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Abstract

Benchmarking surveillance systems requires realistic simulations of disease outbreaks.

However, obtaining these data in sufficient quantity, with a realistic shape and covering a

sufficient range of agents, size and duration, is known to be very difficult. The dataset of

outbreak signals generated should reflect the likely distribution of authentic situations

faced by the surveillance system, including very unlikely outbreak signals. We propose

and evaluate a new approach based on the use of historical outbreak data to simulate tai-

lored outbreak signals. The method relies on a homothetic transformation of the historical

distribution followed by resampling processes (Binomial, Inverse Transform Sampling

Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent,

Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most

important input parameters for simulation quality and to evaluate performance for each of

the resampling algorithms. Our analysis confirms the influence of the type of algorithm

used and simulation parameters (i.e. days, number of cases, outbreak shape, overall

scale factor) on the results. We show that, regardless of the outbreaks, algorithms and

metrics chosen for the evaluation, simulation quality decreased with the increase in the

number of days simulated and increased with the number of cases simulated. Simulating

outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1)

resulted in an important loss of information during the simulation. We found that Gibbs

sampling with a shrinkage procedure provides a good balance between accuracy and data

dependency. If dependency is of little importance, binomial and ITSM methods are accu-

rate. Given the constraint of keeping the simulation within a range of plausible epidemio-

logical curves faced by the surveillance system, our study confirms that our approach can

be used to generate a large spectrum of outbreak signals.
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1 Introduction

Many outbreak detection algorithms (ODA) for disease surveillance have been proposed in

the literature (see for example Chen’s review [1]), and designers of epidemiological and labora-

tory surveillance systems need to opt for the most suitable.

The choice of an algorithm should be based on reproducible evaluations carried out under

conditions as close to real life as possible [2]. Several authors including Buckeridge [3] and

Jackson [4] have shown that algorithm evaluation depends on the characteristics of the out-

break curve (shape, duration and size) and the baseline (mean and variance). The evaluation

process thus depends heavily on the quality of test data and the control of characteristics

known to influence these results [5].

To evaluate an ODA, specific datasets composed of outbreak curves over a baseline are usu-

ally needed. These two components can be obtained from real data, synthetic data or from a

combination of the two (semi-synthetic dataset), as described in Mandl [6] and Buckeridge

[5].

The baseline is often obtained from the real, daily, routine data of disease surveillance sys-

tems, which are specific to the population under surveillance [3, 7]. Useful simulation tools

also exist for simulating a baseline (such as Project Mimic, http://www.projectmimic.com/).

However, obtaining a sufficient quantity of outbreak curves with a realistic shape and cov-

ering a sufficient range of agents, size and duration, is known to be very difficult [3–5, 8]. With

regard to disease outbreak curves, several authors have pointed out [3, 5, 7, 9] that the use of

real data for outbreak signals is hindered by the shortage of real datasets that include enough

clearly-defined outbreak signals. Natural outbreak signals cannot enable the control of features

required for evaluating ODA (such as outbreak size, duration and shape). Buckeridge et al. [5]

show that among 22 studies using natural outbreak signals, only five had enough outbreaks to

evaluate and report quantitative measures such as sensitivity and timeliness. They conclude

that evaluations based on natural signals should be reserved for qualitative evaluation. Simi-

larly, Wagner [9] believes that a minimum of roughly 10 outbreaks is required to build a quan-

titative evaluation.

In contrast, synthetic outbreak curves have the potential to express the diversity of biologi-

cal threats that a surveillance system could encounter and must detect. Synthetic datasets allow

precise specification of the outbreak curve and make it possible to build large test sets. They

are more convenient for sensitivity analyses and for exploring the effects of curve changes.

Most evaluation studies in the last decade have used semi-synthetic datasets that combine real

baseline data with synthetic outbreaks [5].

Several methods can be used to build synthetic outbreak curves. Mechanistic disease mod-

els, such as the Susceptible-Infected-Recovered (SIR) model, are commonly used [10, 11].

Agent-based models (ABM) such as EpiSims [12] build a network-based model of disease

spread instead of a compartment-based one [9].

However, the purpose of most studies that simulate curves based on these approaches is not

to generate outbreak curves to evaluate ODA, but is usually to predict an overall outbreak

trend (until real-time quality forecasting is achieved and to identify realistic averaged parame-

ters for describing outbreaks. For example, Nsoesie et al. [13] used an agent-based model,

which requires the building offive preliminary models. They worked mainly on influenza out-

break forecasting and conceded the need for each surveillance team to build a social network

model adapted to the population under surveillance.

