoclax monotherapy in CLL and MCL (79 and 75%,
respectively) (18, 20), intermediate for FL (38%) (17) and low
for DLBCL and MM (18 and 21%, respectively) (17, 20). We
showed that the ratio (BCL2+BCL2L11+BAX)/(BCL2L1)was the
best predictor of venetoclax response across all mature B cell
malignancies (r = 0.81, p = 7e-4, Figure S7). Of note, BPLL
and HCL, entities for which venetoclax efficacy is unknown, were
characterized by a high ratio whereas BL was characterized by a
low ratio (Figure 5A).

We next analyzed whether subgroups of patients
(genomic heterogeneity or transformation) displayed
different ratios. In good agreement with the in vivo
and in vitro sensitivity to venetoclax, we showed
that the CCND1MM subgroup displayed the highest
(BCL2+BCL2L11+BAX)/(BCL2L1) ratio among MM subtypes
(Figure 5B) (14, 20). Interestingly, subgroups of patients
with MCL (SOX11+/–) harbored similar ratio, while ABC
DLBCL cells were characterized by a higher ratio compared
to GCB and PMBL. Histologic transformation only slightly
influenced the ratio in FL but not in MALT lymphoma
(Figures 5C,D).

Lastly, we compared the (BCL2+BCL2L11+BAX)/(BCL2L1)
ratio according to the microenvironment and showed that MCL
within the LN are predicted to be more resistant to venetoclax
that MCL cells in the PB, confirming our previous functional

in vitro observations (23, 39). Similarly, our analysis predicted
that CLL cells should be less sensitive to venetoclax in BM as
compared to PB (Figure 5E).

DISCUSSION

The BCL2-family is known to be deregulated in cancer, including
hematological malignancies (43). Whereas, most studies focused
on the regulation of selective BCL2-family members within a
specific pathology, here we provided a global RNA expression
analysis of 12 members of the BCL2-family across 10 mature
B-cell malignancies and their relative normal counterparts.
To do so, we took advantage of the numerous Affymetrix
HGU133Plus2.0 series datasets previously published for mature
B cell malignancies and gathered in the GEO database. We
controlled the normalization quality by addressing hallmarks
expression such asCCND1, SOX11,MKI67,MME,CD200, CD38,
or SDC1, confirming malignancies specificities, independently
of source series (Figure S1). Using similar data mining strategy,
Adams et al. recently highlighted an overexpression of BCL2
and in Hodgkin Lymphomas and several NHL (BL, DLBCL, FL,
MZL, and MCL) (44). This overexpression was confirmed in
our study with the exception of BL, a discrepancy that might
be due to the use of different normal counterparts. Nevertheless,
this technology has limitations such as probes aspecificity (HRK,
BAD) or cross-hybridization within some probes such as BBC3
(45), impeding the integration of these critical member of
the BCL2 network in the present study (see Material and
Methods section). Although this drawback could be resolved
using RNA-sequencing technologies, datasets availability was too
limited for most of the cellular entities analyzed in the present
work.

Having these limitations in mind, our analysis provided a
global picture of the BCL2-family dysregulation in mature B-
cell malignancies, from their transcriptional regulation to their
potential use as targeted therapy biomarker. We first highlighted
a global upregulation of anti-apoptotic genes as well as a global
downregulation of pro-apoptotic genes inmost B cell lymphomas
compared to their normal control, confirming that the BCL2-
family deregulation is a hallmark of most B cell malignancies.
We did not observe upregulation of the anti-apoptotic genes in
MM compared to BMPC. On the one hand, this might be due
to the elevated level of anti-apoptotic genes in BMPC, which
are necessary for the survival of these long-lived cells (46).
On the other hand, we cannot exclude that posttranscriptional
modifications could directly influence protein levels, particularly
for Mcl-1 (47–49).

We also showed specific modulations in BCL2-family
expression associated to molecular subgroups in MCL, DLBCL
and MM. In the SOX11-MCL subtype, we highlighted a selective
dramatic downregulation of BIK. Given that this BH3-only is
tightly regulated by DNAmethylation (50), its silencing might be
the direct consequence of the specific epigenetic profile recently
described in this MCL subtype (51). Further investigations are
now needed to document the consequences of these modulations
in the survival and chemoresistance of SOX11- MCL cells.
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FIGURE 4 | Intra-entities BCL2-family heterogeneity is related to aggressiveness. (A) Heat-map of BCL2-family expression profile comparing FL and MALT samplesQ17

according to their indolent (ind) or aggressive (agr) status. (B) BCL2, BCL2L11, BID, BAX, and BAK1 expression in FL and MALT sample according to their

aggressiveness. (C) Representation of the individual factor map for the PCA and according to the two first dimensions of multiple myeloma samples and their

respective correlation circle. Colored ellipses are drawn around the mean of the group (=barycenter), with the 95% confidence interval of the mean in the

corresponding plan.