One limitation of this type of approach is that a specific model must be constructed for

each type of disease to be simulated [6, 13]. These models can be computationally expensive

and data intensive, as well as difficult to set up for a non-specialist user. Building a realistic
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model can be a particularly challenging task due to the lack of knowledge and real data avail-

able for setting up model parameters and for the validation process [14]. Held [15] considers

such mechanistic modeling as too ambitious to be used routinely in a disease surveillance sys-

tem, pointing out that the non-availability of certain information (number of susceptible peo-

ple, model parameters, etc.) renders the process unfeasible. In addition, these models are

usually based on multiple assumptions that may be difficult to verify [9]. Due to the high level

of statistical and mathematical modeling needed and according to our experience of disease

surveillance system deployment, we are not convinced that the majority of users in charge of

disease surveillance systems are able to generate curves with this approach and wish to do it.

A simpler approach is to build the synthetic outbreak curve by using a simple mathematical

distribution that describes its expected shape. Uniform, linear, exponential, sigmoid, lognor-

mal or Dirac distributions are often used [6, 7, 16–19] (S1 Fig). However, estimating the

behavior of an ODA for real outbreaks from simple synthetic signals is not straightforward.

The principal limitation of evaluations using semi-synthetic datasets is that they only find the

smallest peak that could be detected, leaving the critical question of detectability unanswered:

“What is the smallest outbreak that can be detected?”. We have known since Wagner[9], Buck-

eridge [3] and Jackson [20] that the answer is influenced by the outbreak shape for the selected

size and duration, leading us to believe that ODA evaluations based solely on the injection of

geometric shape can only be considered as partial evaluations.

Bollen [21] considers that a curve reflects latent determinants, which are hidden. Baker [22]

and Tucker [23] also consider that observations of repeated measures over time are the result

of latent factors and characteristics that can only be indirectly observed using real curves. Simi-

larly, we may consider that a curve shape depicts a type of disease outbreak determined by a

transmissible agent, a population, an environment and a collecting structure, which are the

latent determinants. To improve the realism of produced curves, some authors propose that

the modeling process be extended, by taking into consideration the effects of disease surveil-

lance systems. In the case of the statistical distribution simulation approach, Lotze and coll. [7]

proposed that system effect (day of the week, seasonal and holiday effect) be added to initial

outbreak lognormal signatures.

Despite this improvement, the traditional methods (mechanistic or statistical distribution-

based methods) for obtaining synthetic epidemic curves remain, for the most part, sophisti-

cated or poorly realistic.

Finally, the main way to generate an outbreak curve is by using an explicit propagation

model (ABM, SEIR, distribution modeling, etc.). Modeling this process and quantifying the

relative weight of each known factor are valuable for understanding the mechanisms influenc-

ing the outbreak dynamics. But all this modeling process is then required even if the final goal

of this simulation is not to understand the epidemiological mechanisms producing the curve

or to implement an explicative/forecasting model of the outbreak. Because our main goal here

is to produce a realistic yet customized curve for a pathogen in a large range of surveillance sit-

uations, the relevance of model-based simulation for this specific purpose must be questioned.

Indeed, there is a risk of generating only generalist or averaged curves that can be non-repre-

sentative of the wide variety of surveillance curves, and the simulation process may suffer from

a lack of realism. For example, the “classic” norovirus epicurve used in our study (Fig 1) [24]

should be simulated by a Gaussian model, but is not able to represent the “atypical” epicurve

observed in a specific population during a cruise [25]. Outbreak modeling is known to be

highly complex [26], covering highly variable outbreak expressions and requiring numerous

hypotheses and parameters. Taking an extreme position, some authors consider that carrying

out realistic outbreak modeling is risky [27, 28]. As explained before, a latent model probably

exists where the population under surveillance, the pathogens, the surveillance system and
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many other factors closely interact. An epicurve can be seen as the directly observable result of

all these co-acting factors in association with unknown co-factors. We also need to take into

consideration the risk of model misspecification, which may produce unrealistic or inaccurate

curves. This topic is developed in the discussion proposed by Nishiura [29] and Horner [30],

associated with a possible misspecification of the lognormal model proposed by Sartwell in

1966 [31] and largely used by the community. If we adopt this approach to consider the

cruise outbreak, Gaussian simulation of all norovirus curves should be considered as a misspe-

cification of the “atypical” curve (more adequately represented by an exponential decay or a

Gamma model with different parameters).

Another possibility is to use simulation solutions that do not require modeling beforehand,

such as Monte Carlo resampling methods. Indeed, these methods are tailored for simulating

complex curves, especially when mathematical formalizations are not accessible, which is fre-

quently the case for epidemic curves. S2 Fig describes what Monte Carlo resampling methods

could add to the existing solutions used in the literature.

This study aims at verifying if a new and simple approach based on historical outbreak

curves can be used to produce a range of outbreak signals (in terms of diversity of curve

shapes) including very unlikely signals. The generated dataset of signals should reflect the

Fig 1. Probability mass function (PMF) for four published epidemic curves (norovirus, measles, anthrax and dengue

outbreaks) represented by the case probability according to the time step of the outbreak [30–33].

https://doi.org/10.1371/journal.pone.0183992.g001
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likely distribution and the diversity of authentic signals faced by the surveillance system, while

conserving as much as possible the shape realism that must conform to the apparent outbreak

characteristics conveyed by the curve shape. To achieve this goal, we will evaluate if this new

approach using homothetic transformation and resampling methods applied to historical dis-

ease outbreaks can be used to produce customized curves by controlling outbreak duration

and size, while preserving curve shape (identified as critical for an ODA evaluation).

2 Material and methods

If we want to test algorithm ability and limitations under a large range of real surveillance situ-

ations, an adequate simulation tool must also be able to create the entire spectrum of outbreak

curves, even those considered to be “atypical” but already-observed curves (qualified as “outli-

ers”) must be considered, provided their atypical nature is recognized. The risk of a statistical

modeling approach is that it might restrict the scope of the simulation used for the algorithm

evaluation to an average behavior of the epidemics, which could be non-representative of the

large range of shape varieties observed for the same pathogen. Using outlier curves precisely

allows algorithm limitations to be evaluated against unusual outbreaks. This is why we chose

real datasets from published disease outbreaks, representing different modes of transmission

(Fig 1) and a range of shape varieties.

Probability mass functions (PMF) and cumulative distribution functions (CDF) will be

extracted from the outbreak curves by computing the probability of the number of cases (or

the cumulative probability) for each day of the epidemic. We propose that homothetic trans-

formation (known to be a uniform scaling technique that preserves form) be used to control

outbreak duration, together with a resampling method based on the Monte Carlo approach to

manage its size. S2 Fig gives an example of the simulation and evaluation process (detailed

above) in the case of a measles outbreak shape, for a 14-day duration and 30-case outbreak

simulation.

We used R 3.0.1 (R Core team 2013) to implement all the methods described below [32].

2.1 Scaling outbreak duration

We apply a homothetic transformation to a PMF covering n time units to compute a new

probability distribution lasting m time units. This transformation is a uniform dilation of the

number of days using a scaling factor r, such as:

Pj ¼

Xn

i¼1

fij:pi with
Xn

i¼1

pi ¼ 1 ;

Xm

j¼1

Pj ¼ 1 ; r ¼ n=m

Where:

• πi is the initial probability at time i in the PMF;

• Pj is the final probability at time j in the new probability distribution;

• fij is the fraction of πi at time i participating in Pj and depending on r = n/m.

A detailed R script is proposed (S1 Script) for r�1.

2.2 Scaling outbreak size

Until now, outbreak curves have mostly been produced by using a certain explicit outbreak

propagation model. This model building is thus considered as a prerequisite, even if the final

goal of the simulation is not to understand the mechanisms and factors shaping the curve, nor
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to implement an explicative model of the outbreak. We adopt a pragmatic, sparing approach

by skipping the usual steps of modeling that are required to produce an outbreak curve (S2

Fig). The aim of scaling is to give the outbreak size an intended value while preserving curve

shape. We propose that this goal be achieved by testing six Monte Carlo resampling methods.

2.2.1 Inverse transform sampling method (ITSM) for discrete random variables. This

method requires that only the form of the density of interest (PMF) and its CDF be known.

The random process of sampling needs to create a uniformly-distributed variate U in [0,1] for

each simulated case. The case dates are found by reading on the CDF the random value (x-

axis) corresponding to the variate U on the cumulative probability axis (y-axis). The process is

repeated until the expected size of the outbreak is reached.

2.2.2 Binomial method. This method (described in Kachitvichyanukul [33]) makes it

possible to simulate independent and identically-distributed (i.i.d.) variables according to an

outbreak target distribution (PMF). It considers an outbreak day as a binomial event of the

epidemic with a success probability equal to πi (where i is the day of the outbreak). A case is

assigned to a day according to the binomial distribution law. This process is repeated until the

case sum is equal to the expected size of the outbreak.

2.2.3 Random walk Metropolis-Hastings. A Metropolis-Hastings algorithm [34, 35] is a

Markov chain Monte Carlo sampling method that allows the progressive construction of a

sample by taking into account a simulated value (xt-1) in order to generate the next one (xt).

With Metropolis-Hastings, the Markov chain is built using the original PMF as a stationary

density that limits the distribution of the Markov chain [36]. Metropolis-Hastings needs to

build a conditional density q(xt|xt-1) (or transition kernel) associated with the original target

density (the outbreak curve PMF).