Similarly, the “NFkB” molecular subgroup displayed a unique
BCL2-family profile within MM samples, highlighted by the
overexpression of BCL2L2, BMF, and BCL2L11. Given that this
subgroup is characterized by an elevated expression of NFkB
targets, it is tempting to speculate that the NFkB pathway
regulates these genes in MM, as it has been previously described
for BCL2L2 in B cell lymphoma (52). Nevertheless, the “NFkB”
entity represents <10% of the disease and the lack of relevant
in vitro models for this molecular subgroup makes its study
challenging (53).

By evaluating BCL2-family expression according to tissue
localization, we observed a strong microenvironment-dependent
regulation, especially in MCL and FL. Several studies have
demonstrated the critical role of the microenvironment in the
expansion and the chemoresistance of these hematological
malignancies (54–56). Furthermore, we recently showed that
a microenvironment-dependent upregulation of BCL2L1

and downregulation of BCL2L11 was involved in MCL
chemoresistance (23). Of interest, a global pro- and anti-
apoptotic imbalance was confirmed here in MCL. In
addition, we showed that both BCL2L11 and PMAIP1 were
downregulated by the tumor microenvironment in all the B-cell
malignancies studied (MCL, FL, CLL, and SMZL), suggesting
a fundamental role of these 2 specific BH3-only proteins in
the microenvironment-dependent survival of lymphoma cells.
Rational strategies to counteract their downregulation could
then be critical to target lymphoma cells within the protective
niches.

This global tissue-specific modulation in the BCL2 profile also
directly impacted the predictive ratio to venetoclax sensitivity
in MCL. Indeed, the (BCL2+BCL2L11+BAX)/BCL2L1 ratio
was much lower in LN-MCL samples compared to PB-MCL.
Even though clinical studies highlighted an encouraging
ORR in MCL patients treated by venetoclax monotherapy,
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FIGURE 5 | (BCL2+BCL2L11+BAX )/BCL2L1 ratio predicts response to Bcl2 specific BH3 mimetic. (A) Evaluation of the (BCL2+BCL2L11+BAX )/BCL2L1 ratio forQ17

the different B-cell malignancies associated to ORR and PFS of patients treated with venetoclax-monotherapy when available. (B,C) Evaluation of the (BCL2 +

BCL2L11 + BAX )/BCL2L1 ratio for the different subtypes of (B) MM and (C) MCL and DLBCL. (D) Evaluation of the (BCL2 + BCL2L11 + BAX )/BCL2L1 ratio for the

different subtypes of FL and MALT. (E) Evaluation of the (BCL2 + BCL2L11 + BAX )/BCL2L1 ratio for MCL, FL, CLL, SMZL according to their tissue localization

(peripheral blood, PB, lymph nodes, LN, spleen, SPL).

the PFS observed appeared much lower than in CLL. Our
study suggested that MCL cells in the LN could be more
resistant to venetoclax than PB-MCL and consequently
could be involved in the rapid relapse observed in this
pathology. Strategies targeting the microenvironment in
association with venetoclax could then increase treatment
efficacy and delay relapse. We recently show that MCL
primary cells egressing in the PB through BTK inhibition
have a BCL2 high/BCL2L1 low profile and were highly
sensitive to venetoclax (39). Similarly, we showed that
microenvironment-dependent BCL2L1 induction was
counteracted with the anti-CD20 antibody obinutuzumab,
leading to an increased venetoclax efficacy ex vivo (23). Similar
results showing the benefit of targeting microenvironmental
interactions to potentiate BH3-mimetics efficacy have been
published in other B cell malignancies such as CLL and MM
(28, 29).

Of note, the above-mentioned predictive ratio highlighted
that previously untested entities in venetoclax clinical trials,
especially B-PLL and HCL, have sensitive-like BCL2-family
profile, suggesting that they should be included in future clinical
trials. Lastly, given the heterogeneity among entities (molecular
subgroups, aggressiveness, tissue), this ratio could help predicting
the B cell lymphoma patients who would benefit to BCL2 specific
BH3-mimetic based therapy.
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