Random Walk Metropolis-Hastings (RWMH) [36] is a practical approach to this method,

which carries out a local exploration of the neighborhood of the current value of the Markov

chain. The conditional density depends on the previously-simulated value and a random per-

turbation (εt):

xt ¼ xt� 1 þ εt:

This random perturbation is the random walk and follows a symmetric distribution (g) cen-

tered on zero. The transition kernel between simulated cases is defined by choosing a condi-

tional density:

qðxtjxt� 1Þ ¼ gðxt � xt� 1Þ:

In our study, g followed a uniform distribution and, as proposed by Robert [37], the scale

parameter of εt was defined as the integer part of the distribution variance.

The simulation process consists in choosing an initial outbreak date and another epidemic

day by using the transitional kernel q(xt|xt-1). Adding a case at this new date will be accepted or

rejected according to the Hastings ratio.

To set the starting point of the simulation, we used a burn-in period of 1,000 iterations. The

same period was used for the other MCMC methods.

2.2.4 Independent Metropolis-Hastings Algorithm (IMHA). The Independent Metrop-

olis-Hastings Algorithm (IMHA) [35] generates a candidate conditional density that depends

only on the present state of the chain.

This density can thus be written: q(xt|xt-1) = q(xt) = g(xt). This method ensures the correla-

tion of the simulated cases.
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The process is the same as for RWMH, but the choice of the new date depends on an inde-

pendent transitional kernel. In our study, the conditional density is a discrete uniform distri-

bution defined over the same range of days as the original PMF.

2.2.5 Gibbs sampling algorithm. This algorithm [36] is used to simulate Markov chain

states from a joint distribution q(xt;yt). This requires knowledge of the two conditional distri-

butions q(xt|yt) and q(yt|xt) that must be built.

We chose slice sampling within the Gibbs sampler approach [38] since it is formally applied

with no restriction to any density on its shape or dimension. We consider disease outbreak

days (x) and simulated cases (y) as the variables and use a uniform distribution (x, y), which

preserves the curve shape despite y changes:

pððX;YÞ ¼ ðx; yÞÞ ¼
1

N
if 0 < y < pðxÞ

0 else
:

8
<

:

According to this joint distribution, we construct the conditional distribution (q(xt|yt) and

q(yt|xt)) and use a Gibbs sampling process.

This sampling consists in selecting an initial date for the simulation and choosing the next

case from it by using the conditional density q(yt|xt). We then simulate the next date from this

case by using the conditional density q(xt|yt).
A shrinkage procedure is used in this context because we cannot directly simulate a case

using q(xt|yt). It consists in randomly choosing a simulated date (x) and testing by means of an

interval whether this date can be generated according to the conditional density q(xt|yt).
2.2.6 Hybrid Gibbs sampler (Metropolis-within-Gibbs). Sometimes the density function

obtained from the disease outbreak curve may be unconventional, i.e. discontinuous or result-

ing from a mixing of different distribution laws (as in the Sverdlosk event or in a measles out-

break). It is difficult for Markov chains to move over discontinuous curves [25]. In theory, the

Gibbs sampler should encounter certain difficulties in simulating the shape of this type of

curve since some densities cannot be directly simulated. A hybrid Gibbs sampler, in the

Metropolis-within-Gibbs strategy sense, may be a solution [39]. The idea is to use a prelimi-

nary step consisting of a random walk simulation of Markov chain states instead of a direct

simulation within Gibbs sampling. Hybrid strategy associates the conditional density q(xt|yt)
with the Hastings ratio, allowing the exploration of all the outbreak curves.

2.3 Quality assessment

When the duration or the number of cases during an outbreak simulation is changed, the

shape of the outbreak (representing a latent process) must be maintained within a range of

plausible epidemiological curves, which could be defined as the range of real triplets (size,

duration, disease) observed during real outbreaks (obtained from publications). This necessity

is also true for mechanistic or statistical distribution-based methods that may also face the risk

of simulating an unrealistic outbreak.

The same problem was highlighted by the High-Fidelity Injection Detectability Experi-

ments (HiFIDE) project in 2005. It tried to extend the semi-synthetic method by conserving

the relationship between "the magnitude of the real outbreak and the strength of the signal in

the surveillance data collected during the real outbreak" [9]. Without forgetting this simulation

constraint during a real evaluation, in a first theoretical approach (proof of concept) with the

aim of testing the capacity and the limits of MC methods, we chose to generate each triplet

resulting from the combination of 12 sizes (10, 20, 30, 50, 100, 300, 500, 1000, 2000, 3000,

4000 and 5000 cases), six durations (5, 7, 14, 28, 42, 56 days) and four real outbreak shapes
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(Norovirus, Measles, Anthrax, Dengue) [24, 40–42]. We replicated each simulation 20 times

and used a median for evaluating stochastic algorithm performance, as proposed by Birattari

[43].

Since all the methods proposed in this study are able to precisely simulate duration and

size, quality assessment will be based only on the degree of conformity to the real outbreak

shape.

2.3.1 Goodness-of-fit (GOF). Curve shape preservation was evaluated using the distance

between the original real curve and the simulated one. We chose a GOF approach to evaluate

this distance considered to be an indicator of simulation quality.

A Goodness-of-Fit (GOF) test between two distributions is usually indicated to determine

whether an observed distribution corresponds to a particular probability distribution (such as

the historical outbreak distribution). Due to the constraints of the test approach (e.g. the neces-

sity to define a significance level α that varies with the quantity of simulated data), we chose to

use GOF metrics (distance, divergence, similarity) as proposed by several authors [44, 45] to

compare simulation qualities.

There is currently no consensus in the literature on the choice of a metric. Moreover, since

there is no certainty regarding the convergence of quality results according to different met-

rics, we selected a limited number of metrics corresponding to different GOF properties. Due

to the discrete nature of data, we selected the L2-distance built for comparing distance between

two densities. Pearson divergence and Kolmogorov distance were chosen since they are

derived from the statistics used to evaluate GOF between two probability density functions.

And to evaluate similarity, we chose the Overlap (delta) Coefficient and Matusita’s (Rho) Mea-

sure [44, 45]. All the GOF metrics are detailed in the S1a and S1b Table.

To avoid scale effects, all metrics were normalized. A two-sample T-test was used to com-

pare the metrics between two groups.

2.3.2 Overall scale factor. Simulation relies on a scaling process. We assumed this scaling

process could affect the quality of results, and in particular lead to a possible loss of informa-

tion resulting from scattering a small number of cases over the duration of the outbreak.

To estimate the influence of the scaling process on simulations, we first calculated the case

density for each distribution as the number of cases divided by the number of days. We then

calculated the scale factor as the case density ratio of the simulation divided by the case density

of the original distribution. During our work, we studied the impact of this scale factor on the

quality of the simulations evaluated by different metrics.

3 Results and discussion

We first identified the input parameters that contribute most to the accuracy of results and

investigated the way a change of input parameters influences results (Table 1).

3.1 The influence of outbreak duration and size

Quality decreases with the duration of an outbreak and increases with its size for all combina-

tions of curve, algorithm and metric chosen for the evaluation. An example for a measles out-

break is presented in Fig 2. Two groups of algorithms (the Binomial, ITSM and Gibbs group

versus the Metropolis Algorithms and Hybrid group) can be distinguished based on their sen-

sitivity to the outbreak duration. The first group seems less influenced by a change in duration

(Fig 2a). The GOF difference (normalized Pearson metric) is significant between these two dif-

ferent groups (p<0,001).

Rho distance for the difference of inadequacy between binomial and independent Metropo-

lis algorithms averages 11% [min = 0.5%—max = 31%] (Fig 2b). The maximum difference
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between the two groups was observed for outbreaks of 20 cases, with an average difference of

24%. Difference increases continuously and linearly with outbreak duration.

Simulation quality increases exponentially (R2 > 0.97) with the number of cases (Fig 2b)

and with decreasing outbreak duration.

With regard to the interaction between size and duration, the Metropolis-Hasting indepen-

dent sampler and Hybrid Gibbs sampler are nearly equivalent in terms of accuracy. Random

Walk Metropolis-Hasting performs slightly better in extreme simulation values. The real gap

appears with Gibbs sampling, followed by ITSM and binomial methods for all simulations (Fig

3) and curve shapes.

3.2 Comparison of algorithms

This work examines how to simulate realistic infectious disease outbreak curves with a mini-

mum number of parameters. As for any temporal simulation, we needed to provide two

parameters: duration and size, and as is the case for a simple mathematical distribution

approach, we had to choose a distribution shape among a set of real outbreaks. The resampling

methods we tested, especially the binomial method and ITSM, are easy to implement even for

a non-specialist. Although all these methods are able to generate a simulated curve from real

outbreaks, their accuracy is algorithm-dependent.

Simulation quality for all diseases considered was measured (using different Goodness-of-

fit measures) by calculating the difference between the generated outbreak curve and its

Table 1. Evaluation of six resampling methods according to outbreak type, number of cases and number of days simulated.

Outbreak Measles Anthrax Dengue Norovirus

Binomial 0.025* (0.00)† 0.033 (0.00) 0.042 (0.00) 0.036 (0.00)

ITSM 0.027 (0.64) 0.033 (0.70) 0.042 (0.73) 0.041 (0.99)

Metrop. RW 0.082 (0.53) 0.071(0.57) 0.086 (0.58) 0.062 (0.81)

Metrop. Ind 0.085 (0.54) 0.089 (0.59) 0.080 (0.64) 0.097(0.80)

Gibbs 0.037 (0.77) 0.039 (0.70) 0.045 (0.66) 0.038 (0.95)

Hybrid 0.083 (0.81) 0.088 (0.90) 0.075 (1.04) 0.096 (1.00)

Cases 10 50 100 500 1000 5000

Binomial 0.185 (0.00) 0.038 (0.00) 0.020 (0.00) 0.004 (0.00) 0.002 (0.00) 0.000 (0.00)

ITSM 0.190 (0.00) 0.043 (0.03) 0.020 (0.06) 0.004 (0.28) 0.002 (0.57) 0.000 (2.87)

Metrop. RW 0.327 (0.21) 0.099 (0.23) 0.060 (0.24) 0.015 (0.36) 0.008 (0.51) 0.002 (1.77)

Metrop. Ind 0.411 (0.22) 0.107 (0.23) 0.056 (0.25) 0.011 (0.38) 0.006 (0.53) 0.001 (1.82)

Gibbs 0.201 (0.26) 0.047 (0.28) 0.024 (0.29) 0.005 (0.44) 0.003 (0.62) 0.000 (2.23)

Hybrid 0.401 (0.34) 0.104 (0.35) 0.057(0.38) 0.011 (0.55) 0.005 (0.77) 0.001 (2.65)

Days 5 14 28 42 56

Binomial 0.005 (0.00) 0.018 (0.00) 0.036 (0.00) 0.057 (0.00) 0.081 (0.00)

ITSM 0.006 (0.64) 0.021(0.71) 0.039 (0.77) 0.057 (0.87) 0.085 (0.93)

Metrop. RW 0.016 (0.60) 0.046 (0.62) 0.088 (0.60) 0.124 (0.63) 0.155 (0.65)

Metrop. Ind 0.011 (0.65) 0.046 (0.65) 0.096 (0.63) 0.156 (0.64) 0.199 (0.64)

Gibbs 0.008 (0.72) 0.024 (0.78) 0.048 (0.81) 0.058 (0.83) 0.087 (0.74)

Hybrid 0.011 (0.78) 0.046 (0.86) 0.092 (0.96) 0.155 (1.12) 0.190 (1.13)

*Normalized Pearson distance averaged for all other parameters
† (Average time of simulation in seconds)

Binomial = Binomial method / ITSM = Inverse transform sampling method / Metrop. RW = Metropolis-Hasting Random Walk /Metrop. Ind = Metropolis-

Hasting independent sampler / Hybrid = Hybrid Gibbs sampler / Gibbs = Gibbs sampling algorithm

https://doi.org/10.1371/journal.pone.0183992.t001
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Fig 2. Measles outbreak simulation assessment. (a) according to the outbreak duration (in days). (b) according to the number of

simulated cases. Rho: Matusita’s Measure used for evaluation / Binom = Binomial method / ITSM = Inverse transform sampling

method / Metrop. RW = Metropolis-Hasting Random Walk / Metrop. Ind = Metropolis-Hasting independent sampler / Hybrid = Hybrid

Gibbs sampler / Gibbs = Gibbs sampling algorithm.

https://doi.org/10.1371/journal.pone.0183992.g002
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corresponding historical outbreak curve while taking into account the influence of the number

of cases and duration of the outbreak simulated. In Fig 3, for a given GOF, the lower the sur-

face (greens and blues) in the cube, the better the quality of the simulation. We can observe

that algorithms based on MCMC are less precise, regardless of the GOF chosen, than those

based on independent sampling (Table 1, Fig 3).

The binomial algorithm had the best performance and was fast, since we implemented it

using Rbinom, an optimized function based on C language directly implemented in the core

package of R.

While generally accurate and fast, the ITSM algorithm was slower (Table 1) than most

other algorithms with increasing size or duration of the simulated curve. In theory, the "burn-

in" process penalizes all MCMC algorithms, but when the number of cases and days increases,

Fig 3. Average quality (between the generated outbreak curves and the corresponding historical

epidemic curve) for all diseases considered. Quality was evaluated by different metrics, according to

the number of cases and duration. Dist. = normalized distance used for evaluation detailed in pink line;

Delta = Overlap Coefficient; Kolmogorov = Kolmogorov distance;; L2 = L2-distance; Pearson = Pearson

distance, Rho = Matusita’s Measure; Technique used for simulation in green line: Binom = Binomial Method /

ITSM = Inverse Transform Sampling Method / Metrop. RW = Metropolis-Hasting Random Walk /Metrop.

Ind = Metropolis-Hasting Independent Sampler / Hybrid = Hybrid Gibbs Sampler / Gibbs = Gibbs Sampling

Algorithm.

https://doi.org/10.1371/journal.pone.0183992.g003
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the study shows that ITSM takes twice as much time as RWMH. In fact, ITSM is slower than

other methods [46], especially for a large sample, due to the number of comparisons it

requires. However, this method can be used for any type of distribution function, including a

mixture of discrete distributions.

Since an outbreak curve may have several local minima/maxima and regions of low proba-

bility, a Markov chain may fail to explore all of this complex distribution, except for Gibbs-

based methods. For dependent variables, the convergence of Markov chains with any particu-

lar distribution is not guaranteed [47].

Gibbs sampling with a shrinkage procedure is designed to manage complex distributions

[36]. This two-stage Gibbs sampler ensures the convergence of the Markov chain [36]. The

hybrid algorithm and Metropolis group has an acceptance rate of less than 1, thus convergence

cannot be ensured or is reached more slowly than for a Gibbs algorithm. This probably

explains the difference between Gibbs and the other MCMC algorithms. The accuracy of the

Gibbs algorithm was close to the independent (i.i.d.) algorithms, but Gibbs has a slower con-

vergence. In theory, Gibbs produces samples of disease outbreak distributions that are more

realistic, reproducing the temporal correlation of data.

The proposal distribution has a strong influence on IMHA performance [36], which is

problematic with the complexity of outbreak curves. For example, this algorithm performed

best with dengue outbreaks, which have a curve that resembles a uniform distribution.

Random Walk Metropolis-Hastings (RWMH) often appears to be a generic algorithm. But

a frequent issue of RWMH is whether or not the random walk should explore all the regions of

the distribution to be sampled. Robert [36] explains that RWMH "usually is not necessarily the

most efficient choice because it requires many iterations to overcome difficulties (such as low-

probability regions of curve) and because of its symmetric features, it spends roughly half the

simulation time revisiting regions it has already explored". Our study confirms that RWMH is

more efficient for simulating a symmetric jumping distribution, such as that of the norovirus

outbreak, than other asymmetric distributions.

The fundamental advantage offered by a Metropolis-within-Gibbs (hybrid) structure is that

it breaks down a complex curve into a number of smaller and simpler targets, where local MH

algorithms can be tailored at little cost. While these algorithms are very successful for many

target distributions, they cannot work efficiently when many wasteful jumps or small moves

are generated. The phenomenon is generally encountered in high-dimensional cases or some

low-dimensional extreme cases [48]. The hybrid algorithm performed best for dengue and

measles outbreaks (outbreaks with non-connected zones), probably because of the ability of

this method to explore these types of complex curves.

3.3 Influence of the overall scale factor

The overall scale factor (OSF) describes how outbreak size and duration interact by comparing

the original and resulting curves. The results of the OSF study are presented in Fig 4.

When the OSF is below 1 (i.e. when the number of cases per day in the simulation is less

than that of the original curve), the accuracy and realism of the simulation, evaluated by GOF

metrics, decrease rapidly (significant difference, p<0,001). For example, the median loss of

accuracy below this threshold is equal to 14.6% for the binomial method (15.7% for ITSM,

16.1% for Gibbs) and 43.8% for Metropolis Independent (42.3% for hybrid, 31.2% for

RWMH). Over 1 and for the same algorithms, the loss of accuracy is respectively 0.22% (0.23%

for ITSM, 0.29% for Gibbs) and 0.63% (0.64% for hybrid, 1.0% for RWMH). The accuracy is 2

to 3 times better for the first group of algorithms. Moreover, an OSF below 1 is associated with

an increase in the variance and duration of the simulation.
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In fact, an overall scale factor (OSF) below 1 is associated with a significant loss of informa-

tion during the simulation process. Regardless of the outbreak simulated, OSF = 1 can be con-

sidered as a kind of threshold below which the loss of information increasingly impairs

simulation quality in terms of goodness-of-fit and variance. As an overall measure of simula-

tion GOF, we used and recommend the χ2-divergence, which is also a measure of the loss of

information during the simulation process [49, 50].

3.4 Final considerations

The purpose of our study is not to evaluate existing algorithms but to propose a simple way to

generate realistic and controlled (with regard to the most important characteristics influencing

algorithm evaluation) outbreak signals. This preliminary step is required in order to carry out

reproducible evaluations expected by system designers/practitioners and to evaluate the influ-

ence of the shape and the pathogen on the ODA performance. Our approach follows a prag-

matic principle of parsimony by skipping the usual steps of modeling required to produce an

outbreak curve (S2 Fig). Indeed, resampling methods are often used as a robust alternative to

those based on parametric assumptions when they are dubious, or when parametric inference

is impossible or requires very complex formulas for computation. Another advantage of

resampling methods resides in the fact that our goal can be achieved without generating and

validating a plausible model of transmission and surveillance.

The strength of Monte Carlo resampling methods is their ability to produce realistic and

customized curves by rebuilding the original underlying distribution directly from a single

observed curve (the epicurve probability distribution), even if the outbreak curve is unusual,

provided that the outbreak PMF (probability mass function) can be extracted from real data.

Creating a database of outbreak curves (Disease or shape curve/Number of cases/Number of

days) supplemented with contextual information (such as population under surveillance/time/

location) can provide the material for various simulations and may help to define what

Fig 4. Algorithm simulation accuracy measured by goodness-of-fit measures* and time according to the ratio of

simulation. *Delta = Overlap Coefficient, Kolmogorov = Kolmogorov distance; L2 = L2-distance, Pearson = Pearson distance,

Rho = Matusita’s Measure.

https://doi.org/10.1371/journal.pone.0183992.g004
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constitutes a realistic and plausible epidemiological curve faced by the surveillance system. In

this study, we present only four shapes for a proof of concept, but our database is currently

made up of 893 real outbreaks resulting from 58 diseases under surveillance, allowing the gen-

eration of many other curves. However, the quality (accuracy) of the choice of curve to support

the resampling process during the simulation is clearly the major limitation of the method.

As for all simulation approaches, an evaluation of the epidemiological situation (popula-

tion, agent, system, location, period, etc.) of the original observed curve/model is required

when choosing the one that will support the simulation. Until our proposal, simulation of the

complex shape of the measles, dengue or anthrax outbreaks (presented in Fig 1) for evaluating

a disease surveillance system and ODA was based on the curve/shape set presented in S1 Fig,

which is considered the reference [6, 7, 16–19] for simulating outbreaks with controlled size

and duration. The strength of resampling methods is their ability to preserve as much as possi-

ble the general shape of real outbreak curves (see an example provided in S3 Fig), which is

known to influence the results of ODA evaluations. However, it is clear that one limitation of

our study is the difficulty of proving that each produced curve is realistic. Ideally, each curve

should be compared to curves observed during real surveillance activity, capturing all specific

patterns of the outbreak observed, and not only to the published curve (considered as the refer-

ence curve) as in our case.

Our approach can be considered as an easier method than implementing a propagation

model or using existing code from compartmental epidemic models, which require numer-

ous real parameters. For example, in the case of the binomial method (the simplest method

used in our study), a simulation of an outbreak of 30 cases over 10 days assigns each new

case to one of the 10 days according to the binomial distribution law (the PMF extracted

from the real curve providing the probability of success on each trial). The corresponding r

code is rbinom (number of days, number of cases, probability mass function vector extracted

from a real curve) or in our example rbinom(10, 30, PMF). This code is the same, irrespective

of the disease outbreak.

4 Conclusion

Given the constraint of keeping the simulation within a range of plausible epidemiological

curves faced by the surveillance system, our study confirms that MC resampling methods

applied to historical disease outbreaks can be used for outbreak curve production. It also con-

firms the influence of the algorithm and outbreak duration, size and curve shape on simulation

quality. It suggests that Gibbs sampling with a shrinkage procedure is a convenient approach

to simulating outbreak curves, since it can be viewed as a fair trade-off between accuracy,

simulation speed and data dependency. If dependency is of little importance, binomial and

ITSM methods are accurate. This study also shows that χ2-divergence is a useful tool, not only

for evaluating simulation quality but also for quantifying the loss of information observed

throughout the simulation process.

Finally, we confirm that the signal generation method proposed in this work must be able

to simulate a set of signals for evaluation simply, including very unlikely ones (for testing spe-

cial or extreme situations). Even if our approach can generate a large spectrum of possible sig-

nals, we do not find it necessary to test algorithm performance on all these unlikely signals, but

only on the authentic signals faced by the surveillance system.

Supporting information

S1 Script. Function Dayscale (in R language) for homogeneous dilation of number of time

steps in the case of a scaling factor r�1 (number of time steps simulated superior to the
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number of time steps in the initial curve).

(DOCX)

S1 Fig. Canonical shapes of simulated outbreaks generally used for ODA evaluation.

(TIF)

S2 Fig. Comparison between different approaches used to generate outbreak curves.

(TIF)

S3 Fig. Example of simulation and evaluation process in the case of a measles outbreak

shape [40], for a 14-day duration and 30-case outbreak simulation.

(TIF)

S1 Table. Goodness of fit metrics. (a) Distance and divergence measures used for evaluation.

(b) Measure of similarity used for evaluation. with Pi and Pi0: Probability Mass Function to

compare.

(DOCX)
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